51
|
Barth E, Sieber P, Stark H, Schuster S. Robustness during Aging-Molecular Biological and Physiological Aspects. Cells 2020; 9:E1862. [PMID: 32784503 PMCID: PMC7465392 DOI: 10.3390/cells9081862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the process of aging is still an important challenge to enable healthy aging and to prevent age-related diseases. Most studies in age research investigate the decline in organ functionality and gene activity with age. The focus on decline can even be considered a paradigm in that field. However, there are certain aspects that remain surprisingly stable and keep the organism robust. Here, we present and discuss various properties of robust behavior during human and animal aging, including physiological and molecular biological features, such as the hematocrit, body temperature, immunity against infectious diseases and others. We examine, in the context of robustness, the different theories of how aging occurs. We regard the role of aging in the light of evolution.
Collapse
Affiliation(s)
- Emanuel Barth
- RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Patricia Sieber
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research with Phyletic Museum, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Stefan Schuster
- Matthias Schleiden Institute, Bioinformatics, Friedrich Schiller University Jena, 07743 Jena, Germany;
| |
Collapse
|
52
|
Stefanowski J, Fiedler AF, Köhler M, Günther R, Liublin W, Tschaikner M, Rauch A, Reismann D, Matthys R, Nützi R, Bixel MG, Adams RH, Niesner RA, Duda GN, Hauser AE. Limbostomy: Longitudinal Intravital Microendoscopy in Murine Osteotomies. Cytometry A 2020; 97:483-495. [PMID: 32196971 DOI: 10.1002/cyto.a.23997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/28/2022]
Abstract
Bone healing involves the interplay of immune cells, mesenchymal cells, and vasculature over the time course of regeneration. Approaches to quantify the spatiotemporal aspects of bone healing at cellular resolution during long bone healing do not yet exist. Here, a novel technique termed Limbostomy is presented, which combines intravital microendoscopy with an osteotomy. This design allows a modular combination of an internal fixator plate with a gradient refractive index (GRIN) lens at various depths in the bone marrow and can be combined with a surgical osteotomy procedure. The field of view (FOV) covers a significant area of the fracture gap and allows monitoring cellular processes in vivo. The GRIN lens causes intrinsic optical aberrations which have to be corrected. The optical system was characterized and a postprocessing algorithm was developed. It corrects for wave front aberration-induced image plane deformation and for background and noise signals, enabling us to observe subcellular processes. Exemplarily, we quantitatively and qualitatively analyze angiogenesis in bone regeneration. We make use of a transgenic reporter mouse strain with nucleargreen fluorescent protein and membrane-bound tdTomato under the Cadherin-5 promoter. We observe two phases of vascularization. First, rapid vessel sprouting pervades the FOV within 3-4 days after osteotomy. Second, the vessel network continues to be dynamically remodeled until the end of our observation time, 14 days after surgery. Limbostomy opens a unique set of opportunities and allows further insight on spatiotemporal aspects of bone marrow biology, for example, hematopoiesis, analysis of cellular niches, immunological memory, and vascularization in the bone marrow during health and disease. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Jonathan Stefanowski
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Alexander F Fiedler
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Freie Universitat Berlin, Veterinary Medicine, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Markus Köhler
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Freie Universitat Berlin, Veterinary Medicine, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Robert Günther
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Wjatscheslaw Liublin
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Martin Tschaikner
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Ariana Rauch
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - David Reismann
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | | | | | | | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Raluca A Niesner
- Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.,Freie Universitat Berlin, Veterinary Medicine, Dynamic and Functional in vivo Imaging, Berlin, Germany
| | - Georg N Duda
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Julius Wolff Institute, Berlin, Germany
| | - Anja E Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| |
Collapse
|
53
|
Metz C, Duda GN, Checa S. Towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds to foster bone regeneration. Acta Biomater 2020; 101:117-127. [PMID: 31669697 DOI: 10.1016/j.actbio.2019.10.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
Substantial tissue loss, such as in large bone defects, represents a clinical challenge for which regenerative therapies and tissue engineering strategies aim at offering treatment alternatives to conventional replacement approaches by metallic implants. 3D printing technologies provide endless opportunities to shape scaffold structures that could support endogenous regeneration. However, it remains unclear which of the numerous parameters at hand eventually enhance tissue regeneration. In the last decades, a significant effort has been made in the development of computer tools to optimize scaffold designs. Here, we aim at giving a more comprehensive overview summarizing current computer optimization framework technologies. We confront these with the most recent advances in scaffold mechano-biological optimization, discuss their limitations and provide suggestions for future development. We conclude that the field needs to move forward to not only optimize scaffolds to avoid implant failures but to improve their mechano-biological behaviour: providing an initial stimulus for fast tissue organisation and healing and accounting for remodelling, scaffold degradation and consecutive filling with host tissue. So far, modelling approaches fall short in including the various scales of tissue dynamics. With this review, we wish to stimulate a move towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds. STATEMENT OF SIGNIFICANCE: Large bone defects represent a clinical challenge for which tissue engineering strategies aim at offering alternatives to conventional treatment strategies. 3D printing technologies provide endless opportunities to shape scaffold structures that could support endogenous regeneration. However, it remains unclear which of the numerous parameters at hand eventually enhance tissue regeneration. In the last decades, a significant effort has been made in the development of computer tools to optimize scaffold designs. This review summarizes current computer optimization frameworks and most recent advances in mechano-biological optimization of bone scaffolds to better stimulate bone regeneration. We wish to stimulate a move towards multi-dynamic mechano-biological optimization of 3D-printed scaffolds.
Collapse
Affiliation(s)
- Camille Metz
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; MINES ParisTech - PSL Research University, Paris, France
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
54
|
Van Linthout S, Tschöpe C. The Quest for Antiinflammatory and Immunomodulatory Strategies in Heart Failure. Clin Pharmacol Ther 2019; 106:1198-1208. [PMID: 31544235 DOI: 10.1002/cpt.1637] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022]
Abstract
Intensive research over the last 3 decades has unequivocally demonstrated the relevance of inflammation in heart failure (HF). Despite our current and ever increasing knowledge about inflammation, the clinical success of antiinflammatory and immunomodulatory therapies in HF is still limited. This review outlines the complexity and diversity of inflammation, its reciprocal interaction with HF, and addresses future perspectives, calling for immunomodulatory therapies that are specific for factors that activate the immune system without the risk of nonspecific immune suppression.
Collapse
Affiliation(s)
- Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site, Berlin, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Campus Virchow Clinic, Charité University Medicine Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
55
|
Schlundt C, Reinke S, Geissler S, Bucher CH, Giannini C, Märdian S, Dahne M, Kleber C, Samans B, Baron U, Duda GN, Volk HD, Schmidt-Bleek K. Individual Effector/Regulator T Cell Ratios Impact Bone Regeneration. Front Immunol 2019; 10:1954. [PMID: 31475013 PMCID: PMC6706871 DOI: 10.3389/fimmu.2019.01954] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence that T lymphocytes play a key role in controlling endogenous regeneration. Regeneration appears to be impaired in case of local accumulation of CD8+ effector T cells (TEFF), impairing endogenous regeneration by increasing a primary “useful” inflammation toward a damaging level. Thus, rescuing regeneration by regulating the heightened pro-inflammatory reaction employing regulatory CD4+ T (TReg) cells could represent an immunomodulatory option to enhance healing. Hypothesis was that CD4+ TReg might counteract undesired effects of CD8+ TEFF. Using adoptive TReg transfer, bone healing was consistently improved in mice possessing an inexperienced immune system with low amounts of CD8+ TEFF. In contrast, mice with an experienced immune system (high amounts of CD8+ TEFF) showed heterogeneous bone repair with regeneration being dependent upon the individual TEFF/TReg ratio. Thus, the healing outcome can only be improved by an adoptive TReg therapy, if an unfavorable TEFF/TReg ratio can be reshaped; if the individual CD8+ TEFF percentage, which is dependent on the individual immune experience can be changed toward a favorable ratio by the TReg transfer. Remarkably, also in patients with impaired fracture healing the TEFF/TReg ratio was higher compared to uneventful healers, validating our finding in the mouse osteotomy model. Our data demonstrate for the first time the key-role of a balanced TEFF/TReg response following injury needed to reach successful regeneration using bone as a model system. Considering this strategy, novel opportunities for immunotherapy in patients, which are at risk for impaired healing by targeting TEFF cells and supporting TReg cells to enhance healing are possible.
Collapse
Affiliation(s)
- Claudia Schlundt
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simon Reinke
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin Giannini
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Märdian
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Dahne
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Kleber
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Dresden, Germany
| | - Björn Samans
- Epiontis GmbH, Precision for Medicine Group, Berlin, Germany
| | - Udo Baron
- Epiontis GmbH, Precision for Medicine Group, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|