51
|
Chen J, Wang W, Sun H, Pang L, Yin B. Mutation-mediated influences on binding of anaplastic lymphoma kinase to crizotinib decoded by multiple replica Gaussian accelerated molecular dynamics. J Comput Aided Mol Des 2020; 34:1289-1305. [DOI: 10.1007/s10822-020-00355-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
|
52
|
Cyclic Peptide Inhibitors of the Tsg101 UEV Protein Interactions Refined through Global Docking and Gaussian Accelerated Molecular Dynamics Simulations. Polymers (Basel) 2020; 12:polym12102235. [PMID: 32998394 PMCID: PMC7650771 DOI: 10.3390/polym12102235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 01/08/2023] Open
Abstract
Tsg101 UEV domain proteins are potential targets for virus infection therapy, especially for HIV and Ebola viruses. Peptides are key in curbing virus transmission, and cyclic peptides have a greater survival time than their linear peptides. To date, the accurate prediction of cyclic peptide-protein receptors binding conformations still is challenging because of high peptide flexibility. Here, a useful approach combined the global peptide docking, Gaussian accelerated molecular dynamics (GaMD), two-dimensional (2D) potential of mean force (PMF), normal molecular dynamics (cMD), and solvated interaction energy (SIE) techniques. Then we used this approach to investigate the binding conformations of UEV domain proteins with three cyclic peptides inhibitors. We reported the possible cyclic peptide-UEV domain protein binding conformations via 2D PMF free energy profiles and SIE free energy calculations. The residues Trp145, Tyr147, and Trp148 of the native cyclic peptide (CP1) indeed play essential roles in the cyclic peptides-UEV domain proteins interactions. Our findings might increase the accuracy of cyclic peptide-protein conformational prediction, which may facilitate cyclic peptide inhibitor design. Our approach is expected to further aid in addressing the challenges in cyclic peptide inhibitor design.
Collapse
|
53
|
Lazim R, Suh D, Choi S. Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems. Int J Mol Sci 2020; 21:E6339. [PMID: 32882859 PMCID: PMC7504087 DOI: 10.3390/ijms21176339] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Molecular dynamics (MD) simulation is a rigorous theoretical tool that when used efficiently could provide reliable answers to questions pertaining to the structure-function relationship of proteins. Data collated from protein dynamics can be translated into useful statistics that can be exploited to sieve thermodynamics and kinetics crucial for the elucidation of mechanisms responsible for the modulation of biological processes such as protein-ligand binding and protein-protein association. Continuous modernization of simulation tools enables accurate prediction and characterization of the aforementioned mechanisms and these qualities are highly beneficial for the expedition of drug development when effectively applied to structure-based drug design (SBDD). In this review, current all-atom MD simulation methods, with focus on enhanced sampling techniques, utilized to examine protein structure, dynamics, and functions are discussed. This review will pivot around computer calculations of protein-ligand and protein-protein systems with applications to SBDD. In addition, we will also be highlighting limitations faced by current simulation tools as well as the improvements that have been made to ameliorate their efficiency.
Collapse
Affiliation(s)
- Raudah Lazim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Donghyuk Suh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Sun Choi
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
54
|
Forouzesh N, Onufriev AV. MMGB/SA Consensus Estimate of the Binding Free Energy Between the Novel Coronavirus Spike Protein to the Human ACE2 Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.25.267625. [PMID: 32869029 PMCID: PMC7457614 DOI: 10.1101/2020.08.25.267625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ability to estimate protein-protein binding free energy in a computationally efficient via a physics-based approach is beneficial to research focused on the mechanism of viruses binding to their target proteins. Implicit solvation methodology may be particularly useful in the early stages of such research, as it can offer valuable insights into the binding process, quickly. Here we evaluate the potential of the related molecular mechanics generalized Born surface area (MMGB/SA) approach to estimate the binding free energy ΔGbind between the SARS-CoV-2 spike receptor-binding domain and the human ACE2 receptor. The calculations are based on a recent flavor of the generalized Born model, GBNSR6. Two estimates of ΔGbind are performed: one based on standard bondi radii, and the other based on a newly developed set of atomic radii (OPT1), optimized specifically for protein-ligand binding. We take the average of the resulting two ΔGbind values as the consensus estimate. For the well-studied Ras-Raf protein-protein complex, which has similar binding free energy to that of the SARS-CoV-2/ACE2 complex, the consensus ΔGbind = -11.8 ± 1 kcal/mol, vs. experimental -9.7 ± 0.2 kcal/mol. The consensus estimates for the SARS-CoV-2/ACE2 complex is ΔGbind = -9.4 ± 1.5 kcal/mol, which is in near quantitative agreement with experiment (-10.6 kcal/mol). The availability of a conceptually simple MMGB/SA-based protocol for analysis of the SARS-CoV-2 /ACE2 binding may be beneficial in light of the need to move forward fast.
Collapse
Affiliation(s)
- Negin Forouzesh
- Department of Computer Science, California State University, Los Angeles, Los Angeles, CA 90032, USA
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Department of Physics, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|
55
|
Forouzesh N, Mukhopadhyay A, Watson LT, Onufriev AV. Multidimensional Global Optimization and Robustness Analysis in the Context of Protein-Ligand Binding. J Chem Theory Comput 2020; 16:4669-4684. [PMID: 32450041 PMCID: PMC8594251 DOI: 10.1021/acs.jctc.0c00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Accuracy of protein-ligand binding free energy calculations utilizing implicit solvent models is critically affected by parameters of the underlying dielectric boundary, specifically, the atomic and water probe radii. Here, a global multidimensional optimization pipeline is developed to find optimal atomic radii specifically for protein-ligand binding calculations in implicit solvent. The computational pipeline has these three key components: (1) a massively parallel implementation of a deterministic global optimization algorithm (VTDIRECT95), (2) an accurate yet reasonably fast generalized Born implicit solvent model (GBNSR6), and (3) a novel robustness metric that helps distinguish between nearly degenerate local minima via a postprocessing step of the optimization. A graph-based "kT-connectivity" approach to explore and visualize the multidimensional energy landscape is proposed: local minima that can be reached from the global minimum without exceeding a given energy threshold (kT) are considered to be connected. As an illustration of the capabilities of the optimization pipeline, we apply it to find a global optimum in the space of just five radii: four atomic (O, H, N, and C) radii and water probe radius. The optimized radii, ρW = 1.37 Å, ρC = 1.40 Å, ρH = 1.55 Å, ρN = 2.35 Å, and ρO = 1.28 Å, lead to a closer agreement of electrostatic binding free energies with the explicit solvent reference than two commonly used sets of radii previously optimized for small molecules. At the same time, the ability of the optimizer to find the global optimum reveals fundamental limits of the common two-dielectric implicit solvation model: the computed electrostatic binding free energies are still almost 4 kcal/mol away from the explicit solvent reference. The proposed computational approach opens the possibility to further improve the accuracy of practical computational protocols for binding free energy calculations.
Collapse
Affiliation(s)
- Negin Forouzesh
- Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| | - Abhishek Mukhopadhyay
- Department of Physics, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| | - Layne T Watson
- Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
- Department of Mathematics, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
- Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
- Department of Physics, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
56
|
Wang YT, Cheng TL. Computational modeling of cyclic peptide inhibitor-MDM2/MDMX binding through global docking and Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:4005-4014. [PMID: 32448094 DOI: 10.1080/07391102.2020.1773317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
MDM2 and MDMX are potential targets for p53-dependent cancer therapy. Peptides are key in cellular immunology and oncology, and cyclic peptides generally have higher half-life than their linear counterparts. However, prediction of cyclic peptide-protein binding is challenging with normal molecular simulation approaches because of high peptide flexibility. Here, we used global peptide docking, normal molecular dynamics, Gaussian accelerated molecular dynamics (GaMD), two-dimensional (2D) potential of mean force (PMF) profiles, and solvated interaction energy (SIE) techniques to investigate the interactions of MDM2/MDMX with three N-to-C-terminal cyclic peptide-based inhibitors. We determined the possible cyclic peptide-MDM2/MDMX complex structures via 2D PMF profiles and SIE calculations. Our findings increase the accuracy of peptide-protein structural prediction, which may facilitate cyclic peptide drug design. Advancements in the computational methods and computing power may further aid in addressing the challenges in cyclic peptide drug design. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
57
|
Liao Q. Enhanced sampling and free energy calculations for protein simulations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:177-213. [PMID: 32145945 DOI: 10.1016/bs.pmbts.2020.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular dynamics simulation is a powerful computational technique to study biomolecular systems, which complements experiments by providing insights into the structural dynamics relevant to biological functions at atomic scale. It can also be used to calculate the free energy landscapes of the conformational transitions to better understand the functions of the biomolecules. However, the sampling of biomolecular configurations is limited by the free energy barriers that need to be overcome, leading to considerable gaps between the timescales reached by MD simulation and those governing biological processes. To address this issue, many enhanced sampling methodologies have been developed to increase the sampling efficiency of molecular dynamics simulations and free energy calculations. Usually, enhanced sampling algorithms can be classified into methods based on collective variables (CV-based) and approaches which do not require predefined CVs (CV-free). In this chapter, the theoretical basis of free energy estimation is briefly reviewed first, followed by the reviews of the most common CV-based and CV-free methods including the presentation of some examples and recent developments. Finally, the combination of different enhanced sampling methods is discussed.
Collapse
Affiliation(s)
- Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|