51
|
El Saftawy EA, Amin NM, Sabry RM, El-Anwar N, Shash RY, Elsebaie EH, Wassef RM. Can Toxoplasma gondii Pave the Road for Dementia? J Parasitol Res 2020; 2020:8859857. [PMID: 32802484 PMCID: PMC7414348 DOI: 10.1155/2020/8859857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Dementia is an ominous neurological disease. Scientists proposed a link between its occurrence and the presence of Toxoplasma gondii (T. gondii). The long-term sequels of anti-Toxoplasma premunition, chiefly dominated by TNF-α, on the neurons and their receptors as the insulin-like growth factor-1 receptor (IGF-1R), which is tangled in cognition and synaptic plasticity, are still not clear. IGF-1R mediates its action via IGF-1, and its depletion is incorporated in the pathogenesis of dementia. The activated TNF-α signaling pathway induces NF-κβ that may induce or inhibit neurogenesis. This study speculates the potential impact of anti-Toxoplasma immune response on the expression of IGF-1R in chronic cerebral toxoplasmosis. The distributive pattern of T. gondii cysts was studied in association with TNF-α serum levels, the in situ expression of NF-κβ, and IGF-1R in mice using the low virulent ME-49 T. gondii strain. There was an elevation of the TNF-α serum level (p value ≤ 0.004) and significant upsurge in NF-κβ whereas IGF-1R was of low abundance (p value < 0.05) compared to the controls. TNF-α had a strong positive correlation with the intracerebral expression of NF-κβ (r value ≈ 0.943, p value ≈ 0.005) and a strong negative correlation to IGF-1R (r value -0.584 and -0.725 for area% and O.D., respectively). This activated TNF-α/NF-κβ keeps T. gondii under control at the expense of IGF-1R expression, depriving neurons of the effect of IGF-1, the receptor's ligand. We therefore deduce that T. gondii immunopathological reaction may be a road paver for developing dementia.
Collapse
Affiliation(s)
- Enas A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Armed Forces College of Medicine, Cairo, Egypt
| | - Noha M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania M. Sabry
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha El-Anwar
- Armed Forces College of Medicine, Cairo, Egypt
- Pathology Department, Faculty of Medicine, Tanta University, Egypt
| | - Rania Y. Shash
- Medical Microbiology and Immunology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman H. Elsebaie
- Public Health and Community Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rita M. Wassef
- Medical Parasitology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
52
|
Balin BJ, Hudson AP. Perspectives on the Intracellular Bacterium Chlamydia pneumoniae in Late-Onset Dementia. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00146-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Purpose of Review
Chronic diseases remain a daunting challenge for clinicians and researchers alike. While difficult to completely understand, most chronic diseases, including late-onset dementias, are thought to arise as an interplay between host genetic factors and environmental insults. One of the most diverse and ubiquitous environmental insults centers on infectious agents. Associations of infectious agents with late-onset dementia have taken on heightened importance, including our investigations of infection by the intracellular respiratory bacterium, Chlamydia pneumoniae (Cpn), in late-onset dementia of the Alzheimer’s type.
Recent Findings
Over the last two decades, the relationship of this infection to pathogenesis in late-onset dementia has become much clearer. This clarity has resulted from applying contemporary molecular genetic, biochemical, immunochemical, and cell culture techniques to analysis of human brains, animal models, and relevant in vitro cell culture systems. Data from these studies, taken in aggregate form, now can be applied to evaluation of proof of concept for causation of this infection with late-onset disease. In this evaluation, modifications to the original Koch postulates can be useful for elucidating causation.
Summary
All such relevant studies are outlined and summarized in this review, and they demonstrate the utility of applying modified Koch postulates to the etiology of late-onset dementia of the Alzheimer’s type. Regardless, it is clear that even with strong observational evidence, in combination with application of modifications of Koch’s postulates, we will not be able to conclusively state that Cpn infection is causative for disease pathogenesis in late-onset dementia. Moreover, this conclusion obtains as well for the putative causation of this condition by other pathogens, including herpes simplex virus type 1, Borrelia burgdorferi, and Porphyromonas gingivalis.
Collapse
|
53
|
Lathe R, St Clair D. From conifers to cognition: Microbes, brain and behavior. GENES BRAIN AND BEHAVIOR 2020; 19:e12680. [PMID: 32515128 DOI: 10.1111/gbb.12680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
A diversity of bacteria, protozoans and viruses ("endozoites") were recently uncovered within healthy tissues including the human brain. By contrast, it was already recognized a century ago that healthy plants tissues contain abundant endogenous microbes ("endophytes"). Taking endophytes as an informative precedent, we overview the nature, prevalence, and role of endozoites in mammalian tissues, centrally focusing on the brain, concluding that endozoites are ubiquitous in diverse tissues. These passengers often remain subclinical, but they are not silent. We address their routes of entry, mechanisms of persistence, tissue specificity, and potential to cause long-term behavioral changes and/or immunosuppression in mammals, where rabies virus is the exemplar. We extend the discussion to Herpesviridae, Coronaviridae, and Toxoplasma, as well as to diverse bacteria and yeasts, and debate the advantages and disadvantages that endozoite infection might afford to the host and to the ecosystem. We provide a clinical perspective in which endozoites are implicated in neurodegenerative disease, anxiety/depression, and schizophrenia. We conclude that endozoites are instrumental in the delicate balance between health and disease, including age-related brain disease, and that endozoites have played an important role in the evolution of brain function and human behavior.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
54
|
Sundar S, Battistoni C, McNulty R, Morales F, Gorky J, Foley H, Dhurjati P. An agent-based model to investigate microbial initiation of Alzheimer's via the olfactory system. Theor Biol Med Model 2020; 17:5. [PMID: 32290858 PMCID: PMC7158140 DOI: 10.1186/s12976-020-00123-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative brain disease. A novel agent-based modelling framework was developed in NetLogo 3D to provide fundamental insights into the potential mechanisms by which a microbe (eg. Chlamydia pneumoniae) may play a role in late-onset AD. The objective of our initial model is to simulate one possible spatial and temporal pathway of bacterial propagation via the olfactory system, which may then lead to AD symptoms. The model maps the bacteria infecting cells from the nasal cavity and the olfactory epithelium, through the olfactory bulb and into the olfactory cortex and hippocampus regions of the brain. RESULTS Based on the set of biological rules, simulated randomized infection by the microbe led to the formation of beta-amyloid (Aβ) plaque and neurofibrillary (NF) tangles as well as caused immune responses. Our initial simulations demonstrated that breathing in C. pneumoniae can result in infection propagation and significant buildup of Aβ plaque and NF tangles in the olfactory cortex and hippocampus. Our model also indicated how mucosal and neural immunity can play a significant role in the pathway considered. Lower immunities, correlated with elderly individuals, had quicker and more Aβ plaque and NF tangle formation counts. In contrast, higher immunities, correlated with younger individuals, demonstrated little to no such formation. CONCLUSION The modelling framework provides an organized visual representation of how AD progression may occur via the olfactory system to better understand disease pathogenesis. The model confirms current conclusions in available research but can be easily adjusted to match future evidence and be used by researchers for their own individual purposes. The goal of our initial model is to ultimately guide further hypothesis refinement and experimental testing to better understand the dynamic system interactions present in the etiology and pathogenesis of AD.
Collapse
Affiliation(s)
- Shalini Sundar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Carly Battistoni
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Ryan McNulty
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Fernando Morales
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Jonathan Gorky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry Foley
- New York Institute of Technology, New York, NY, USA
| | - Prasad Dhurjati
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
55
|
Obrenovich M, Tabrez S, Siddiqui B, McCloskey B, Perry G. The Microbiota-Gut-Brain Axis-Heart Shunt Part II: Prosaic Foods and the Brain-Heart Connection in Alzheimer Disease. Microorganisms 2020; 8:E493. [PMID: 32244373 PMCID: PMC7232206 DOI: 10.3390/microorganisms8040493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
There is a strong cerebrovascular component to brain aging, Alzheimer disease, and vascular dementia. Foods, common drugs, and the polyphenolic compounds contained in wine modulate health both directly and through the gut microbiota. This observation and novel findings centered on nutrition, biochemistry, and metabolism, as well as the newer insights we gain into the microbiota-gut-brain axis, now lead us to propose a shunt to this classic triad, which involves the heart and cerebrovascular systems. The French paradox and prosaic foods, as they relate to the microbiota-gut-brain axis and neurodegenerative diseases, are discussed in this manuscript, which is the second part of a two-part series of concept papers addressing the notion that the microbiota and host liver metabolism all play roles in brain and heart health.
Collapse
Affiliation(s)
- Mark Obrenovich
- Research Service, Louis Stokes Cleveland, Department of Veteran’s Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA;
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Departments of Chemistry and Biological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bushra Siddiqui
- North East Ohio College of Medicine, Rootstown, OH 44272, USA;
| | - Benjamin McCloskey
- The Gilgamesh Foundation for Medical Science and Research, Cleveland, OH 44116, USA;
| | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
56
|
Itzhaki RF, Golde TE, Heneka MT, Readhead B. Do infections have a role in the pathogenesis of Alzheimer disease? Nat Rev Neurol 2020; 16:193-197. [PMID: 32152461 DOI: 10.1038/s41582-020-0323-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
The idea that infectious agents in the brain have a role in the pathogenesis of Alzheimer disease (AD) was proposed nearly 30 years ago. However, this theory failed to gain substantial traction and was largely disregarded by the AD research community for many years. Several recent discoveries have reignited interest in the infectious theory of AD, culminating in a debate on the topic at the Alzheimer's Association International Conference (AAIC) in July 2019. In this Viewpoint article, experts who participated in the AAIC debate weigh up the evidence for and against the infectious theory of AD and suggest avenues for future research and drug development.
Collapse
Affiliation(s)
- Ruth F Itzhaki
- School of Biological Sciences, University of Manchester, Manchester, UK. .,Institute of Population Ageing, University of Oxford, Oxford, UK.
| | - Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, Gainesville, FL, USA.
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital of Bonn, Bonn, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. .,Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Ben Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
57
|
Chlamydia-induced curvature of the host-cell plasma membrane is required for infection. Proc Natl Acad Sci U S A 2020; 117:2634-2644. [PMID: 31964834 PMCID: PMC7007526 DOI: 10.1073/pnas.1911528117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During invasion of host cells, Chlamydia pneumoniae secretes the effector protein CPn0678, which facilitates internalization of the pathogen by remodeling the target cell's plasma membrane and recruiting sorting nexin 9 (SNX9), a central multifunctional endocytic scaffold protein. We show here that the strongly amphipathic N-terminal helix of CPn0678 mediates binding to phospholipids in both the plasma membrane and synthetic membranes, and is sufficient to induce extensive membrane tubulations. CPn0678 interacts via its conserved C-terminal polyproline sequence with the Src homology 3 domain of SNX9. Thus, SNX9 is found at bacterial entry sites, where C. pneumoniae is internalized via EGFR-mediated endocytosis. Moreover, depletion of human SNX9 significantly reduces internalization, whereas ectopic overexpression of CPn0678-GFP results in a dominant-negative effect on endocytotic processes in general, leading to the uptake of fewer chlamydial elementary bodies and diminished turnover of EGFR. Thus, CPn0678 is an early effector involved in regulating the endocytosis of C. pneumoniae in an EGFR- and SNX9-dependent manner.
Collapse
|
58
|
Fossel M. A unified model of dementias and age-related neurodegeneration. Alzheimers Dement 2020; 16:365-383. [PMID: 31943780 DOI: 10.1002/alz.12012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/09/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
59
|
Walkden H, Delbaz A, Nazareth L, Batzloff M, Shelper T, Beacham IR, Chacko A, Shah M, Beagley KW, Tello Velasquez J, St John JA, Ekberg JAK. Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Negl Trop Dis 2020; 14:e0008017. [PMID: 31978058 PMCID: PMC7002012 DOI: 10.1371/journal.pntd.0008017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.
Collapse
Affiliation(s)
- Heidi Walkden
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ali Delbaz
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Todd Shelper
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Anu Chacko
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Kenneth W. Beagley
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - James A. St John
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jenny A. K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
60
|
Norins LC. Predicted economic damage from a quick, simple Alzheimer's disease cure. Med Hypotheses 2019; 133:109398. [DOI: 10.1016/j.mehy.2019.109398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/28/2022]
|
61
|
|
62
|
Di Pietro M, Filardo S, Romano S, Sessa R. Chlamydia trachomatis and Chlamydia pneumoniae Interaction with the Host: Latest Advances and Future Prospective. Microorganisms 2019; 7:microorganisms7050140. [PMID: 31100923 PMCID: PMC6560445 DOI: 10.3390/microorganisms7050140] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Research in Chlamydia trachomatis and Chlamydia pneumoniae has gained new traction due to recent advances in molecular biology, namely the widespread use of the metagenomic analysis and the development of a stable genomic transformation system, resulting in a better understanding of Chlamydia pathogenesis. C. trachomatis, the leading cause of bacterial sexually transmitted diseases, is responsible of cervicitis and urethritis, and C. pneumoniae, a widespread respiratory pathogen, has long been associated with several chronic inflammatory diseases with great impact on public health. The present review summarizes the current evidence regarding the complex interplay between C. trachomatis and host defense factors in the genital micro-environment as well as the key findings in chronic inflammatory diseases associated to C. pneumoniae.
Collapse
Affiliation(s)
- Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| | - Silvio Romano
- Cardiology, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome "Sapienza", 00185 Rome, Italy.
| |
Collapse
|