51
|
Becheva ZR, Ivanov YL, Godjevargova TI, Tchorbanov AI. Simultaneous determination of ochratoxin A and enterotoxin A in milk by magnetic nanoparticles based fluorescent immunoassay. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1218-1236. [PMID: 33955808 DOI: 10.1080/19440049.2021.1914866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ochratoxin A (OTA) and staphylococcus enterotoxin A (SEA) are highly toxic contaminants and have induced human health problems. They commonly occur in milk and milk products. A competitive fluorescent immunoassay was developed for rapid and simultaneous determination of these toxins in milk samples. The procedure was based on the competitive immunoreactions between antigens in sample and antigen-fluorescent dye conjugates with immobilised antibodies on magnetic nanoparticles (MNPs). Each monoclonal antibody specifically recognises its corresponding toxin (antigen), and there is no cross-reactivity in the assay. First, monoclonal antibodies against OTA and SEA were produced. The activity of the obtained antibodies was determined by fluorescent-linked immunosorbent assay. Then, the monoclonal antibodies were immobilised on MNPs. The amounts of immobilised anti-OTA antibody and anti-SEA antibody were determined to be 20 and 22 μg mL-1, respectively. The antigen-fluorescent dye conjugates OTA-OVA-ATTO620 and SEA-FITC were prepared. The optimal amount of immobilised antibodies for competitive immunoassay was determined. It was found that the linear range of OTA in buffer was larger (0.001-100 ng mL-1) than the linear range of SEA (0.001-20 ng mL-1). The results for simultaneous determination of OTA and SEA in sixfold diluted milk were almost the same in buffer; the linear range for OTA was from 0.005 to 100 ng mL-1 and for SEA from 0.005 to 20 ng mL-1. The detection limit for both OTA and SEA in milk was 0.004 ng mL-1. The developed method took half the time of the individual assays (20 min). The assay was evaluated using spiked milk samples. The influences of somatic cell count, fat, pH and protein concentration in milk on immunoassay were studied. In summary, this developed immunoassay could provide an effective and rapid approach for detecting multi-toxins in milk samples.
Collapse
Affiliation(s)
- Zlatina R Becheva
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Yavor L Ivanov
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Tzonka I Godjevargova
- Department of Biotechnology, Faculty of Technical Science, "Prof. Dr Assen Zlatarov" University, Burgas, Bulgaria
| | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
52
|
Pantano L, La Scala L, Olibrio F, Galluzzo FG, Bongiorno C, Buscemi MD, Macaluso A, Vella A. QuEChERS LC-MS/MS Screening Method for Mycotoxin Detection in Cereal Products and Spices. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3774. [PMID: 33916634 PMCID: PMC8038554 DOI: 10.3390/ijerph18073774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022]
Abstract
We developed and validated a screening method for mycotoxin analysis in cereal products and spices. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used for the analysis. Dispersive solid-phase extractions (d-SPEs) were used for the extraction of samples. Ochratoxin A (OTA), zearalenone (ZEA), aflatoxins (AFLA; AFB1, AFB2, AFG1, AFG2), deoxynivalenol (DON), fumonisin (FUMO; FB1, FB2, FB3), T2, and HT2 were validated in maize. AFLA and DON were validated in black pepper. The method satisfies the requirements of Commission Regulation (EC) no. 401/2006 and (EC) no. 1881/2006. The screening target concentration (STC) was under maximum permitted levels (MLs) for all mycotoxins validated. The method's performance was assessed by two different proficiencies and tested with 100 real samples.
Collapse
Affiliation(s)
- Licia Pantano
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (L.P.); (L.L.S.); (F.O.); (C.B.); (M.D.B.); (A.M.); (A.V.)
| | - Ladislao La Scala
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (L.P.); (L.L.S.); (F.O.); (C.B.); (M.D.B.); (A.M.); (A.V.)
| | - Francesco Olibrio
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (L.P.); (L.L.S.); (F.O.); (C.B.); (M.D.B.); (A.M.); (A.V.)
| | - Francesco Giuseppe Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (L.P.); (L.L.S.); (F.O.); (C.B.); (M.D.B.); (A.M.); (A.V.)
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy
| | - Carmelo Bongiorno
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (L.P.); (L.L.S.); (F.O.); (C.B.); (M.D.B.); (A.M.); (A.V.)
| | - Maria Drussilla Buscemi
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (L.P.); (L.L.S.); (F.O.); (C.B.); (M.D.B.); (A.M.); (A.V.)
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (L.P.); (L.L.S.); (F.O.); (C.B.); (M.D.B.); (A.M.); (A.V.)
| | - Antonio Vella
- Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (L.P.); (L.L.S.); (F.O.); (C.B.); (M.D.B.); (A.M.); (A.V.)
| |
Collapse
|
53
|
Wu K, Ren C, Gong Y, Gao X, Rajput SA, Qi D, Wang S. The insensitive mechanism of poultry to zearalenone: A review. ACTA ACUST UNITED AC 2021; 7:587-594. [PMID: 34377845 PMCID: PMC8327487 DOI: 10.1016/j.aninu.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
Zearalenone (ZEN) is one of the most common contaminating mycotoxins and is mainly produced by Fusarium graminearum. ZEN and its metabolites can interfere with estrogen function and affect animals' reproductive ability. Pigs are most susceptible to ZEN, and ZEN is less harmful to poultry than to pigs. The exact mechanism for the difference in susceptibility remains unclear. In this review, we summarized some possible reasons for the relative insensitivity of poultry to ZEN, such as the lower total amount of α-zearalenol (α-ZOL) and the α-ZOL-to-β-ZOL ratio which reduce the toxicity of ZEN to poultry. The faster hepatic and enteric circulation, and excretion capacity in poultry can excrete more ZEN and its metabolites. There are other possible factors such as the transformation of intestinal microorganisms, differences in hydroxysteroid dehydrogenases' activity, high estrogen levels, and low estrogen receptors affinity which can also cause poultry to be relatively insensitive to ZEN. In this review, we summarized the hazards, pollution status, metabolic pathways, and some measures to mitigate ZEN's harmfulness. Specifically, we discussed the possible mechanisms of low reproductive toxicity by ZEN in poultry.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxi Ren
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangfan Gong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Gao
- Cargill Animal Nutrition Technology Application Center, Bazhou, 065000, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
54
|
Silva LDA, de Mello MRB, Oliveira Pião DD, Silenciato LN, de Quadros TCO, de Souza AH, Barbero RP. Effects of experimental exposure to zearalenone on reproductive system morphometry, plasma oestrogen levels, and oocyte quality of beef heifer. Reprod Domest Anim 2021; 56:775-782. [PMID: 33606307 DOI: 10.1111/rda.13917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to evaluate the effects of zearalenone (ZEA) on the reproductive system morphometry, oestrogen (E2) levels and oocyte quality of beef heifers. Twenty non-pregnant purebred Nellore (Bos indicus) heifers [age, ≥18 months; initial body weight, 348 ± 30 kg (mean ± standard deviation)] were used. The animals were randomly divided into experimental group and a control group of 10 animals each. Group experimental was administered 300 ppb ZEA per os for 98 days, and the control group was administered placebo per os for 98 days. The administration of ZEA was carried out daily by adding mycotoxin to the diet. All heifers were evaluated weekly via rectal ultrasound examinations (12 weeks). Diameters of the right and left uterine horns, right and left ovaries, largest antral follicle and corpus luteum were measured. Vulva size was also measured. Blood samples were collected to estimate E2 levels. At the end of 12 weeks, the heifers were slaughtered, and the ovaries were sent to the laboratory for in vitro embryo production. A completely randomized design was adopted, and repeated measures analysis of variance (p < .05) was performed (except for oocyte quality). Vulva size (p = .0985); diameters of uterine horns (p = .0522), ovaries (p = .6955), antral follicles (p = .6355) and corpus luteum (p = .3808); and E2 levels (p = .3379) were not affected by the treatments. ZEA-contaminated diet significantly reduced (p = .05) the proportion of viable oocytes (49.4%, n = 207) compared with the control diet (59.9%, n = 222); however, the blastocyst rate did not differ between the groups (p = .9418). The results indicate that contamination of beef heifer's diet with 300 ppb ZEA affected neither morphometric parameters nor plasma oestrogen levels; however, ZEA contamination was detrimental to oocyte quality.
Collapse
Affiliation(s)
- Lucas de Almeida Silva
- Animal Science Graduate Program, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | | | - Lara Nogueira Silenciato
- Animal Science Graduate Program, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | | | | |
Collapse
|
55
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
56
|
Ropejko K, Twarużek M. Zearalenone and Its Metabolites-General Overview, Occurrence, and Toxicity. Toxins (Basel) 2021; 13:35. [PMID: 33418872 PMCID: PMC7825134 DOI: 10.3390/toxins13010035] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/01/2021] [Indexed: 12/27/2022] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and represent one of the most common groups of food contaminants with low molecular weight. These toxins are considered common and can affect the food chain at various stages of production, harvesting, storage and processing. Zearalenone is one of over 400 detected mycotoxins and produced by fungi of the genus Fusarium; it mainly has estrogenic effects on various organisms. Contaminated products can lead to huge economic losses and pose risks to animals and humans. In this review, we systemize information on zearalenone and its major metabolites.
Collapse
Affiliation(s)
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland;
| |
Collapse
|
57
|
Roy A, Ahuja S, Garg S. Fungal Secondary Metabolites: Biological Activity and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
58
|
Márton É, Varga A, Széles L, Göczi L, Penyige A, Nagy B, Szilágyi M. The Cell-Free Expression of MiR200 Family Members Correlates with Estrogen Sensitivity in Human Epithelial Ovarian Cells. Int J Mol Sci 2020; 21:ijms21249725. [PMID: 33419253 PMCID: PMC7766742 DOI: 10.3390/ijms21249725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to physiological estrogens or xenoestrogens (e.g., zearalenone or bisphenol A) increases the risk for cancer. However, little information is available on their significance in ovarian cancer. We present a comprehensive study on the effect of estradiol, zearalenone and bisphenol A on the phenotype, mRNA, intracellular and cell-free miRNA expression of human epithelial ovarian cell lines. Estrogens induced a comparable effect on the rate of cell proliferation and migration as well as on the expression of estrogen-responsive genes (GREB1, CA12, DEPTOR, RBBP8) in the estrogen receptor α (ERα)-expressing PEO1 cell line, which was not observable in the absence of this receptor (in A2780 cells). The basal intracellular and cell-free expression of miR200s and miR203a was higher in PEO1, which was accompanied with low ZEB1 and high E-cadherin expression. These miRNAs showed a rapid but intermittent upregulation in response to estrogens that was diminished by an ERα-specific antagonist. The role of ERα in the regulation of the MIR200B-MIR200A-MIR429 locus was further supported by publicly available ChIP-seq data. MiRNA expression of cell lysates correlated well with cell-free miRNA expression. We conclude that cell-free miR200s might be promising biomarkers to assess estrogen sensitivity of ovarian cells.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lajos Széles
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Lóránd Göczi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Faculty of Pharmacology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (L.S.); (L.G.); (A.P.); (B.N.)
- Correspondence:
| |
Collapse
|
59
|
Janik E, Niemcewicz M, Ceremuga M, Stela M, Saluk-Bijak J, Siadkowski A, Bijak M. Molecular Aspects of Mycotoxins-A Serious Problem for Human Health. Int J Mol Sci 2020; 21:E8187. [PMID: 33142955 PMCID: PMC7662353 DOI: 10.3390/ijms21218187] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/09/2023] Open
Abstract
Mycotoxins are toxic fungal secondary metabolities formed by a variety of fungi (moulds) species. Hundreds of potentially toxic mycotoxins have been already identified and are considered a serious problem in agriculture, animal husbandry, and public health. A large number of food-related products and beverages are yearly contaminated by mycotoxins, resulting in economic welfare losses. Mycotoxin indoor environment contamination is a global problem especially in less technologically developed countries. There is an ongoing effort in prevention of mould growth in the field and decontamination of contaminated food and feed in order to protect human and animal health. It should be emphasized that the mycotoxins production by fungi (moulds) species is unavoidable and that they are more toxic than pesticides. Human and animals are exposed to mycotoxin via food, inhalation, or contact which can result in many building-related illnesses including kidney and neurological diseases and cancer. In this review, we described in detail the molecular aspects of main representatives of mycotoxins, which are serious problems for global health, such as aflatoxins, ochratoxin A, T-2 toxin, deoxynivalenol, patulin, and zearalenone.
Collapse
Affiliation(s)
- Edyta Janik
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal Ceremuga
- Military Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Poland
| | - Maksymilian Stela
- CBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela "Montera" 105, 00-910 Warsaw, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Adrian Siadkowski
- Department of Security and Crisis Menagement, Faculty of Applied Sciences, University of Dabrowa Gornicza, Zygmunta Cieplaka 1c, 41-300 Dabrowa Gornicza, Poland
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
60
|
Zhang Y, Hu B, Wang M, Tong J, Pan J, Wang N, Gong P, Long M. Selenium Protects against Zearalenone-Induced Oxidative Stress and Apoptosis in the Mouse Kidney by Inhibiting Endoplasmic Reticulum Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6059058. [PMID: 32850001 PMCID: PMC7439790 DOI: 10.1155/2020/6059058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
This study assessed the molecular mechanism of selenium (Se) protecting against kidney injury induced by zearalenone (ZEA) in mice. The experimental mice were divided into 4 groups including the control group, the Se group, the ZEA group, and the Se+ZEA group; ZEA and Se were administered orally for 28 days. The changes in renal biochemical index (BUN, UA, and CRE), biochemical change of kidney damage such as BUN, UA, and CRE, and oxidative damage such as MDA, T-SOD, and GSH-Px were investigated. Pathological sections and TUNEL staining were used to analyze renal pathological changes and cell apoptosis. qRT-PCR and Western blot were employed to detect the expression of genes and proteins which were related with endoplasmic reticulum stress. The results showed that ZEA increased the concentration of BUN, UA, and CRE and the content of MDA and decreased the activities of T-SOD and GSH-Px in the mouse kidneys. However, Se reversed above changes of the biochemical and antioxidant indexes of renal injury. Moreover, the results also showed that ZEA can increase the expression of Bax, caspase-12, caspase-3, Bip, CHOP, JNK protein, and mRNA and decrease the expression of Bcl-2 protein and mRNA. But Se reversed these proteins and genes related to endoplasmic reticulum stress and apoptosis. It can be concluded that Se protected against the kidney damage induced by ZEA. Se may protect the kidney from ZEA-induced apoptosis and oxidative stress by inhibiting ERS.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Bo Hu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianwen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
61
|
Abstract
Abstract
The microscopic filamentous fungi of the genus Fusarium are capable of producing secondary metabolites—mycotoxins. Fusarium fungi synthesize trichothecenes, zearalenone (ZEA) and fumonisins under appropriate environmental conditions. In this biological experiment, we studied the effects of zearalenone on a model organism called Artemia franciscana. During the three-day in vivo tests, we used five different concentrations of zearalenone (0.08 ppm, 0.4 ppm, 2 ppm, 10 ppm and 50 ppm). The results of this study showed that as the zearalenone concentration and the duration of the mycotoxin exposure increased, the lethality of artemia also increased. Our study showed that the toxicity of zearalenone to Artemia franciscana was relatively low.
Collapse
|
62
|
Assumaidaee AAM, Ali NM, Ahmed SW. Zearalenone Mycotoxicosis: Pathophysiology and Immunotoxicity. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i1.932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycotoxicosis refers to the deleterious pathological effects of different types of toxins produced by some worldwide distributing fungi. Mycotoxins, as secondary metabolites are affecting different organs and systems both in animals and human beings. Zearalenone (ZEA), the well-known estrogenic mycotoxins, is an immunotoxic agent. This macrocyclic beta-resorcyclic acid lactone is mycotoxin procreated as a secondary metabolic byproduct by several types of Fusarium, encompassing Fusarium roseum, Fusarium culmorum, Fusarium graminearum, and different other types. Attributing to its potent estrogenic activity, ZEA has been incriminated as one of the major causes of female reproductive disorders. Thus, the purpose of the present review article is to appraise the pathophysiological consequences and subsequent explore the progress in the research field of zearalenone immunotoxicities.
Collapse
|
63
|
Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxicokinetics, Toxicity and Estrogenicity. Toxins (Basel) 2020; 12:toxins12060377. [PMID: 32517357 PMCID: PMC7354539 DOI: 10.3390/toxins12060377] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
One of the concerns when using grain ingredients in feed formulation for livestock and poultry diets is mycotoxin contamination. Aflatoxin, fumonisin, ochratoxin, trichothecene (deoxynivalenol, T-2 and HT-2) and zearalenone (ZEN) are mycotoxins that have been frequently reported in animal feed. ZEN, which has raised additional concern due to its estrogenic response in animals, is mainly produced by Fusarium graminearum (F. graminearum), F. culmorum, F. cerealis, F. equiseti, F. crookwellense and F. semitectums, and often co-occurs with deoxynivalenol in grains. The commonly elaborated derivatives of ZEN are α-zearalenol, β-zearalenol, zearalanone, α-zearalanol, and β-zearalanol. Other modified and masked forms of ZEN (including the extractable conjugated and non-extractable bound derivatives of ZEN) have also been quantified. In this review, common dose of ZEN in animal feed was summarized. The absorption rate, distribution (“carry-over”), major metabolites, toxicity and estrogenicity of ZEN related to poultry, swine and ruminants are discussed.
Collapse
|
64
|
Yi Y, Wan S, Hou Y, Cheng J, Guo J, Wang S, Khan A, Sun N, Li H. Chlorogenic acid rescues zearalenone induced injury to mouse ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110401. [PMID: 32143102 DOI: 10.1016/j.ecoenv.2020.110401] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Zearalenone (ZEA), a toxic substance produced by Fusarium fungi, accumulated in cereals grain and animal feed, causes injury to humans and animals. ZEA can induce obvious reproductive toxicity with the ovarian granulosa cells (GCs) as the main target. However, the study on exploring the protective compounds against ZEA-induced mouse primary ovarian GCs damage remains less. In the current study, the protective effect of 20 compounds derived from traditional Chinese medicines (TCMs) on the injury of mouse GCs caused by ZEA were evaluated using MTT assay and the cell morphology. Our results showed that chlorogenic acid (250, 500, and 1000 μg/mL) significantly suppress ZEA-induced GCs death. Western blot analysis suggested chlorogenic acid could rescue the up-regulated apoptosis of GCs induced by ZEA via attenuating the protein expression of cleaved caspase-3, the ratio of Bax/Bcl-2 and cleaved-PARP. Our results provide strong evidence that chlorogenic acid warrants further optimization for more potent and safer compounds for against the ZEA lead toxicity to humans and animals.
Collapse
Affiliation(s)
- YanYan Yi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - ShuangXiu Wan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China; School of Pharmacy, Heze University, Heze, Shangdong, 274000, People's Republic of China
| | - YaXin Hou
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jia Cheng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - JianHua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX, 77843, USA
| | - Shaoyu Wang
- School of Community Health, Faculty of Science, Charles Sturt University, NSW, 2800, Australia
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
65
|
Abstract
Mycotoxins are secondary metabolites of microscopic fungi, which commonly contaminate cereal grains. Contamination of small-grain cereals and maize with toxic metabolites of fungi, both pathogenic and saprotrophic, is one of the particularly important problems in global agriculture. Fusarium species are among the dangerous cereal pathogens with a high toxicity potential. Secondary metabolites of these fungi, such as deoxynivalenol, zearalenone and fumonisin B1 are among five most important mycotoxins on a European and world scale. The use of various methods to limit the development of Fusarium cereal head diseases and grain contamination with mycotoxins, before and after harvest, is an important element of sustainable agriculture and production of safe food. The applied strategies utilize chemical and non-chemical methods, including agronomic, physical and biological treatments. Biological methods now occupy a special place in plant protection as an element of biocontrol of fungal pathogens by inhibiting their development and reducing mycotoxins in grain. According to the literature, Good Agricultural Practices are the best line of defense for controlling Fusarium toxin contamination of cereal and maize grains. However, fluctuations in weather conditions can significantly reduce the effectiveness of plants protection methods against infection with Fusarium spp. and grain accumulation of mycotoxins.
Collapse
|
66
|
Oliveira M, Vasconcelos V. Occurrence of Mycotoxins in Fish Feed and Its Effects: A Review. Toxins (Basel) 2020; 12:E160. [PMID: 32143380 PMCID: PMC7150860 DOI: 10.3390/toxins12030160] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Plant-based ingredients have been successfully replacing fishmeal in finished fish feeds. However, using crops in feeds results in an increased risk of contamination by fungi and mycotoxins and a higher incidence of mycotoxicosis in fish. This might decrease aquaculture's productivity as mycotoxicosis generally result in decreased body weight, growth impairment and higher rates of disease and mortality in fish. Additionally, some mycotoxins might accumulate in the fish musculature. As such, fish consumption might become another way for mycotoxins to enter the human food chain, threatening food security and public health as mycotoxins are important genotoxins, carcinogens and immunosuppressors to humans. In this work we aim to provide a review on the most important mycotoxins found in crops and in finished fish feed, i.e., aflatoxins, fumonisins, ochratoxins, trichothecenes and zearalenone. We present their effects on the health of fish and humans and their regulations in the European Union. Although work has been performed in mycotoxin research ever since the 1960s, a lot of information is still lacking regarding its effects. However, it is noticed that in order to use crops in aquafeed production, efforts should be made in order to monitor its contamination by mycotoxinogenic fungi and mycotoxins.
Collapse
Affiliation(s)
- Mariana Oliveira
- Faculty of Sciences, Biology Department, University of Porto; Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal;
- Interdiciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Vitor Vasconcelos
- Faculty of Sciences, Biology Department, University of Porto; Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal;
- Interdiciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
67
|
Zhou H, Li L, Zhan B, Wang S, Li J, Hu XJ. The Trp183 is essential in lactonohydrolase ZHD detoxifying zearalenone and zearalenols. Biochem Biophys Res Commun 2020; 522:986-989. [PMID: 31810602 DOI: 10.1016/j.bbrc.2019.11.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 11/26/2019] [Indexed: 11/16/2022]
Abstract
Lactonohydrolase ZHD can detoxify oestrogenic mycotoxin zearalenone and zearalenols through hydrolysis and decarboxylation. The detail mechanism, especially the role of Trp183, which interacts with substrate through p-π interaction and one hydrogen bond, is still unknown. The Trp183 mutants abolished activity to ZEN, α-ZOL and β-ZOL, except that W183F mutant retained about 40% activity against α-ZOL. In two W183F-reactant complex structures the reactants still bind at the active position and it suggested that this p-π interaction takes responsible for the reactants recognization and allocation. Further, the ZHD-productant complex structures showed that the resorcinol ring of hydrolysed α-ZOL and hydrolysed β-ZOL move a distance of one ring as compare to the resorcinol ring of reactant α-ZOL and β-ZOL. The same movement also found in comparison of hydrolysed ZEN and ZEN. In the structure of W183F complex with hydrolysed α-ZOL the resorcinol ring of hydrolysed α-ZOL doesn't move as compare to the resorcinol ring of reactant α-ZOL. It suggested the Trp183 coordinated hydrogen bond takes responsible for the movement of the hydrolysed product. These functional and structural results suggested that Trp183 is essential for ZHD detoxifying zearalenone and zearalenols.
Collapse
Affiliation(s)
- Hujian Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Long Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Bowen Zhan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Sen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| | - Xiao-Jian Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Collaborateive Innovative Center of Genetics and Development, Fudan University, Shanghai, 200438, China; Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China.
| |
Collapse
|
68
|
Magnoli AP, Poloni VL, Cavaglieri L. Impact of mycotoxin contamination in the animal feed industry. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
69
|
Yang C, Song G, Lim W. A mechanism for the effect of endocrine disrupting chemicals on placentation. CHEMOSPHERE 2019; 231:326-336. [PMID: 31132539 DOI: 10.1016/j.chemosphere.2019.05.133] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 05/28/2023]
Abstract
Numerous recent studies have shown that endocrine disrupting chemicals (EDCs) in the body of pregnant women can pass through the placenta and be exposed to the fetus, leading to fetal development and cognitive impairment. Placentation through invasion of trophoblast cells and vascular remodeling is essential to maintaining maternal and fetal health throughout the pregnancy. Abnormal placentation can lead to pregnancy disorders such as preeclampsia (PE) and intrauterine growth retardation (IUGR). However, many studies have not been conducted on whether EDCs can inhibit the development and function of the placenta. Isolating placental tissues to analyze the effect of EDCs on placentation has several limitations. In this review, we discussed the types of EDCs that can pass through the placental barrier and accumulate in the placenta with relative outcome. EDCs can be released from a variety of products including plasticizers, pesticides, and retardant. We also discussed the development and dysfunction of the placenta when EDCs were treated on trophoblast cells or pregnant rodent models. The effects of EDCs on the placenta of livestock are also discussed, together with the molecular mechanism of EDCs acting in trophoblast cells. We describe how EDCs cross the membrane of trophoblasts to regulate signaling pathways, causing genetic and epigenetic changes that lead to changes in cell viability and invasiveness. Further studies on the effects of EDCs on placenta may draw attention to the correct use of products containing EDCs during pregnancy.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|