51
|
Fuentes-Santamaría V, Alvarado JC, Rodríguez-de la Rosa L, Juiz JM, Varela-Nieto I. Neuroglial Involvement in Abnormal Glutamate Transport in the Cochlear Nuclei of the Igf1 -/- Mouse. Front Cell Neurosci 2019; 13:67. [PMID: 30881288 PMCID: PMC6405628 DOI: 10.3389/fncel.2019.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a powerful regulator of synaptic activity and a deficit in this protein has a profound impact on neurotransmission, mostly on excitatory synapses in both the developing and mature auditory system. Adult Igf1−/− mice are animal models for the study of human syndromic deafness; they show altered cochlear projection patterns into abnormally developed auditory neurons along with impaired glutamate uptake in the cochlear nuclei, phenomena that probably reflect disruptions in neuronal circuits. To determine the cellular mechanisms that might be involved in regulating excitatory synaptic plasticity in 4-month-old Igf1−/− mice, modifications to neuroglia, astroglial glutamate transporters (GLTs) and metabotropic glutamate receptors (mGluRs) were assessed in the cochlear nuclei. The Igf1−/− mice show significant decreases in IBA1 (an ionized calcium-binding adapter) and glial fibrillary acidic protein (GFAP) mRNA expression and protein accumulation, as well as dampened mGluR expression in conjunction with enhanced glutamate transporter 1 (GLT1) expression. By contrast, no differences were observed in the expression of glutamate aspartate transporter (GLAST) between these Igf1−/− mice and their heterozygous or wildtype littermates. These observations suggest that congenital IGF-1 deficiency may lead to alterations in microglia and astrocytes, an upregulation of GLT1, and the downregulation of groups I, II and III mGluRs. Understanding the molecular, biochemical and morphological mechanisms underlying neuronal plasticity in a mouse model of hearing deficits will give us insight into new therapeutic strategies that could help to maintain or even improve residual hearing when human deafness is related to IGF-1 deficiency.
Collapse
Affiliation(s)
- Veronica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan C Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Lourdes Rodríguez-de la Rosa
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - José M Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Isabel Varela-Nieto
- Grupo de Neurobiología de la Audición, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIBER MP, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
52
|
Kramer J, Chirco KR, Lamba DA. Immunological Considerations for Retinal Stem Cell Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:99-119. [PMID: 31654387 DOI: 10.1007/978-3-030-28471-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is an increasing effort toward generating replacement cells for neuronal application due to the nonregenerative nature of these tissues. While much progress has been made toward developing methodologies to generate these cells, there have been limited improvements in functional restoration. Some of these are linked to the degenerative and often nonreceptive microenvironment that the new cells need to integrate into. In this chapter, we will focus on the status and role of the immune microenvironment of the retina during homeostasis and disease states. We will review changes in both innate and adaptive immunity as well as the role of immune rejection in stem cell replacement therapies. The chapter will end with a discussion of immune-modulatory strategies that have helped to ameliorate these effects and could potentially improve functional outcome for cell replacement therapies for the eye.
Collapse
Affiliation(s)
- Joshua Kramer
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA. .,Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|