51
|
Georgescu IA, Popa D, Zagrean L. The Anatomical and Functional Heterogeneity of the Mediodorsal Thalamus. Brain Sci 2020; 10:brainsci10090624. [PMID: 32916866 PMCID: PMC7563683 DOI: 10.3390/brainsci10090624] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
The mediodorsal nucleus (MD) represents just one piece of a complex relay structure situated within the brain, called the thalamus. MD is characterized by its robust interconnections with other brain areas, especially with limbic-related structures. Given the close anatomo-functional relationship between the MD and the limbic system, this particular thalamic nucleus can directly influence various affective behaviors and participate in cognition. In this work, we review data collected from multiple anatomical studies conducted in rodent, human, and non-human primates, highlighting the complexity of this structure and of the neural networks in which it takes part. We provide proof that the MD is involved in the unification of several anatomical structures, being able to process the information and influence the activity in numerous cortical and subcortical neural circuits. Moreover, we uncover intrinsic and extrinsic mechanisms that offer MD the possibility to execute and control specific high functions of the nervous system. The collected data indicate the great importance of the MD in the limbic system and offer relevant insight into the organization of thalamic circuits that support MD functions.
Collapse
Affiliation(s)
- Ioana Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, nr 8, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Popa
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, nr 8, Sector 5, 050474 Bucharest, Romania;
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Correspondence: (D.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, nr 8, Sector 5, 050474 Bucharest, Romania;
- Correspondence: (D.P.); (L.Z.)
| |
Collapse
|
52
|
Varela C, Wilson MA. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. eLife 2020; 9:48881. [PMID: 32525480 PMCID: PMC7319772 DOI: 10.7554/elife.48881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep oscillations in the neocortex and hippocampus are critical for the integration of new memories into stable generalized representations in neocortex. However, the role of the thalamus in this process is poorly understood. To determine the thalamic contribution to non-REM oscillations (sharp-wave ripples, SWRs; slow/delta; spindles), we recorded units and local field potentials (LFPs) simultaneously in the limbic thalamus, mPFC, and CA1 in rats. We report that the cycles of neocortical spindles provide a key temporal window that coordinates CA1 SWRs with sparse but consistent activation of thalamic units. Thalamic units were phase-locked to delta and spindles in mPFC, and fired at consistent lags with other thalamic units within spindles, while CA1 units that were active during spatial exploration were engaged in SWR-coupled spindles after behavior. The sparse thalamic firing could promote an incremental integration of recently acquired memory traces into neocortical schemas through the interleaved activation of thalamocortical cells.
Collapse
Affiliation(s)
- Carmen Varela
- Massachusetts Institute of Technology, Cambridge, United States.,Florida Atlantic University, Boca Raton, United States
| | | |
Collapse
|
53
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
54
|
Zhang H, Ihara MO, Nakada N, Tanaka H, Ihara M. Biological Activity-Based Prioritization of Pharmaceuticals in Wastewater for Environmental Monitoring: G Protein-Coupled Receptor Inhibitors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1720-1729. [PMID: 31935073 DOI: 10.1021/acs.est.9b05768] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals raise concerns for aquatic species owing to their biological activities. It is estimated that nearly 40% of marketed pharmaceuticals target G protein-coupled receptors (GPCRs). Using an in vitro transforming growth factor-α (TGFα) shedding assay, we previously detected antagonistic activities of GPCR-acting pharmaceuticals against angiotensin (AT1), dopamine (D2), acetylcholine (M1), adrenergic family members (β1), and histamine (H1) receptors at up to μg-antagonist-equivalent quantities/L in wastewater in England and Japan. However, which pharmaceuticals were responsible for biological activities in wastewater remained unclear. Here, we used (1) the consumption of GPCR-acting pharmaceuticals, particularly antagonists, as calculated from prescriptions, (2) their urinary excretion, and (3) their potency measured by the TGFα shedding assay to prioritize them for analysis in wastewater in England and Japan. We calculated predicted activities of 48 GPCR-acting pharmaceuticals in influents in England and Japan and identified which were mainly responsible for antagonistic activities in wastewater against each GPCR. Mixtures of pharmaceuticals tested in this study were confirmed to behave additively. The combination of consumption and potency is useful in prioritizing pharmaceuticals for environmental monitoring and toxicity testing.
Collapse
Affiliation(s)
- Han Zhang
- Research Center for Environmental Quality Management, Graduate School of Engineering , Kyoto University , Otsu 520-0811 , Shiga , Japan
| | - Mariko O Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering , Kyoto University , Otsu 520-0811 , Shiga , Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering , Kyoto University , Otsu 520-0811 , Shiga , Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering , Kyoto University , Otsu 520-0811 , Shiga , Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering , Kyoto University , Otsu 520-0811 , Shiga , Japan
| |
Collapse
|
55
|
Brunk MGK, Deane KE, Kisse M, Deliano M, Vieweg S, Ohl FW, Lippert MT, Happel MFK. Optogenetic stimulation of the VTA modulates a frequency-specific gain of thalamocortical inputs in infragranular layers of the auditory cortex. Sci Rep 2019; 9:20385. [PMID: 31892726 PMCID: PMC6938496 DOI: 10.1038/s41598-019-56926-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Reward associations during auditory learning induce cortical plasticity in the primary auditory cortex. A prominent source of such influence is the ventral tegmental area (VTA), which conveys a dopaminergic teaching signal to the primary auditory cortex. Yet, it is unknown, how the VTA influences cortical frequency processing and spectral integration. Therefore, we investigated the temporal effects of direct optogenetic stimulation of the VTA onto spectral integration in the auditory cortex on a synaptic circuit level by current-source-density analysis in anesthetized Mongolian gerbils. While auditory lemniscal input predominantly terminates in the granular input layers III/IV, we found that VTA-mediated modulation of spectral processing is relayed by a different circuit, namely enhanced thalamic inputs to the infragranular layers Vb/VIa. Activation of this circuit yields a frequency-specific gain amplification of local sensory input and enhances corticocortical information transfer, especially in supragranular layers I/II. This effects persisted over more than 30 minutes after VTA stimulation. Altogether, we demonstrate that the VTA exhibits a long-lasting influence on sensory cortical processing via infragranular layers transcending the signaling of a mere reward-prediction error. We thereby demonstrate a cellular and circuit substrate for the influence of reinforcement-evaluating brain systems on sensory processing in the auditory cortex.
Collapse
Affiliation(s)
- Michael G K Brunk
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
| | - Katrina E Deane
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Martin Kisse
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Matthias Deliano
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Silvia Vieweg
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Frank W Ohl
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
- Institute for Biology, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Michael T Lippert
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | - Max F K Happel
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Institute for Biology, Otto-von-Guericke-University, 39120, Magdeburg, Germany.
| |
Collapse
|
56
|
Zhang Z, Zhou X, Liu J, Qin L, Ye W, Zheng J. Aberrant executive control networks and default mode network in patients with right-sided temporal lobe epilepsy: a functional and effective connectivity study. Int J Neurosci 2019; 130:683-693. [PMID: 31851554 DOI: 10.1080/00207454.2019.1702545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective: We aimed to explore functional connectivity (FC) and effective connectivity (EC) of the executive control networks (ECNs) and the default mode network (DMN) in patients with right-sided TLE (rTLE) by applying independent component analysis (ICA) and Granger causal analysis (GCA).Methods: Twenty-seven patients with rTLE and 20 healthy controls (HCs) matched for age, gender underwent resting-state functional magnetic resonance imaging and Attention Network Test (ANT).Results: The FC analysis showed compared to HCs, patients with rTLE demonstrated reduced FC strength in the right inferior parietal gyrus (IPG) and the right middle temporal gyrus (MTG). The left superior temporal gyrus (STG) displayed reduced FC values whereas the left thalamus revealed increased FC values in rTLE. ROI-wise GCA revealed that patients with rTLE displayed increased EC from the left thalamus to the left STG, and as well as enhanced EC from the right IPG to the right MTG compared to HCs. Voxel-wise GCA showed positive EC from the left thalamus to the left insula while the right middle occipital gyrus (MOG) exhibited increased EC to the right MTG in patients. The ANT results demonstrated executive dysfunction in patients compared to HCs. The increased FC in the left thalamus showed a negative association with ECF in patients.Conclusion: We speculated that recurrent seizures take effect on disruption among the brain networks, and self-modulation occurs simultaneously to compensate for cognitive decline. Our findings revealed new insights on the neuropathophysiological mechanisms of rTLE.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinping Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Ye
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
57
|
Russo M, Carrarini C, Dono F, Rispoli MG, Di Pietro M, Di Stefano V, Ferri L, Bonanni L, Sensi SL, Onofrj M. The Pharmacology of Visual Hallucinations in Synucleinopathies. Front Pharmacol 2019; 10:1379. [PMID: 31920635 PMCID: PMC6913661 DOI: 10.3389/fphar.2019.01379] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Visual hallucinations (VH) are commonly found in the course of synucleinopathies like Parkinson's disease and dementia with Lewy bodies. The incidence of VH in these conditions is so high that the absence of VH in the course of the disease should raise questions about the diagnosis. VH may take the form of early and simple phenomena or appear with late and complex presentations that include hallucinatory production and delusions. VH are an unmet treatment need. The review analyzes the past and recent hypotheses that are related to the underlying mechanisms of VH and then discusses their pharmacological modulation. Recent models for VH have been centered on the role played by the decoupling of the default mode network (DMN) when is released from the control of the fronto-parietal and salience networks. According to the proposed model, the process results in the perception of priors that are stored in the unconscious memory and the uncontrolled emergence of intrinsic narrative produced by the DMN. This DMN activity is triggered by the altered functioning of the thalamus and involves the dysregulated activity of the brain neurotransmitters. Historically, dopamine has been indicated as a major driver for the production of VH in synucleinopathies. In that context, nigrostriatal dysfunctions have been associated with the VH onset. The efficacy of antipsychotic compounds in VH treatment has further supported the notion of major involvement of dopamine in the production of the hallucinatory phenomena. However, more recent studies and growing evidence are also pointing toward an important role played by serotonergic and cholinergic dysfunctions. In that respect, in vivo and post-mortem studies have now proved that serotonergic impairment is often an early event in synucleinopathies. The prominent cholinergic impairment in DLB is also well established. Finally, glutamatergic and gamma aminobutyric acid (GABA)ergic modulations and changes in the overall balance between excitatory and inhibitory signaling are also contributing factors. The review provides an extensive overview of the pharmacology of VH and offers an up to date analysis of treatment options.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marianna Gabriella Rispoli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Martina Di Pietro
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Di Stefano
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Ferri
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Behavioral Neurology and Molecular Neurology Units, Center of Excellence on Aging and Translational Medicine—CeSI-MeT, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders—iMIND, University of California, Irvine, Irvine, CA, United States
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
58
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
59
|
Wang W, Zhornitsky S, Le TM, Dhingra I, Zhang S, Krystal JH, Li CSR. Cue-elicited craving, thalamic activity, and physiological arousal in adult non-dependent drinkers. J Psychiatr Res 2019; 116:74-82. [PMID: 31202048 PMCID: PMC6606341 DOI: 10.1016/j.jpsychires.2019.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
Changes in physiological arousal frequently accompany cognitive and affective challenges. Many studies employed cue exposure paradigms to investigate the neural processes underlying cue-elicited drug and alcohol craving. However, whether cue-elicited craving relates to changes in physiological arousal and the neural bases underlying the potential relationship remain unclear. Here we examined cerebral cue-related activations in relation to differences in skin conductance responses (SCR) recorded during alcohol vs. neutral cue blocks in 61 non-dependent alcohol drinkers (30 men). Imaging and skin conductance data were collected and processed with published routines. Mediation analyses were conducted to examine the inter-relationship between regional activities, cue-elicited craving, and SCR. The results showed higher SCR during alcohol than during neutral cue exposure. Despite no differences in drinking characteristics, men as compared to women demonstrated higher craving rating, and men but not women demonstrated a positive correlation between alcohol (vs. neutral) cue-evoked craving and SCR. Further, across subjects, thalamic cue activity was positively correlated with differences in SCR between alcohol and neutral cue blocks in men but not in women. Mediation analyses suggested that thalamic activity mediated the correlation between craving and SCR across men and women, and in men but not women alone. These findings substantiate physiological and neural correlates of alcohol cue response and suggest important sex differences in the physiological and neural processes of cue evoked craving. Centered on the intralaminar and mediodorsal subregions, the thalamic correlate may represent a neural target for behavioral or pharmacological therapy to decrease cue-elicited arousal and craving.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Thang M. Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| |
Collapse
|
60
|
Onofrj M, Espay AJ, Bonanni L, Delli Pizzi S, Sensi SL. Hallucinations, somatic-functional disorders of PD-DLB as expressions of thalamic dysfunction. Mov Disord 2019; 34:1100-1111. [PMID: 31307115 DOI: 10.1002/mds.27781] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Hallucinations, delusions, and functional neurological manifestations (conversion and somatic symptom disorders) of Parkinson's disease (PD) and dementia with Lewy bodies increase in frequency with disease progression, predict the onset of cognitive decline, and eventually blend with and are concealed by dementia. These symptoms share the absence of reality constraints and can be considered comparable elements of the PD-dementia with Lewy bodies psychosis. We propose that PD-dementia with Lewy bodies psychotic disorders depend on thalamic dysfunction promoting a theta burst mode and subsequent thalamocortical dysrhythmia with focal cortical coherence to theta electroencephalogram rhythms. This theta electroencephalogram activity, also called fast-theta or pre-alpha, has been shown to predict cognitive decline and fluctuations in Parkinson's disease with dementia and dementia with Lewy bodies. These electroencephalogram alterations are now considered a predictive marker for progression to dementia. The resulting thalamocortical dysrhythmia inhibits the frontal attentional network and favors the decoupling of the default mode network. As the default mode network is involved in integration of self-referential information into conscious perception, unconstrained default mode network activity, as revealed by recent imaging studies, leads to random formation of connections that link strong autobiographical correlates to trivial stimuli, thereby producing hallucinations, delusions, and functional neurological disorders. The thalamocortical dysrhythmia default mode network decoupling hypothesis provides the rationale for the design and testing of novel therapeutic pharmacological and nonpharmacological interventions in the context of PD, PD with dementia, and dementia with Lewy bodies. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Italy.,Departments of Neurology and Pharmacology, Institute for Mind Impairments and Neurological Disorders, University of California - Irvine, Irvine, California, USA
| |
Collapse
|
61
|
Thiele A, Bellgrove MA. Neuromodulation of Attention. Neuron 2019; 97:769-785. [PMID: 29470969 PMCID: PMC6204752 DOI: 10.1016/j.neuron.2018.01.008] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023]
Abstract
Attention is critical to high-level cognition and attention deficits are a hallmark of neurologic and neuropsychiatric disorders. Although years of research indicates that distinct neuromodulators influence attentional control, a mechanistic account that traverses levels of analysis (cells, circuits, behavior) is missing. However, such an account is critical to guide the development of next-generation pharmacotherapies aimed at forestalling or remediating the global burden associated with disorders of attention. Here, we summarize current neuroscientific understanding of how attention affects single neurons and networks of neurons. We then review key results that have informed our understanding of how neuromodulation shapes these neuron and network properties and thereby enables the appropriate allocation of attention to relevant external or internal events. Finally, we highlight areas where we believe hypotheses can be formulated and tackled experimentally in the near future, thereby critically increasing our mechanistic understanding of how attention is implemented at the cellular and network levels.
Collapse
Affiliation(s)
- Alexander Thiele
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | - Mark A Bellgrove
- Monash Institute of Cognitive and Clinical Neurosciences (MICCN) and School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
62
|
Lin TC, Lo YC, Lin HC, Li SJ, Lin SH, Wu HF, Chu MC, Lee CW, Lin IC, Chang CW, Liu YC, Chen TC, Lin YJ, Ian Shih YY, Chen YY. MR imaging central thalamic deep brain stimulation restored autistic-like social deficits in the rat. Brain Stimul 2019; 12:1410-1420. [PMID: 31324604 DOI: 10.1016/j.brs.2019.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 06/23/2019] [Accepted: 07/05/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Social deficit is a core symptom in autism spectrum disorder (ASD). Although deep brain stimulation (DBS) has been proposed as a potential treatment for ASD, an ideal target nucleus is yet to be identified. DBS at the central thalamic nucleus (CTN) is known to alter corticostriatal and limbic circuits, and subsequently increase the exploratory motor behaviors, cognitive performance, and skill learning in neuropsychiatric and neurodegenerative disorders. OBJECTIVE We first investigated the ability of CTN-DBS to selectively engage distinct brain circuits and compared the spatial distribution of evoked network activity and modulation. Second, we investigated whether CTN-DBS intervention improves social interaction in a valproic acid-exposed ASD rat offspring model. METHODS Brain regions activated through CTN-DBS by using a magnetic resonance (MR)-compatible neural probe, which is capable of inducing site-selective microstimulations during functional MRI (fMRI), were investigated. We then performed functional connectivity MRI, the three-chamber social interaction test, and Western blotting analyses to evaluate the therapeutic efficacy of CTN-DBS in an ASD rat offspring model. RESULTS The DBS-evoked fMRI results indicated that the activated brain regions were mainly located in cortical areas, limbic-related areas, and the dorsal striatum. We observed restoration of brain functional connectivity (FC) in corticostriatal and corticolimbic circuits after CTN-DBS, accompanied with increased social interaction and decreased social avoidance in the three-chamber social interaction test. The dopamine D2 receptor decreased significantly after CTN-DBS treatment, suggesting changes in synaptic plasticity and alterations in the brain circuits. CONCLUSIONS Applying CTN-DBS to ASD rat offspring increased FC and altered the synaptic plasticity in the corticolimbic and the corticostriatal circuits. This suggests that CTN-DBS could be an effective treatment for improving the social behaviors of individuals with ASD.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - Yu-Chun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St, Taipei, 11031, Taiwan, ROC; Research Center for Brain and Consciousness, Taipei Medical University, Shuang Ho Hospital, No. 291, Zhongzheng Rd, New Taipei City, 23561, Taiwan, ROC
| | - Hui-Ching Lin
- Department and Institute of Physiology, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - Sheng-Huang Lin
- Department of Neurology, Tzu Chi General Hospital, Tzu Chi University, No. 707, Sec. 3, Chung Yang Rd, Hualien, 97002, Taiwan, ROC
| | - Han-Fang Wu
- Department and Institute of Physiology, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - Ming-Chia Chu
- Department and Institute of Physiology, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - Chi-Wei Lee
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St, Taipei, 11031, Taiwan, ROC; Department and Institute of Physiology, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - I-Cheng Lin
- Department of Psychiatry, Shuang Ho Hospital, Taipei Medical University, No. 291, Zhongzheng Rd, New Taipei City, 23561, Taiwan, ROC
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - Yin-Chieh Liu
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC
| | - Yu-Ju Lin
- Department of Psychiatry, Far Eastern Memorial Hospital, No.21, Sec. 2, Nanya S. Rd, New Taipei City, 22060, Taiwan, ROC.
| | - Yen-Yu Ian Shih
- Departments of Neurology, Biomedical Engineering and Biomedical Research Imaging Center University of North Carolina at Chapel Hill, 125 Mason Farm Rd, CB# 7513, Chapel Hill, NC, 27599, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming University, No.155, Sec.2, Linong St, Taipei, 11221, Taiwan, ROC; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, No. 250 Wu-Xing St, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
63
|
Perry BAL, Mitchell AS. Considering the Evidence for Anterior and Laterodorsal Thalamic Nuclei as Higher Order Relays to Cortex. Front Mol Neurosci 2019; 12:167. [PMID: 31333412 PMCID: PMC6616498 DOI: 10.3389/fnmol.2019.00167] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Our memories are essential in our daily lives. The frontal and cingulate cortices, hippocampal system and medial temporal lobes are key brain regions. In addition, severe amnesia also occurs after damage or dysfunction to the anterior thalamic nuclei; this subcortical thalamic hub is interconnected to these key cortical memory structures. Behavioral, anatomical, and physiological evidence across mammalian species has shown that interactions between the anterior thalamic nuclei, cortex and hippocampal formation are vital for spatial memory processing. Furthermore, the adjacent laterodorsal thalamic nucleus (LD), interconnected to the retrosplenial cortex (RSC) and visual system, also contributes to spatial memory in mammals. However, how these thalamic nuclei contribute to memory still remains largely unknown. Fortunately, our understanding of the importance of the thalamus in cognitive processes is being redefined, as widespread evidence challenges the established view of the thalamus as a passive relay of sensory and subcortical information to the cortex. In this review article, we examine whether the anterior thalamic nuclei and the adjacent LD are suitable candidates for "higher-order" thalamic nuclei, as defined by the Sherman and Guillery model. Rather than simply relaying information to cortex, "higher-order" thalamic nuclei have a prominent role in cognition, as they can regulate how areas of the cortex interact with one another. These considerations along with a review of the latest research will be used to suggest future studies that will clarify the contributions that the anterior and LD have in supporting cortical functions during cognitive processes.
Collapse
Affiliation(s)
- Brook A L Perry
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
64
|
Francoeur MJ, Wormwood BA, Gibson BM, Mair RG. Central thalamic inactivation impairs the expression of action- and outcome-related responses of medial prefrontal cortex neurons in the rat. Eur J Neurosci 2019; 50:1779-1798. [PMID: 30919548 DOI: 10.1111/ejn.14350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/29/2018] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
The mediodorsal (MD) and adjacent intralaminar (IL) and midline nuclei provide the main thalamic input to the medial prefrontal cortex (mPFC) and are critical for associative learning and decision-making. MD neurons exhibit activity related to actions and outcomes that mirror responses of mPFC neurons in rats during dynamic delayed non-match to position (dDNMTP), a variation of DNMTP where start location is varied randomly within an open octagonal arena to avoid confounding behavioral events with spatial location. To test whether the thalamus affects the expression of these responses in mPFC, we inhibited the central thalamus unilaterally by microinjecting muscimol at doses and sites found to affect decision-making when applied bilaterally. Unilateral inactivation reduced normalized task-related responses in the ipsilateral mPFC without disrupting behavior needed to characterize event-related neuronal activity. Our results extend earlier findings that focused on delay-related activity by showing that central thalamic inactivation interferes with responses related to actions and outcomes that occur outside the period of memory delay. These findings are consistent with the broad effects of central thalamic lesions on behavioral measures of reinforcement-guided responding. Most (7/8) of the prefrontal response types affected by thalamic inactivation have also been observed in MD during dDNMTP. These results support the hypothesis that MD and IL act as transthalamic gates: monitoring prefrontal activity through corticothalamic inputs; integrating this information with signals from motivational and sensorimotor systems that converge in thalamus; and acting through thalamocortical projections to enhance expression of neuronal responses in the PFC that support adaptive goal-directed behavior.
Collapse
Affiliation(s)
- Miranda J Francoeur
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| | - Benjamin A Wormwood
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| | - Brett M Gibson
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| | - Robert G Mair
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
65
|
Wolff M, Vann SD. The Cognitive Thalamus as a Gateway to Mental Representations. J Neurosci 2019; 39:3-14. [PMID: 30389839 PMCID: PMC6325267 DOI: 10.1523/jneurosci.0479-18.2018] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 01/16/2023] Open
Abstract
Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.
Collapse
Affiliation(s)
- Mathieu Wolff
- Centre National de la Recherche Scientifique, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France,
- University of Bordeaux, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France, and
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
66
|
Engagement of Pulvino-cortical Feedforward and Feedback Pathways in Cognitive Computations. Neuron 2018; 101:321-336.e9. [PMID: 30553546 DOI: 10.1016/j.neuron.2018.11.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 01/18/2023]
Abstract
Computational modeling of brain mechanisms of cognition has largely focused on the cortex, but recent experiments have shown that higher-order nuclei of the thalamus participate in major cognitive functions and are implicated in psychiatric disorders. Here, we show that a pulvino-cortical circuit model, composed of the pulvinar and two cortical areas, captures several physiological and behavioral observations related to the macaque pulvinar. Effective connections between the two cortical areas are gated by the pulvinar, allowing the pulvinar to shift the operation regime of these areas during attentional processing and working memory and resolve conflict in decision making. Furthermore, cortico-pulvinar projections that engage the thalamic reticular nucleus enable the pulvinar to estimate decision confidence. Finally, feedforward and feedback pulvino-cortical pathways participate in frequency-dependent inter-areal interactions that modify the relative hierarchical positions of cortical areas. Overall, our model suggests that the pulvinar provides crucial contextual modulation to cortical computations associated with cognition.
Collapse
|
67
|
Huh R, Song IU, Chung M. Neuropsychological consequences of pallidal deep brain stimulation altering brain networks. J Clin Neurosci 2018; 54:50-56. [DOI: 10.1016/j.jocn.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/27/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
|
68
|
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018; 12:51. [PMID: 30042662 PMCID: PMC6048220 DOI: 10.3389/fncir.2018.00051] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal processing and resulting behavioral changes are most commonly reported for higher order cognitive brain functions. Comparatively little is known about how neuromodulators shape processing in sensory brain areas that provide the signals for downstream regions to operate on. In this article, we review the current knowledge about how the monoamine neuromodulators serotonin, dopamine and noradrenaline influence the representation of sensory stimuli in the mammalian sensory system. We review the functional organization of the monoaminergic brainstem neuromodulatory systems in relation to their role for sensory processing and summarize recent neurophysiological evidence showing that monoamines have diverse effects on early sensory processing, including changes in gain and in the precision of neuronal responses to sensory inputs. We also highlight the substantial evidence for complementarity between these neuromodulatory systems with different patterns of innervation across brain areas and cortical layers as well as distinct neuromodulatory actions. Studying the effects of neuromodulators at various target sites is a crucial step in the development of a mechanistic understanding of neuronal information processing in the healthy brain and in the generation and maintenance of mental diseases.
Collapse
Affiliation(s)
- Simon N Jacob
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
69
|
Disrupted amplitude of low-frequency fluctuations and causal connectivity in Parkinson's disease with apathy. Neurosci Lett 2018; 683:75-81. [PMID: 29953925 DOI: 10.1016/j.neulet.2018.06.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 12/24/2022]
Abstract
Apathy is a common non-motor symptom in Parkinson's disease (PD). We aimed to explore its associated neural substrates changes via amplitude of low-frequency fluctuations (ALFF) and granger causality analysis (GCA). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were performed in 20 PD patients with apathy (PD-A), 22 PD patients without apathy (PD-NA) and 19 healthy volunteers. GCA, a new method exploring direction from one brain region to another, was based on brain regions showing alterations of neural activity as seeds, which were examined utilizing ALFF approach. The relationships between ALFF or GCA and apathetic symptoms were also assessed. Relative to PD-NA group, PD-A group indicated decreased ALFF in left orbital middle frontal gyrus and bilateral superior frontal gyrus (SFG). Only ALFF values in right SFG were negatively correlated with Apathy Scale (AS) scores. Then GCA with the seed of right SFG showed a positive feedback from right thalamus to ipsilateral SFG, which was positively correlated with AS scores. In conclusion, dysfunction in SFG and a positive feedback from thalamus to ipsilateral SFG contributed to presence of PD-related apathy, providing a new perspective for future studies on apathy in PD.
Collapse
|
70
|
Brennan KC, Pietrobon D. A Systems Neuroscience Approach to Migraine. Neuron 2018; 97:1004-1021. [PMID: 29518355 PMCID: PMC6402597 DOI: 10.1016/j.neuron.2018.01.029] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Migraine is an extremely common but poorly understood nervous system disorder. We conceptualize migraine as a disorder of sensory network gain and plasticity, and we propose that this framing makes it amenable to the tools of current systems neuroscience.
Collapse
Affiliation(s)
- K C Brennan
- Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
71
|
Intrinsic Functional Hypoconnectivity in Core Neurocognitive Networks Suggests Central Nervous System Pathology in Patients with Myalgic Encephalomyelitis: A Pilot Study. Appl Psychophysiol Biofeedback 2018; 41:283-300. [PMID: 26869373 DOI: 10.1007/s10484-016-9331-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Exact low resolution electromagnetic tomography (eLORETA) was recorded from nineteen EEG channels in nine patients with myalgic encephalomyelitis (ME) and 9 healthy controls to assess current source density and functional connectivity, a physiological measure of similarity between pairs of distributed regions of interest, between groups. Current source density and functional connectivity were measured using eLORETA software. We found significantly decreased eLORETA source analysis oscillations in the occipital, parietal, posterior cingulate, and posterior temporal lobes in Alpha and Alpha-2. For connectivity analysis, we assessed functional connectivity within Menon triple network model of neuropathology. We found support for all three networks of the triple network model, namely the central executive network (CEN), salience network (SN), and the default mode network (DMN) indicating hypo-connectivity in the Delta, Alpha, and Alpha-2 frequency bands in patients with ME compared to controls. In addition to the current source density resting state dysfunction in the occipital, parietal, posterior temporal and posterior cingulate, the disrupted connectivity of the CEN, SN, and DMN appears to be involved in cognitive impairment for patients with ME. This research suggests that disruptions in these regions and networks could be a neurobiological feature of the disorder, representing underlying neural dysfunction.
Collapse
|
72
|
Compensatory dopaminergic-cholinergic interactions in conflict processing: Evidence from patients with Parkinson's disease. Neuroimage 2018; 190:94-106. [PMID: 29337277 DOI: 10.1016/j.neuroimage.2018.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 01/21/2023] Open
Abstract
Executive functions are complex both in the cognitive operations involved and in the neural structures and functions that support those operations. This complexity makes executive function highly vulnerable to the detrimental effects of aging, brain injury, and disease, but may also open paths to compensation. Neural compensation is often used to explain findings of additional or altered patterns of brain activations by older adults or patient populations compared to young adults or healthy controls, especially when associated with relatively preserved performance. Here we test the hypothesis of an alternative form of compensation, between different neuromodulator systems. 135 patients with Parkinson's Disease (PD) completed vesicular monoamine transporter type2 (VMAT2) and acetylcholinesterase PET scanning to assess the integrity of nigrostriatal dopaminergic, thalamic cholinergic, and cortical cholinergic pathways, and a behavioral test (Stroop + task-switching) that puts high demands on conflict processing, an important aspect of executive control. Supporting the compensatory hypothesis, regression models controlling for age and other covariates revealed an interaction between caudate dopamine and cortical cholinergic integrity: Cortical cholinergic integrity was a stronger predictor of conflict processing in patients with relatively low caudate dopaminergic function. These results suggest that although frontostriatal dopaminergic function plays a central role in executive control, cholinergic systems may also make an important contribution. The present results suggest potential pathways for remediation, and that the appropriate interventions for each patient may depend on their particular profile of decline. Furthermore, they help to elucidate the brain systems that underlie executive control, which may be important for understanding other disorders as well as executive function in healthy adults.
Collapse
|
73
|
Kimura A, Imbe H. Robust Subthreshold Cross-modal Modulation of Auditory Response by Cutaneous Electrical Stimulation in First- and Higher-order Auditory Thalamic Nuclei. Neuroscience 2018; 372:161-180. [PMID: 29309880 DOI: 10.1016/j.neuroscience.2017.12.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/14/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
Conventional extracellular recording has revealed cross-modal alterations of auditory cell activities by cutaneous electrical stimulation of the hindpaw in first- and higher-order auditory thalamic nuclei (Donishi et al., 2011). Juxta-cellular recording and labeling techniques were used in the present study to examine the cross-modal alterations in detail, focusing on possible nucleus and/or cell type-related distinctions in modulation. Recordings were obtained from 80 cells of anesthetized rats. Cutaneous electrical stimulation, which did not elicit unit discharges, i.e., subthreshold effects, modulated early (onset) and/or late auditory responses of first- (64%) and higher-order nucleus cells (77%) with regard to response magnitude, latency and/or burst spiking. Attenuation predominated in the modulation of response magnitude and burst spiking, and delay predominated in the modulation of response time. Striking alterations of burst spiking took place in higher-order nucleus cells, which had the potential to exhibit higher propensities for burst spiking as compared to first-order nucleus cells. A subpopulation of first-order nucleus cells showing modulation in early response magnitude in the caudal domain of the nucleus had larger cell bodies and higher propensities for burst spiking as compared to cells showing no modulation. These findings suggest that somatosensory influence is incorporated into parallel channels in auditory thalamic nuclei to impose distinct impacts on cortical and subcortical sensory processing. Further, cutaneous electrical stimulation given after early auditory responses modulated late responses. Somatosensory influence is likely to affect ongoing auditory processing at any time without being coincident with sound onset in a narrow temporal window.
Collapse
Affiliation(s)
- Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509, Japan.
| | - Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Wakayama Kimiidera 811-1, 641-8509, Japan
| |
Collapse
|
74
|
The cortical cholinergic system contributes to the top-down control of distraction: Evidence from patients with Parkinson's disease. Neuroimage 2017; 190:107-117. [PMID: 29277400 DOI: 10.1016/j.neuroimage.2017.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/27/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Past animal and human studies robustly report that the cholinergic system plays an essential role in both top-down and bottom-up attentional control, as well as other aspects of cognition (see Ballinger et al., 2016 for a recent review). However, current understanding of how two major cholinergic pathways in the human brain (the basal forebrain-cortical pathway, and the brainstem pedunculopontine-thalamic pathway) contribute to specific cognitive functions remains somewhat limited. To address this issue, we examine how individual variation in the integrity of striatal-dopaminergic, thalamic-cholinergic, and cortical-cholinergic pathways (measured using Positron Emission Tomography in patients with Parkinson's disease) was associated with individual variation in the initial goal-directed focus of attention, the ability to sustain attentional performance over time, and the ability to avoid distraction from a highly-salient, but irrelevant, environmental stimulus. Compared to healthy controls, PD patients performed similarly in the precision of attention-dependent judgments of duration, and in sustaining attention over time. However, PD patients' performance was strikingly more impaired by the distractor. More critically, regression analyses indicated that only cortical-cholinergic integrity, not thalamic-cholinergic or striatal-dopaminergic integrity, made a specific contribution to the ability to resist distraction after controlling for the other variables. These results demonstrate that the basal forebrain cortical cholinergic system serves a specific role in executing top-down control to resist external distraction.
Collapse
|
75
|
Kuramoto E, Iwai H, Yamanaka A, Ohno S, Seki H, Tanaka YR, Furuta T, Hioki H, Goto T. Dorsal and ventral parts of thalamic nucleus submedius project to different areas of rat orbitofrontal cortex: A single neuron-tracing study using virus vectors. J Comp Neurol 2017; 525:3821-3839. [DOI: 10.1002/cne.24306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Sachi Ohno
- Department of Dental Anesthesiology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Haruka Seki
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| | - Yasuhiro R. Tanaka
- Department of Physiology; Graduate School of Medicine, The University of Tokyo; Tokyo Japan
| | - Takahiro Furuta
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology; Graduate School of Medical and Dental Sciences, Kagoshima University; Kagoshima Japan
| |
Collapse
|
76
|
Lopes MA, Richardson MP, Abela E, Rummel C, Schindler K, Goodfellow M, Terry JR. An optimal strategy for epilepsy surgery: Disruption of the rich-club? PLoS Comput Biol 2017; 13:e1005637. [PMID: 28817568 PMCID: PMC5560820 DOI: 10.1371/journal.pcbi.1005637] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/20/2017] [Indexed: 01/05/2023] Open
Abstract
Surgery is a therapeutic option for people with epilepsy whose seizures are not controlled by anti-epilepsy drugs. In pre-surgical planning, an array of data modalities, often including intra-cranial EEG, is used in an attempt to map regions of the brain thought to be crucial for the generation of seizures. These regions are then resected with the hope that the individual is rendered seizure free as a consequence. However, post-operative seizure freedom is currently sub-optimal, suggesting that the pre-surgical assessment may be improved by taking advantage of a mechanistic understanding of seizure generation in large brain networks. Herein we use mathematical models to uncover the relative contribution of regions of the brain to seizure generation and consequently which brain regions should be considered for resection. A critical advantage of this modeling approach is that the effect of different surgical strategies can be predicted and quantitatively compared in advance of surgery. Herein we seek to understand seizure generation in networks with different topologies and study how the removal of different nodes in these networks reduces the occurrence of seizures. Since this a computationally demanding problem, a first step for this aim is to facilitate tractability of this approach for large networks. To do this, we demonstrate that predictions arising from a neural mass model are preserved in a lower dimensional, canonical model that is quicker to simulate. We then use this simpler model to study the emergence of seizures in artificial networks with different topologies, and calculate which nodes should be removed to render the network seizure free. We find that for scale-free and rich-club networks there exist specific nodes that are critical for seizure generation and should therefore be removed, whereas for small-world networks the strategy should instead focus on removing sufficient brain tissue. We demonstrate the validity of our approach by analysing intra-cranial EEG recordings from a database comprising 16 patients who have undergone epilepsy surgery, revealing rich-club structures within the obtained functional networks. We show that the postsurgical outcome for these patients was better when a greater proportion of the rich club was removed, in agreement with our theoretical predictions.
Collapse
Affiliation(s)
- Marinho A. Lopes
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- * E-mail:
| | - Mark P. Richardson
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugenio Abela
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
- Support Center for Advanced Neuroimaging (SCAN), University of Bern, Bern, Switzerland
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University of Bern, Bern, Switzerland
| | | | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - John R. Terry
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
- Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom
- EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
77
|
Flores FJ, Hartnack KE, Fath AB, Kim SE, Wilson MA, Brown EN, Purdon PL. Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc Natl Acad Sci U S A 2017; 114:E6660-E6668. [PMID: 28743752 PMCID: PMC5558998 DOI: 10.1073/pnas.1700148114] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
General anesthesia (GA) is a reversible drug-induced state of altered arousal required for more than 60,000 surgical procedures each day in the United States alone. Sedation and unconsciousness under GA are associated with stereotyped electrophysiological oscillations that are thought to reflect profound disruptions of activity in neuronal circuits that mediate awareness and cognition. Computational models make specific predictions about the role of the cortex and thalamus in these oscillations. In this paper, we provide in vivo evidence in rats that alpha oscillations (10-15 Hz) induced by the commonly used anesthetic drug propofol are synchronized between the thalamus and the medial prefrontal cortex. We also show that at deep levels of unconsciousness where movement ceases, coherent thalamocortical delta oscillations (1-5 Hz) develop, distinct from concurrent slow oscillations (0.1-1 Hz). The structure of these oscillations in both cortex and thalamus closely parallel those observed in the human electroencephalogram during propofol-induced unconsciousness. During emergence from GA, this synchronized activity dissipates in a sequence different from that observed during loss of consciousness. A possible explanation is that recovery from anesthesia-induced unconsciousness follows a "boot-up" sequence actively driven by ascending arousal centers. The involvement of medial prefrontal cortex suggests that when these oscillations (alpha, delta, slow) are observed in humans, self-awareness and internal consciousness would be impaired if not abolished. These studies advance our understanding of anesthesia-induced unconsciousness and altered arousal and further establish principled neurophysiological markers of these states.
Collapse
Affiliation(s)
- Francisco J Flores
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114;
- Harvard Medical School, Boston, MA 02115
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Katharine E Hartnack
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Amanda B Fath
- Department of Neuroscience, Wellesley College, Wellesley, MA 02481
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Seong-Eun Kim
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Matthew A Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emery N Brown
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114;
- Harvard Medical School, Boston, MA 02115
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114;
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
78
|
Fogerson PM, Huguenard JR. Tapping the Brakes: Cellular and Synaptic Mechanisms that Regulate Thalamic Oscillations. Neuron 2017; 92:687-704. [PMID: 27883901 DOI: 10.1016/j.neuron.2016.10.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 12/26/2022]
Abstract
Thalamic oscillators contribute to both normal rhythms associated with sleep and anesthesia and abnormal, hypersynchronous oscillations that manifest behaviorally as absence seizures. In this review, we highlight new findings that refine thalamic contributions to cortical rhythms and suggest that thalamic oscillators may be subject to both local and global control. We describe endogenous thalamic mechanisms that limit network synchrony and discuss how these protective brakes might be restored to prevent absence seizures. Finally, we describe how intrinsic and circuit-level specializations among thalamocortical loops may determine their involvement in widespread oscillations and render subsets of thalamic nuclei especially vulnerable to pathological synchrony.
Collapse
Affiliation(s)
- P Michelle Fogerson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
79
|
Neural Representation of Odor-Guided Behavior in the Rat Olfactory Thalamus. J Neurosci 2017; 36:5946-60. [PMID: 27251617 DOI: 10.1523/jneurosci.0533-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/10/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The mediodorsal thalamus (MDT) is a higher-order corticocortical thalamic nucleus involved in cognition and memory. However, anatomically, the MDT is also the primary site of olfactory representation in the thalamus, receiving strong inputs from olfactory cortex and having reciprocal connections with orbitofrontal cortex (OFC). Nonetheless, its role in olfaction remains unclear. Here, we recorded single units in the MDT, as well as local field potentials in the MDT, piriform cortex (PCX), and OFC in rats performing a two-alternative odor discrimination task. We show that subsets of MDT units display odorant selectivity during sampling, as well as encoding of spatio-motor aspects of the task. Furthermore, the olfactory trans-thalamic network rapidly switches functional connectivity between MDT and cortical areas depending on current task demands, with, for example, MDT-PCX coupling enhanced during odor sampling and MDT-OFC coupling enhanced during the decision/goal approach compared with baseline and presampling. These results demonstrate MDT representation of diverse sensorimotor components of an olfactory task. SIGNIFICANCE STATEMENT The mediodorsal thalamus (MDT) is the major olfactory thalamic nucleus and links the olfactory archicortex with the prefrontal neocortex. The MDT is well known to be involved in higher-order cognitive and memory functions, but its role in olfaction is poorly understood. Here, using single-unit and local field potential analyses, we explored MDT function during an odor-guided decision task in rats. We describe MDT odor and multisensory coding and demonstrate behavior-dependent functional connectivity within the MDT/sensory cortex/prefrontal cortex network. Our results suggest a rich representation of olfactory and other information within MDT required to perform this odor-guided task. Our work opens a new model system for understanding MDT function and exploring the important role of MDT in cortical-cortical communication.
Collapse
|
80
|
Fernández-Cabrera MR, Selvas A, Miguéns M, Higuera-Matas A, Vale-Martínez A, Ambrosio E, Martí-Nicolovius M, Guillazo-Blanch G. Parafascicular thalamic nucleus deep brain stimulation decreases NMDA receptor GluN1 subunit gene expression in the prefrontal cortex. Neuroscience 2017; 348:73-82. [DOI: 10.1016/j.neuroscience.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 01/28/2023]
|
81
|
Grant WS, Tanner J, Itti L. Biologically plausible learning in neural networks with modulatory feedback. Neural Netw 2017; 88:32-48. [DOI: 10.1016/j.neunet.2017.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 11/16/2022]
|
82
|
Mathiasen ML, Dillingham CM, Kinnavane L, Powell AL, Aggleton JP. Asymmetric cross-hemispheric connections link the rat anterior thalamic nuclei with the cortex and hippocampal formation. Neuroscience 2017; 349:128-143. [PMID: 28237814 PMCID: PMC5387186 DOI: 10.1016/j.neuroscience.2017.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Dense reciprocal connections link the rat anterior thalamic nuclei with the prelimbic, anterior cingulate and retrosplenial cortices, as well as with the subiculum and postsubiculum. The present study compared the ipsilateral thalamic-cortical connections with the corresponding crossed, contralateral connections between these same sets of regions. All efferents from the anteromedial thalamic nucleus to the cortex, as well as those to the subiculum, remained ipsilateral. In contrast, all of these target sites provided reciprocal, bilateral projections to the anteromedial nucleus. While the anteroventral thalamic nucleus often shared this same asymmetric pattern of cortical connections, it received relatively fewer crossed inputs than the anteromedial nucleus. This difference was most marked for the anterior cingulate projections, as those to the anteroventral nucleus remained almost entirely ipsilateral. Unlike the anteromedial nucleus, the anteroventral nucleus also appeared to provide a restricted, crossed projection to the contralateral retrosplenial cortex. Meanwhile, the closely related laterodorsal thalamic nucleus had almost exclusively ipsilateral efferent and afferent cortical connections. Likewise, within the hippocampus, the postsubiculum seemingly had only ipsilateral efferent and afferent connections with the anterior thalamic and laterodorsal nuclei. While the bilateral cortical projections to the anterior thalamic nuclei originated predominantly from layer VI, the accompanying sparse projections from layer V largely gave rise to ipsilateral thalamic inputs. In testing a potentially unifying principle of anterior thalamic - cortical interactions, a slightly more individual pattern emerged that reinforces other evidence of functional differences within the anterior thalamic and also helps to explain the consequences of unilateral interventions involving these nuclei.
Collapse
Affiliation(s)
- Mathias L Mathiasen
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK.
| | - Christopher M Dillingham
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Lisa Kinnavane
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| | - Anna L Powell
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| | - John P Aggleton
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
83
|
Kim K, Müller MLTM, Bohnen NI, Sarter M, Lustig C. Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: Evidence from Parkinson's disease patients with defined cholinergic losses. Neuroimage 2017; 149:295-304. [PMID: 28167350 DOI: 10.1016/j.neuroimage.2017.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Successful behavior depends on the ability to detect and respond to relevant cues, especially under challenging conditions. This essential component of attention has been hypothesized to be mediated by multiple neuromodulator systems, but the contributions of individual systems (e.g., cholinergic, dopaminergic) have remained unclear. The present study addresses this issue by leveraging individual variation in regionally-specific cholinergic denervation in Parkinson's disease (PD) patients, while controlling for variation in dopaminergic denervation. Patients whose dopaminergic and cholinergic nerve terminal integrity had been previously assessed using Positron Emission Tomography (Bohnen et al., 2012) and controls were tested in a signal detection task that manipulates attentional-perceptual challenge and has been used extensively in both rodents and humans to investigate the cholinergic system's role in responding to such challenges (Demeter et al., 2008; McGaughy and Sarter, 1995; see Hasselmo and Sarter 2011 for review). In simple correlation analyses, measures of midbrain dopaminergic, and both cortical and thalamic cholinergic innervation all predicted preserved signal detection under challenge. However, regression analyses also controlling for age, disease severity, and other variables showed that the only significant independent neurotransmitter-related predictor over and above the other variables in the model was thalamic cholinergic integrity. Furthermore, thalamic cholinergic innervation exclusively predicted hits, not correct rejections, indicating a specific contribution to bottom-up salience processing. These results help define regionally-specific contributions of cholinergic function to different aspects of attention and behavior.
Collapse
Affiliation(s)
- Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI 48109, United States
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, United States; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, United States; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI 48109, United States; Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48109, United States
| | - Martin Sarter
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI 48109, United States
| | - Cindy Lustig
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States; Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI 48109, United States.
| |
Collapse
|
84
|
Abstract
Adaptation is fundamental to life. All organisms adapt over timescales that span from evolution to generations and lifetimes to moment-by-moment interactions. The nervous system is particularly adept at rapidly adapting to change, and this in fact may be one of its fundamental principles of organization and function. Rapid forms of sensory adaptation have been well documented across all sensory modalities in a wide range of organisms, yet we do not have a comprehensive understanding of the adaptive cellular mechanisms that ultimately give rise to the corresponding percepts, due in part to the complexity of the circuitry. In this Perspective, we aim to build links between adaptation at multiple scales of neural circuitry by investigating the differential adaptation across brain regions and sub-regions and across specific cell types, for which the explosion of modern tools has just begun to enable. This investigation points to a set of challenges for the field to link functional observations to adaptive properties of the neural circuit that ultimately underlie percepts.
Collapse
Affiliation(s)
- Clarissa J Whitmire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Garrett B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
85
|
Bolam JP, Ellender TJ. Histamine and the striatum. Neuropharmacology 2016; 106:74-84. [PMID: 26275849 PMCID: PMC4917894 DOI: 10.1016/j.neuropharm.2015.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 12/25/2022]
Abstract
The neuromodulator histamine is released throughout the brain during periods of wakefulness. Combined with an abundant expression of histamine receptors, this suggests potential widespread histaminergic control of neural circuit activity. However, the effect of histamine on many of these circuits is unknown. In this review we will discuss recent evidence for histaminergic modulation of the basal ganglia circuitry, and specifically its main input nucleus; the striatum. Furthermore, we will discuss recent findings of histaminergic dysfunction in several basal ganglia disorders, including in Parkinson's disease and most prominently, in Tourette's syndrome, which has led to a resurgence of interest in this neuromodulator. Combined, these recent observations not only suggest a central role for histamine in modulating basal ganglia activity and behaviour, but also as a possible target in treating basal ganglia disorders. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- J Paul Bolam
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom
| | - Tommas J Ellender
- Department of Pharmacology, MRC Brain Network Dynamics Unit, Mansfield Road, OX1 3TH Oxford, United Kingdom.
| |
Collapse
|
86
|
Darvesh S, Reid GA. Reduced fibrillar β-amyloid in subcortical structures in a butyrylcholinesterase-knockout Alzheimer disease mouse model. Chem Biol Interact 2016; 259:307-312. [PMID: 27091549 DOI: 10.1016/j.cbi.2016.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
The serine hydrolase, butyrylcholinesterase (BChE) is known to have a variety of enzymatic and non-enzymatic functions. In the brain, BChE is expressed mainly in glia, white matter and in distinct populations of neurons in areas important in cognition. In Alzheimer's disease (AD), many β-amyloid (Aβ) plaques become associated with BChE activity, the significance of which is unclear. A mouse model of AD containing five familial AD genes (5XFAD) also exhibits Aβ plaques associated with BChE. We developed a comparable strain (5XFAD/BChE-KO) that is unable to synthesize BChE and reported diminished fibrillar Aβ deposits in the cerebral cortex of 5XFAD/BChE-KO mice, compared to 5XFAD counterparts at the same age. This effect was most significant in male mice. The present study extends comparison of the two strains with a detailed examination of fibrillar Aβ plaque burden in other regions of the brain that typically accumulate pathology and exhibit neurodegeneration. This work demonstrates that, as in the cerebral cortex, the absence of BChE leads to diminished fibrillar Aβ deposition in amygdala, hippocampal formation, thalamus and basal ganglia. This reduction is statistically significant in males, with a trend towards such reduction in female mice.
Collapse
Affiliation(s)
- S Darvesh
- Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - G A Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
87
|
Sriram B, Meier PM, Reinagel P. Temporal and spatial tuning of dorsal lateral geniculate nucleus neurons in unanesthetized rats. J Neurophysiol 2016; 115:2658-71. [PMID: 26936980 DOI: 10.1152/jn.00812.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
Visual response properties of neurons in the dorsolateral geniculate nucleus (dLGN) have been well described in several species, but not in rats. Analysis of responses from the unanesthetized rat dLGN will be needed to develop quantitative models that account for visual behavior of rats. We recorded visual responses from 130 single units in the dLGN of 7 unanesthetized rats. We report the response amplitudes, temporal frequency, and spatial frequency sensitivities in this population of cells. In response to 2-Hz visual stimulation, dLGN cells fired 15.9 ± 11.4 spikes/s (mean ± SD) modulated by 10.7 ± 8.4 spikes/s about the mean. The optimal temporal frequency for full-field stimulation ranged from 5.8 to 19.6 Hz across cells. The temporal high-frequency cutoff ranged from 11.7 to 33.6 Hz. Some cells responded best to low temporal frequency stimulation (low pass), and others were strictly bandpass; most cells fell between these extremes. At 2- to 4-Hz temporal modulation, the spatial frequency of drifting grating that drove cells best ranged from 0.008 to 0.18 cycles per degree (cpd) across cells. The high-frequency cutoff ranged from 0.01 to 1.07 cpd across cells. The majority of cells were driven best by the lowest spatial frequency tested, but many were partially or strictly bandpass. We conclude that single units in the rat dLGN can respond vigorously to temporal modulation up to at least 30 Hz and spatial detail up to 1 cpd. Tuning properties were heterogeneous, but each fell along a continuum; we found no obvious clustering into discrete cell types along these dimensions.
Collapse
Affiliation(s)
- Balaji Sriram
- Division of Biology, University of California, San Diego, California; and
| | - Philip M Meier
- Department of Neuroscience, University of California, San Diego, California
| | - Pamela Reinagel
- Division of Biology, University of California, San Diego, California; and
| |
Collapse
|
88
|
Whitmire CJ, Waiblinger C, Schwarz C, Stanley GB. Information Coding through Adaptive Gating of Synchronized Thalamic Bursting. Cell Rep 2016; 14:795-807. [PMID: 26776512 DOI: 10.1016/j.celrep.2015.12.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/07/2015] [Accepted: 12/11/2015] [Indexed: 11/27/2022] Open
Abstract
It has been posited that the regulation of burst/tonic firing in the thalamus could function as a mechanism for controlling not only how much but what kind of information is conveyed to downstream cortical targets. Yet how this gating mechanism is adaptively modulated on fast timescales by ongoing sensory inputs in rich sensory environments remains unknown. Using single-unit recordings in the rat vibrissa thalamus (VPm), we found that the degree of bottom-up adaptation modulated thalamic burst/tonic firing as well as the synchronization of bursting across the thalamic population along a continuum for which the extremes facilitate detection or discrimination of sensory inputs. Optogenetic control of baseline membrane potential in thalamus further suggests that this regulation may result from an interplay between adaptive changes in thalamic membrane potential and synaptic drive from inputs to thalamus, setting the stage for an intricate control strategy upon which cortical computation is built.
Collapse
Affiliation(s)
- Clarissa J Whitmire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Christian Waiblinger
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72074, Germany; Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72074, Germany
| | - Cornelius Schwarz
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72074, Germany; Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72074, Germany
| | - Garrett B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
89
|
Abstract
UNLABELLED The parvicellular portion of the ventroposteromedial nucleus (VPMpc) is the part of the thalamus that processes gustatory information. Anatomical evidence shows that the VPMpc receives ascending gustatory inputs from the parabrachial nucleus (PbN) in the brainstem and sends projections to the gustatory cortex (GC). Although taste processing in PbN and GC has been the subject of intense investigation in behaving rodents, much less is known on how VPMpc neurons encode gustatory information. Here we present results from single-unit recordings in the VPMpc of alert rats receiving multiple tastants. Thalamic neurons respond to taste with time-varying modulations of firing rates, consistent with those observed in GC and PbN. These responses encode taste quality as well as palatability. Comparing responses to tastants either passively delivered, or self-administered after a cue, unveiled the effects of general expectation on taste processing in VPMpc. General expectation led to an improvement of taste coding by modulating response dynamics, and single neuron ability to encode multiple tastants. Our results demonstrate that the time course of taste coding as well as single neurons' ability to encode for multiple qualities are not fixed but rather can be altered by the state of the animal. Together, the data presented here provide the first description that taste coding in VPMpc is dynamic and state-dependent. SIGNIFICANCE STATEMENT Over the past years, a great deal of attention has been devoted to understanding taste coding in the brainstem and cortex of alert rodents. Thanks to this research, we now know that taste coding is dynamic, distributed, and context-dependent. Alas, virtually nothing is known on how the gustatory thalamus (VPMpc) processes gustatory information in behaving rats. This manuscript investigates taste processing in the VPMpc of behaving rats. Our results show that thalamic neurons encode taste and palatability with time-varying patterns of activity and that thalamic coding of taste is modulated by general expectation. Our data will appeal not only to researchers interested in taste, but also to a broader audience of sensory and systems neuroscientists interested in the thalamocortical system.
Collapse
|
90
|
Liu H, Fontanini A. State Dependency of Chemosensory Coding in the Gustatory Thalamus (VPMpc) of Alert Rats. J Neurosci 2015; 35:15479-91. [PMID: 26609147 PMCID: PMC4659819 DOI: 10.1523/jneurosci.0839-15.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/21/2015] [Accepted: 09/10/2015] [Indexed: 11/21/2022] Open
Abstract
The parvicellular portion of the ventroposteromedial nucleus (VPMpc) is the part of the thalamus that processes gustatory information. Anatomical evidence shows that the VPMpc receives ascending gustatory inputs from the parabrachial nucleus (PbN) in the brainstem and sends projections to the gustatory cortex (GC). Although taste processing in PbN and GC has been the subject of intense investigation in behaving rodents, much less is known on how VPMpc neurons encode gustatory information. Here we present results from single-unit recordings in the VPMpc of alert rats receiving multiple tastants. Thalamic neurons respond to taste with time-varying modulations of firing rates, consistent with those observed in GC and PbN. These responses encode taste quality as well as palatability. Comparing responses to tastants either passively delivered, or self-administered after a cue, unveiled the effects of general expectation on taste processing in VPMpc. General expectation led to an improvement of taste coding by modulating response dynamics, and single neuron ability to encode multiple tastants. Our results demonstrate that the time course of taste coding as well as single neurons' ability to encode for multiple qualities are not fixed but rather can be altered by the state of the animal. Together, the data presented here provide the first description that taste coding in VPMpc is dynamic and state-dependent. SIGNIFICANCE STATEMENT Over the past years, a great deal of attention has been devoted to understanding taste coding in the brainstem and cortex of alert rodents. Thanks to this research, we now know that taste coding is dynamic, distributed, and context-dependent. Alas, virtually nothing is known on how the gustatory thalamus (VPMpc) processes gustatory information in behaving rats. This manuscript investigates taste processing in the VPMpc of behaving rats. Our results show that thalamic neurons encode taste and palatability with time-varying patterns of activity and that thalamic coding of taste is modulated by general expectation. Our data will appeal not only to researchers interested in taste, but also to a broader audience of sensory and systems neuroscientists interested in the thalamocortical system.
Collapse
Affiliation(s)
- Haixin Liu
- Department of Neurobiology and Behavior and Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior and Graduate Program in Neuroscience, State University of New York at Stony Brook, Stony Brook, New York 11794
| |
Collapse
|
91
|
Puig MV, Gulledge AT, Lambe EK, Gonzalez-Burgos G. Editorial: Neuromodulation of executive circuits. Front Neural Circuits 2015; 9:58. [PMID: 26500506 PMCID: PMC4596939 DOI: 10.3389/fncir.2015.00058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- M Victoria Puig
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Medical Research Institute Barcelona, Spain
| | - Allan T Gulledge
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College Lebanon, NH, USA
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Guillermo Gonzalez-Burgos
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
92
|
Limbic thalamus and state-dependent behavior: The paraventricular nucleus of the thalamic midline as a node in circadian timing and sleep/wake-regulatory networks. Neurosci Biobehav Rev 2015; 54:3-17. [DOI: 10.1016/j.neubiorev.2014.11.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 11/09/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
|
93
|
Abstract
The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture.
Collapse
|
94
|
Nakamura H, Hioki H, Furuta T, Kaneko T. Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors. Eur J Neurosci 2015; 41:1294-310. [DOI: 10.1111/ejn.12882] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Hisashi Nakamura
- Department of Morphological Brain Science; Graduate School of Medicine; Kyoto University; Kyoto 606-8501 Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science; Graduate School of Medicine; Kyoto University; Kyoto 606-8501 Japan
| | - Takahiro Furuta
- Department of Morphological Brain Science; Graduate School of Medicine; Kyoto University; Kyoto 606-8501 Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science; Graduate School of Medicine; Kyoto University; Kyoto 606-8501 Japan
| |
Collapse
|
95
|
Deviance detection in auditory subcortical structures: what can we learn from neurochemistry and neural connectivity? Cell Tissue Res 2015; 361:215-32. [DOI: 10.1007/s00441-015-2134-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022]
|
96
|
Dasgupta S, Wörgötter F, Manoonpong P. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control. Front Neural Circuits 2014; 8:126. [PMID: 25389391 PMCID: PMC4211401 DOI: 10.3389/fncir.2014.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/30/2014] [Indexed: 12/30/2022] Open
Abstract
Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.
Collapse
Affiliation(s)
- Sakyasingha Dasgupta
- Institute for Physics - Biophysics, George-August-UniversityGöttingen, Germany
- Bernstein Center for Computational Neuroscience, George-August-UniversityGöttingen, Germany
| | - Florentin Wörgötter
- Institute for Physics - Biophysics, George-August-UniversityGöttingen, Germany
- Bernstein Center for Computational Neuroscience, George-August-UniversityGöttingen, Germany
| | - Poramate Manoonpong
- Bernstein Center for Computational Neuroscience, George-August-UniversityGöttingen, Germany
- Center for Biorobotics, Maersk Mc-Kinney Møller Institute, University of Southern DenmarkOdense, Denmark
| |
Collapse
|