51
|
Delia M, Carluccio P, Mestice A, Frappampina R, Albano F, Specchia G, Musto P. After Treatment Decrease of Bone Marrow Tregs and Outcome in Younger Patients with Newly Diagnosed Acute Myeloid Leukemia. J Immunol Res 2020; 2020:2134647. [PMID: 33204734 PMCID: PMC7657695 DOI: 10.1155/2020/2134647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
An emerging body of evidence demonstrates that defects in antileukemic effector cells in patients with acute myeloid leukemia (AML) can contribute to the development and/or persistence of the disease. In particular, immune suppressive regulatory T cells (Tregs) may contribute to this defective antileukemic immune response, being recruited by bone marrow leukemic cells to evade immune surveillance. We evaluated Tregs (CD4+/CD45RA-/CD25high/CD127low), performing multiparametric flow cytometry on freshly collected bone marrow aspirate (BMA), in addition to the usual molecular and cytogenetic work-up in newly diagnosed AML patients to look for any correlation between Tregs and the overall response rate (ORR). We studied 39 AML younger patients (<65 years), all treated with standard induction chemotherapy. ORR (complete remission (CR)+CR with incomplete hematologic recovery (CRi)) was documented in 21 out of 39 patients (54%); two partial responder patients were also recorded. Apart from the expected impact of the molecular-cytogenetic group (p = 0.03) and the NPM mutation (p = 0.05), diagnostic BMA Tregs did not show any correlation with ORR. However, although BMA Tregs did not differ in the study population after treatment, their counts significantly decreased in responder patients (p = 0.039), while no difference was documented in nonresponder ones. This suggested that the removal of Treg cells is able to evoke and enhance anti-AML immune response. However, the role of BMA Tregs in mediating immune system-AML interactions in the diagnostic and posttreatment phase should be confirmed in a greater number of patients.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers
- Biomarkers, Tumor
- Biopsy, Needle
- Bone Marrow/pathology
- Disease Management
- Female
- Humans
- Immunophenotyping
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Count
- Male
- Middle Aged
- Mutation
- Prognosis
- ROC Curve
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Young Adult
Collapse
Affiliation(s)
- Mario Delia
- Hematology and Bone Marrow Transplantation Unit-Azienda Ospedaliero-Universitaria Consorziale Policlinico, Department of Emergency and Organ Transplantation-University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Carluccio
- Hematology and Bone Marrow Transplantation Unit-Azienda Ospedaliero-Universitaria Consorziale Policlinico, Department of Emergency and Organ Transplantation-University of Bari “Aldo Moro”, Bari, Italy
| | - Anna Mestice
- Hematology and Bone Marrow Transplantation Unit-Azienda Ospedaliero-Universitaria Consorziale Policlinico, Department of Emergency and Organ Transplantation-University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Frappampina
- Hematology and Bone Marrow Transplantation Unit-Azienda Ospedaliero-Universitaria Consorziale Policlinico, Department of Emergency and Organ Transplantation-University of Bari “Aldo Moro”, Bari, Italy
| | - Francesco Albano
- Hematology and Bone Marrow Transplantation Unit-Azienda Ospedaliero-Universitaria Consorziale Policlinico, Department of Emergency and Organ Transplantation-University of Bari “Aldo Moro”, Bari, Italy
| | | | - Pellegrino Musto
- Hematology and Bone Marrow Transplantation Unit-Azienda Ospedaliero-Universitaria Consorziale Policlinico, Department of Emergency and Organ Transplantation-University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
52
|
Shen C, Zhang Z, Zhang Y. Chimeric Antigen Receptor T Cell Exhaustion during Treatment for Hematological Malignancies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8765028. [PMID: 33150182 PMCID: PMC7603553 DOI: 10.1155/2020/8765028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Immunotherapy, especially based on chimeric antigen receptor (CAR) T cells, has achieved prominent success in the treatment of hematological malignancies. However, approximately 30-50% of patients will have disease relapse following remission after receiving CD19-targeting CAR-T cells, with failure of maintaining a long-term effect. Mechanisms underlying CAR-T therapy inefficiency consist of loss or modulation of target antigen and CAR-T cell poor persistence which mostly results from T cell exhaustion. The unique features and restoration strategies of exhausted T cells (Tex) have been well described in solid tumors. However, the overview associated with CAR-T cell exhaustion is relatively rare in hematological malignancies. In this review, we summarize the characteristics, cellular, and molecular mechanisms of Tex cells as well as approaches to reverse CAR-T cell exhaustion in hematological malignancies, providing novel strategies for immunotherapies.
Collapse
MESH Headings
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- CD28 Antigens/genetics
- CD28 Antigens/immunology
- Clonal Anergy
- Gene Expression
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/pathology
- Hematologic Neoplasms/therapy
- Humans
- Immunotherapy, Adoptive/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Recurrence
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Treatment Failure
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
Collapse
Affiliation(s)
- Chunyi Shen
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|
53
|
Kaboli PJ, Zhang L, Xiang S, Shen J, Li M, Zhao Y, Wu X, Zhao Q, Zhang H, Lin L, Yin J, Wu Y, Wan L, Yi T, Li X, Cho CH, Li J, Xiao Z, Wen Q. Molecular Markers of Regulatory T Cells in Cancer Immunotherapy with Special Focus on Acute Myeloid Leukemia (AML) - A Systematic Review. Curr Med Chem 2020; 27:4673-4698. [PMID: 31584362 DOI: 10.2174/0929867326666191004164041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
The next-generation immunotherapy can only be effective if researchers have an in-depth understanding of the function and regulation of Treg cells in antitumor immunity combined with the discovery of new immunity targets. This can enhance clinical efficacy of future and novel therapies and reduces any adverse reactions arising from the latter. This review discusses tumor treatment strategies using regulatory T (Treg) cell therapy in a Tumor Microenvironment (TME). It also discusses factors affecting TME instability as well as relevant treatments to prevent future immune disorders. It is prognosticated that PD-1 inhibitors are risky and their adverse effects should be taken into account when they are administered to treat Acute Myeloid Leukemia (AML), lung adenocarcinoma, and prostate adenocarcinoma. In contrast, Treg molecular markers FoxP3 and CD25 analyzed here have stronger expression in almost all kinds of cancers compared with normal people. However, CD25 inhibitors are more effective compared to FoxP3 inhibitors, especially in combination with TGF-β blockade, in predicting patient survival. According to the data obtained from the Cancer Genome Atlas, we then concentrate on AML immunotherapy and discuss different therapeutic strategies including anti-CD25/IL-2, anti-CTLA-4, anti-IDO, antityrosine kinase receptor, and anti-PI3K therapies and highlight the recent advances and clinical achievements in AML immunotherapy. In order to prognosticate the risk and adverse effects of key target inhibitors (namely against CTLA-4, FoxP3, CD25, and PD-1), we finally analyzed and compared the Cancer Genome Atlas derived from ten common cancers. This review shows that Treg cells are strongly increased in AML and the comparative review of key markers shows that Tregbased immunotherapy is not effective for all kinds of cancer. Therefore, blocking CD25(+)FoxP3(+) Treg cells is suggested in AML more than other kinds of cancer; meanwhile, Treg markers studied in other cancers have also great lessons for AML immunotherapy.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Lingling Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Ling Lin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jianhua Yin
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Yuanlin Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Lin Wan
- Department of Hematology and Oncology, The Children's Hospital of Soochow, Jiangsu, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiang Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000 Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
54
|
Li DY, Xiong XZ. ICOS + Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol 2020; 11:2104. [PMID: 32983168 PMCID: PMC7485335 DOI: 10.3389/fimmu.2020.02104] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation, proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS, yet the associated mechanism needs further investigation. In this review, we discuss the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic diseases, and cancers and investigate the related therapeutic applications in these diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal antibodies exhibit excellent clinical application potential. A thorough understanding of the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will help to improve the therapeutic schedule of diseases.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
55
|
Dong Y, Han Y, Huang Y, Jiang S, Huang Z, Chen R, Yu Z, Yu K, Zhang S. PD-L1 Is Expressed and Promotes the Expansion of Regulatory T Cells in Acute Myeloid Leukemia. Front Immunol 2020; 11:1710. [PMID: 32849603 PMCID: PMC7412746 DOI: 10.3389/fimmu.2020.01710] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Intratumoral accumulation of CD4+CD25+Foxp3+ regulatory T (Treg) cells occurs in acute myeloid leukemia (AML), but little is known about the role of tumor cells themselves in this process. Here, we showed that an immune checkpoint PD-L1 expressed by AML cells promoted the conversion and expansion of Treg cells sustaining high expression of Foxp3 and PD-1 as well as a suppressive function. Furthermore, an AML cell line HEL overexpressed PD-L1 promoted the conversion and expansion of Treg cells and CD4+PD-1+Foxp3+ T (PD-1+Treg) cells from the conventional CD4+ T cells. CD4+CD25highPD-1+ T cells secreted more IL-10 production than CD4+CD25highPD-1− T cells. IL-35, another cytokine secreted by Treg cells, promoted the proliferation of HL-60 cells and enhanced chemoresistance to cytarabine. Blockade of PD-1 signaling using anti-PD-L1 antibody dramatically impaired the generation of Treg cells and sharply retarded the progression of a murine AML model injected with C1498 cells. The frequency of intratumoral PD-1+ Treg cells was capable of predicting patient survival in patients with AML. In conclusion, our data suggest that PD-L1 expression by AML cells may directly drive Treg cell expansion as a mechanism of immune evasion and the frequency of PD-1+ Treg cells is a potential prognostic predictor in patients with AML.
Collapse
Affiliation(s)
- Yuqing Dong
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yixiang Han
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yisha Huang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ziyang Huang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongrong Chen
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenghui Zhang
- Wenzhou Key Laboratory of Hematology, Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Division of Clinical Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
56
|
Alizadeh M, Safarzadeh A, Hoseini SA, Piryaei R, Mansoori B, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potentials of immune checkpoints for the treatment of blood malignancies. Crit Rev Oncol Hematol 2020; 153:103031. [PMID: 32622320 DOI: 10.1016/j.critrevonc.2020.103031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoints are the regulators of the immune system, which include stimulatory and inhibitory receptors. They play substantial roles in the maintenance of immune system homeostasis and the prevention of autoimmunity and cancer. In the current review, immune checkpoints roles are surveyed in the initiation, progression, and treatment of blood malignancies. The significant roles of immune checkpoints are discussed as clinical markers in the diagnosis and prognosis of a plethora of blood malignancies and also as potential targets for the treatment of these malignancies. It could be concluded that the regulation of immune checkpoints in various blood cancers can be employed as a novel strategy to obtain effective results in leukemia treatment and introduce immune checkpoint inhibitors as sufficient weapons against blood cancers in the future.
Collapse
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyed Ali Hoseini
- Department of Genetic, Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Reza Piryaei
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
57
|
Antohe I, Dǎscǎlescu A, Dǎnǎilǎ C, Titieanu A, Zlei M, Ivanov I, Sireteanu A, Pavel M, Cianga P. B7-Positive and B7-Negative Acute Myeloid Leukemias Display Distinct T Cell Maturation Profiles, Immune Checkpoint Receptor Expression, and European Leukemia Net Risk Profiles. Front Oncol 2020; 10:264. [PMID: 32231996 PMCID: PMC7082324 DOI: 10.3389/fonc.2020.00264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/14/2020] [Indexed: 01/24/2023] Open
Abstract
Acute myeloid leukemia (AML) is generally considered a poorly immunogenic malignancy, displaying a “non-inflamed” leukemia microenvironment (LME), leading to T cell tolerance. However, the immune landscape of AML is much more heterogeneous. Since B7 expression is regarded as a consequence of an interferon-mediated “inflammatory” phenotype, we have investigated by flow cytometry the B7 checkpoint ligands B7.1, B7.2, programmed death ligand 1 (PD-L1), PD-L2, ICOS-L, B7-H3, and B7-H4 on the AML blasts of 30 newly diagnosed patients and their corresponding receptors [cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death 1 (PD-1), and inducible T cell costimulator (ICOS)] on bone marrow (BM) T cell maturation populations. We could thus evidence B7-negative and B7-positive leukemias either with an isolated expression or part of eight different checkpoint ligand “signatures” that always included an inhibitory B7 molecule. B7-positive AMLs encompassed intermediate and adverse European Leukemia Net (ELN) risk cases and displayed mainly central memory CD4+ T cells with high ICOS levels and effector CD8+ T cells with high PD-1 expression. B7-negative cases were rather classified as AML with recurrent genetic anomalies and displayed predominantly naive T cells, with the exception of NPM1 mutated AMLs, which expressed B7-H3. These different B7 immune profiles suggest that specific immunotherapies are required to target the distinct immune evasion strategies of this genetically heterogeneous disease.
Collapse
Affiliation(s)
- Ion Antohe
- Hematology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.,Hematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Angela Dǎscǎlescu
- Hematology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.,Hematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Cǎtǎlin Dǎnǎilǎ
- Hematology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.,Hematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Amalia Titieanu
- Hematology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania.,Hematology Department, Regional Oncology Institute, Iaşi, Romania
| | - Mihaela Zlei
- Immunophenotyping Department, Regional Oncology Institute, Iaşi, Romania
| | - Iuliu Ivanov
- Molecular Diagnostic Department, Regional Oncology Institute, Iaşi, Romania
| | - Adriana Sireteanu
- Molecular Diagnostic Department, Regional Oncology Institute, Iaşi, Romania
| | - Mariana Pavel
- Immunology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| | - Petru Cianga
- Immunology Department, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania
| |
Collapse
|
58
|
Epperly R, Gottschalk S, Velasquez MP. A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Front Oncol 2020; 10:262. [PMID: 32185132 PMCID: PMC7058784 DOI: 10.3389/fonc.2020.00262] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19 have been successful treating patients with relapsed/refractory B cell acute lymphoblastic leukemia (ALL) and B cell lymphomas. However, relapse after CAR T cell therapy is still a challenge. In addition, preclinical and early clinical studies targeting acute myeloid leukemia (AML) have not been as successful. This can be attributed in part to the presence of an AML microenvironment that has a dampening effect on the antitumor activity of CAR T cells. The AML microenvironment includes cellular interactions, soluble environmental factors, and structural components. Suppressive immune cells including myeloid derived suppressor cells and regulatory T cells are known to inhibit T cell function. Environmental factors contributing to T cell exhaustion, including immune checkpoints, anti-inflammatory cytokines, chemokines, and metabolic alterations, impact T cell activity, persistence, and localization. Lastly, structural factors of the bone marrow niche, secondary lymphoid organs, and extramedullary sites provide opportunities for CAR T cell evasion by AML blasts, contributing to treatment resistance and relapse. In this review we discuss the effect of the AML microenvironment on CAR T cell function. We highlight opportunities to enhance CAR T cell efficacy for AML through manipulating, targeting, and evading the anti-inflammatory leukemic microenvironment.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - M. Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
59
|
Epperly R, Gottschalk S, Velasquez MP. Harnessing T Cells to Target Pediatric Acute Myeloid Leukemia: CARs, BiTEs, and Beyond. CHILDREN (BASEL, SWITZERLAND) 2020; 7:E14. [PMID: 32079207 PMCID: PMC7072334 DOI: 10.3390/children7020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Outcomes for pediatric patients with acute myeloid leukemia (AML) remain poor, highlighting the need for improved targeted therapies. Building on the success of CD19-directed immune therapy for acute lymphocytic leukemia (ALL), efforts are ongoing to develop similar strategies for AML. Identifying target antigens for AML is challenging because of the high expression overlap in hematopoietic cells and normal tissues. Despite this, CD123 and CD33 antigen targeted therapies, among others, have emerged as promising candidates. In this review we focus on AML-specific T cell engaging bispecific antibodies and chimeric antigen receptor (CAR) T cells. We review antigens being explored for T cell-based immunotherapy in AML, describe the landscape of clinical trials upcoming for bispecific antibodies and CAR T cells, and highlight strategies to overcome additional challenges facing translation of T cell-based immunotherapy for AML.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| | - Mireya Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 77030, USA;
| |
Collapse
|
60
|
Ladikou EE, Sivaloganathan H, Pepper A, Chevassut T. Acute Myeloid Leukaemia in Its Niche: the Bone Marrow Microenvironment in Acute Myeloid Leukaemia. Curr Oncol Rep 2020; 22:27. [PMID: 32048054 PMCID: PMC7012995 DOI: 10.1007/s11912-020-0885-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose of Review Acute myeloid leukaemia (AML) is a heterogeneous malignancy for which treatment options remain suboptimal. It is clear that a greater understanding of the biology of the AML niche will enable new therapeutic strategies to be developed in order to improve treatment outcomes for patients. Recent Findings Recent evidence has highlighted the importance of the bone marrow microenvironment in protecting leukaemia cells, and in particular leukaemic stem cells from chemotherapy-induced cell death. This includes mesenchymal stem cells supporting growth and preventing apoptosis, and altered action and secretion profiles of other niche components including adipocytes, endothelial cells and T cells. Summary Here, we provide a detailed overview of the current understanding of the AML bone marrow microenvironment. Clinical trials of agents that mobilise leukaemic stem cells from the bone marrow are currently ongoing and show early promise. Future challenges will involve combining these novel therapies targeted at the AML niche with conventional chemotherapy treatment.
Collapse
Affiliation(s)
- E E Ladikou
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, UK.,Royal Sussex County Hospital, Brighton, BN2 5BE, UK
| | - H Sivaloganathan
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, UK
| | - A Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, UK
| | - T Chevassut
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, UK. .,Royal Sussex County Hospital, Brighton, BN2 5BE, UK.
| |
Collapse
|
61
|
Tang L, Wu J, Li CG, Jiang HW, Xu M, Du M, Yin Z, Mei H, Hu Y. Characterization of Immune Dysfunction and Identification of Prognostic Immune-Related Risk Factors in Acute Myeloid Leukemia. Clin Cancer Res 2020; 26:1763-1772. [PMID: 31911547 DOI: 10.1158/1078-0432.ccr-19-3003] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/16/2019] [Accepted: 01/02/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE This study aims to provide comprehensive insights into longitudinal immune landscape in acute myeloid leukemia (AML) development and treatment, which may contribute to predict prognosis and guide clinical decisions. EXPERIMENTAL DESIGN Periphery blood samples from 79 patients with AML (at diagnosis or/and after chemotherapy or at relapse) and 24 healthy controls were prospectively collected. We performed phenotypic and functional analysis of various lymphocytes through multiparametric flow cytometry and investigated prognostic immune-related risk factors. RESULTS Immune defects in AML were reflected in T and natural killer (NK) cells, whereas B-cell function remained unaffected. Both CD8+ T and CD4+ T cells exhibited features of senescence and exhaustion at diagnosis. NK dysfunction was supported by excessive maturation and downregulation of NKG2D and NKP30. Diseased γδ T cells demonstrated a highly activated or even exhausted state through PD-1 upregulation and NKG2D downregulation. Effective therapeutic response following chemotherapy correlated with T and NK function restoration. Refractory and relapsed patients demonstrated even worse immune impairments, and selective immune signatures apparently correlated clinical outcomes and survival. PD-1 expression in CD8+ T cells was independently predictive of poor overall survival and event-free survival. CONCLUSIONS T-cell senescence and exhaustion, together with impaired NK and γδ T-cell function, are dominant aspects involved in immune dysfunction in AML. Noninvasive immune testing of blood samples could be applied to predict therapeutic reactivity, high risk for relapse, and unfavorable prognosis.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Jianghua Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Cheng-Gong Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Hui-Wen Jiang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Min Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengyi Du
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. .,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, Hubei, China
| |
Collapse
|
62
|
Immunomodulation with pomalidomide at early lymphocyte recovery after induction chemotherapy in newly diagnosed AML and high-risk MDS. Leukemia 2020; 34:1563-1576. [PMID: 31900407 DOI: 10.1038/s41375-019-0693-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/24/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022]
Abstract
An immunosuppressive microenvironment promoting leukemia cell immune escape plays an important role in the pathogenesis of AML. Through its interaction with cereblon, a substrate receptor for the E3 ubiquitin ligase complex, pomalidomide leads to selective ubiquitination of transcription factors Aiolos and Ikaros thereby promoting immune modulation. In this phase I trial, 51 newly diagnosed non-favorable risk AML and high-risk MDS patients were enrolled and treated with AcDVP16 (cytarabine 667 mg/m2/day IV continuous infusion days 1-3, daunorubicin 45 mg/m2 IV days 1-3, etoposide 400 mg/m2 IV days 8-10) induction therapy followed by dose- and duration-escalation pomalidomide beginning at early lymphocyte recovery. Forty-three patients (AML: n = 39, MDS: n = 4) received pomalidomide. The maximum tolerated dose of pomalidomide was 4 mg for 21 consecutive days. The overall complete remission (CR + CRi) rate, median overall survival, and disease-free survival were 75%, 27.1 and 20.6 months, respectively. Subset analyses revealed 86% CR/CRi rate in AML patients with unfavorable-risk karyotype treated with pomalidomide. Pomalidomide significantly decreased Aiolos expression in both CD4+ and CD8+ peripheral blood and bone marrow T cells, promoted T cell differentiation, proliferation, and heightened their cytokine production. Finally, pomalidomide induced distinct gene expression changes in immune function-related ontologies in CD4+ and CD8+ T cells.
Collapse
|
63
|
Yu J, Li Y, Pan Y, Liu Y, Xing H, Xie X, Wan D, Jiang Z. Deficient Regulatory Innate Lymphoid Cells and Differential Expression of miRNAs in Acute Myeloid Leukemia Quantified by Next Generation Sequence. Cancer Manag Res 2019; 11:10969-10982. [PMID: 32099460 PMCID: PMC6997219 DOI: 10.2147/cmar.s234327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background A new regulatory subpopulation of ILCs, ILCreg has been identified in mouse and human intestines. ILCregs share characteristics with both innate lymphoid cells and regulatory cells; however, the significance of CD45+Lin-CD127+IL-10+ ILCregs in patients with AML remains unclear. Intriguingly, ILCregs constitutively express id2, id3, sox4, tgfbr1, tgfbr2, il2rb and il2rg, but the significance of miRNAs associated with these genes has yet to be explored. In this study, we evaluate ILCreg frequency, ILCreg gene-associated miRNA quantification, and its significance in patients with AML and normal donors. Methods Using 4 color combinations of surface and intracellular antibody staining, the CD45+Lin-CD127+IL-10+ ILCregs from 12 normal donors and 42 patients newly diagnosed with AML were measured by flow cytometry. Plasma samples and bone marrow cells from 6 normal donors and 9 patients with AML were studied by next-generation sequence miRNAs quantification. Results Our results showed that the frequency of ILCregs was 0.8924±1.3791% in bone marrow (BM) cells from normal donors and 0.2434±0.5344% in BM cells from AML patients. The frequency of ILCreg cells in AML patients was significantly lower than that in normal donors (P<0.01). Furthermore, the frequency of the CD45+Lin-CD127+IL-10- subset was 4.0869±6.7701% and 0.2769±0.2526% from normal donors and AML patients, respectively. There was a statistically significant difference of CD45+Lin-CD127+IL-10- cells between normal donors and AML patients (p<0.01). miRNA detection results showed 376 miRNAs from plasma and 182 miRNAs from BM cell samples with expression levels with a statistically significant difference between AML patients and normal donors (both Q and P-value < 0.001). Analysis of miRNAs from ILCregs associated genes including id2, id3, sox4, tgfbr1, tgfbr2, il2rb, and il3rg, from normal donors and AML patients demonstrated 34 miRNA from plasma samples and 14 miRNA segments from BM cell samples with a statistically significant difference between AML patients and normal donors (both Q and P-value <0.001). Among them, 4 miRNAs (hsa-miR-193b-3p, hsa-miR-1270, hsa-miR-210-3p, and hsa-miR-486-3p) were detected in both plasma and BM cell samples. Conclusion Our study enumerated ILCregs, then measured miRNAs from those ILCregs in AML samples for the first time. The results demonstrated the deficiency of ILCreg and differential expression of miRNAs in patients with AML.
Collapse
Affiliation(s)
- Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yue Pan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
64
|
Abstract
Immunotherapy is distinct from traditional chemotherapy in that it acts on immune cells rather than cancer cells themselves. Monoclonal antibodies targeting immune checkpoints on T cells - CTLA-4 and PD-1 - and PD-L1 on the cells of immune microenvironment are now approved for clinical use in several solid tumors and hematological malignancies. This article provides a general overview of the use of checkpoint inhibitors in hematologic malignancies with a special focus in acute myeloid leukemia.
Collapse
Affiliation(s)
- Arnab Ghosh
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Pere Barba
- Hematology Department, Vall d'Hebron University Hospital-Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
65
|
Panneton V, Chang J, Witalis M, Li J, Suh W. Inducible T‐cell co‐stimulator: Signaling mechanisms in T follicular helper cells and beyond. Immunol Rev 2019; 291:91-103. [DOI: 10.1111/imr.12771] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Vincent Panneton
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology, Infectiology, and Immunology University of Montreal Montreal Quebec Canada
| | - Jinsam Chang
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
| | - Mariko Witalis
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
| | - Joanna Li
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology and Immunology McGill University Montreal Quebec Canada
| | - Woong‐Kyung Suh
- IRCM (Institut de recherches cliniques de Montréal) Montreal Quebec Canada
- Department of Microbiology, Infectiology, and Immunology University of Montreal Montreal Quebec Canada
- Molecular Biology Program University of Montreal Montreal Quebec Canada
- Department of Microbiology and Immunology McGill University Montreal Quebec Canada
| |
Collapse
|
66
|
Yi L, Weifan Y, Huan Y. Chimeric antigen receptor-engineered regulatory T lymphocytes: promise for immunotherapy of autoimmune disease. Cytotherapy 2019; 21:925-934. [PMID: 31105041 DOI: 10.1016/j.jcyt.2019.04.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 02/01/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023]
Abstract
Regulatory T lymphocytes (Tregs) exist as natural ideal immunosuppressors in the immune system. Autologous or allogeneic Treg transfusion therapy has been carried out in animal models and humans as a new strategy for treating autoimmune disease. Recent studies have shown that Tregs can be engineered with chimeric antigen receptors to be antigen-specific, which are more effective than polyclonal Tregs with fewer target limitations and a lack of major histocompatibility complex restriction. This review describes the potential for applying chimeric antigen receptor-engineered regulatory T cells in autoimmune diseases.
Collapse
Affiliation(s)
- Li Yi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yin Weifan
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yang Huan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
67
|
Wang B, Jiang H, Zhou T, Ma N, Liu W, Wang Y, Zuo L. Expression of ICOSL is associated with decreased survival in invasive breast cancer. PeerJ 2019; 7:e6903. [PMID: 31143539 PMCID: PMC6526018 DOI: 10.7717/peerj.6903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inducible co-stimulator (ICOS) is a CD28-related molecule exclusively expressed on activated T cells and plays a critical role in modulating the immune response in breast cancer. The blockage of ICOS pathway has been shown to inhibit the activity of Type 2 T helper cells, thus potentially protecting against cancer growth. The current study aims to investigate the correlation between inducible co-stimulator ligand (ICOSL) expression in tumor tissues and the prognoses of patients with invasive breast cancer. Methods Tumor samples from 562 Chinese patients with invasive breast carcinomas were collected between 2003 and 2010. The expression of ICOSL on breast tumor and adjacent non-cancerous tissue was determined via immunohistochemistry. The overall survival (OS) of patients with positive and negative ICOSL expression were described using Kaplan–Meier curves, respectively. Parametric correlation method was used to analyze the correlation between ICOSL expression and other clinicopathological parameters. ICOSL was selected as a dependent variable for multivariate analysis. Results Positive ICOSL expression was identified on the plasma membrane in both cytoplasm and the nucleus of breast cancer cells. Membrane-expressed ICOSL is determined as an independent prognostic factor for OS in breast cancer but without significantly correlating with other clinicopathologic parameters such as age, menopausal status, depth of invasion, lymph node metastasis status, histologic classification, etc. Conclusion Our study suggests that the up-regulated expression of ICOSL protein in breast tumor cells can be associated with poor prognoses in invasive breast carcinomas.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Huayong Jiang
- Department of Radiation Oncology, The 7th Medical Center of PLA General Hospital, Beijing, China
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH, USA
| | - Ning Ma
- Clinical Laboratory, 905th Hospital of PLA, Shanghai, China
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Pheonix, AZ, USA
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH, USA.,College of Arts and Sciences, University of Maine Presque Isle Campus, ME, USA
| |
Collapse
|