51
|
Mountney A, Boutté AM, Cartagena CM, Flerlage WF, Johnson WD, Rho C, Lu XC, Yarnell A, Marcsisin S, Sousa J, Vuong C, Zottig V, Leung LY, Deng-Bryant Y, Gilsdorf J, Tortella FC, Shear DA. Functional and Molecular Correlates after Single and Repeated Rat Closed-Head Concussion: Indices of Vulnerability after Brain Injury. J Neurotrauma 2017; 34:2768-2789. [PMID: 28326890 DOI: 10.1089/neu.2016.4679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Closed-head concussive injury is one of the most common causes of traumatic brain injury (TBI). Isolated concussions frequently produce acute neurological impairments, and individuals typically recover spontaneously within a short time frame. In contrast, brain injuries resulting from multiple concussions can result in cumulative damage and elevated risk of developing chronic brain pathologies. Increased attention has focused on identification of diagnostic markers that can prognostically serve as indices of brain health after injury, revealing the temporal profile of vulnerability to a second insult. Such markers may demarcate adequate recovery periods before concussed patients can return to required activities. We developed a noninvasive closed-head impact model that captures the hallmark symptoms of concussion in the absence of gross tissue damage. Animals were subjected to single or repeated concussive impact and examined using a battery of neurological, vestibular, sensorimotor, and molecular metrics. A single concussion induced transient, but marked, acute neurological impairment, gait alterations, neuronal death, and increased glial fibrillary acidic protein (GFAP) expression in brain tissue. As expected, repeated concussions exacerbated sensorimotor dysfunction, prolonged gait abnormalities, induced neuroinflammation, and upregulated GFAP and tau. These animals also exhibited chronic functional neurological impairments with sustained astrogliosis and white matter thinning. Acute changes in molecular signatures correlated with behavioral impairments, whereas increased times to regaining consciousness and balance impairments were associated with higher GFAP and neuroinflammation. Overall, behavioral consequences of either single or repeated concussive impact injuries appeared to resolve more quickly than the underlying molecular, metabolic, and neuropathological abnormalities. This observation, which is supported by similar studies in other mTBI models, underscores the critical need to develop more objective prognostic measures for guiding return-to-play decisions.
Collapse
Affiliation(s)
- Andrea Mountney
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Angela M Boutté
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Casandra M Cartagena
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - William F Flerlage
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Wyane D Johnson
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Chanyang Rho
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Xi-Chu Lu
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Angela Yarnell
- 2 Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Sean Marcsisin
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Jason Sousa
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Chau Vuong
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Victor Zottig
- 3 Division of Experimental Therapeutics, Military Malaria Research, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Lai-Yee Leung
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Ying Deng-Bryant
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Janice Gilsdorf
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Frank C Tortella
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Deborah A Shear
- 1 Brain Trauma Neuroprotection and Neurorestoration Branch, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|
52
|
Distinguishing the Unique Neuropathological Profile of Blast Polytrauma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5175249. [PMID: 28424745 PMCID: PMC5382305 DOI: 10.1155/2017/5175249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury sustained after blast exposure (blast-induced TBI) has recently been documented as a growing issue for military personnel. Incidence of injury to organs such as the lungs has decreased, though current epidemiology still causes a great public health burden. In addition, unprotected civilians sustain primary blast lung injury (PBLI) at alarming rates. Often, mild-to-moderate cases of PBLI are survivable with medical intervention, which creates a growing population of survivors of blast-induced polytrauma (BPT) with symptoms from blast-induced mild TBI (mTBI). Currently, there is a lack of preclinical models simulating BPT, which is crucial to identifying unique injury mechanisms of BPT and its management. To meet this need, our group characterized a rodent model of BPT and compared results to a blast-induced mTBI model. Open field (OF) performance trials were performed on rodents at 7 days after injury. Immunohistochemistry was performed to evaluate cellular outcome at day seven following BPT. Levels of reactive astrocytes (GFAP), apoptosis (cleaved caspase-3 expression), and vascular damage (SMI-71) were significantly elevated in BPT compared to blast-induced mTBI. Downstream markers of hypoxia (HIF-1α and VEGF) were higher only after BPT. This study highlights the need for unique therapeutics and prehospital management when handling BPT.
Collapse
|
53
|
Thelin EP, Just D, Frostell A, Häggmark-Månberg A, Risling M, Svensson M, Nilsson P, Bellander BM. Protein profiling in serum after traumatic brain injury in rats reveals potential injury markers. Behav Brain Res 2016; 340:71-80. [PMID: 27591967 DOI: 10.1016/j.bbr.2016.08.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/29/2016] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The serum proteome following traumatic brain injury (TBI) could provide information for outcome prediction and injury monitoring. The aim with this affinity proteomic study was to identify serum proteins over time and between normoxic and hypoxic conditions in focal TBI. MATERIAL AND METHODS Sprague Dawley rats (n=73) received a 3mm deep controlled cortical impact ("severe injury"). Following injury, the rats inhaled either a normoxic (22% O2) or hypoxic (11% O2) air mixture for 30min before resuscitation. The rats were sacrificed at day 1, 3, 7, 14 and 28 after trauma. A total of 204 antibodies targeting 143 unique proteins of interest in TBI research, were selected. The sample proteome was analyzed in a suspension bead array set-up. Comparative statistics and factor analysis were used to detect differences as well as variance in the data. RESULTS We found that complement factor 9 (C9), complement factor B (CFB) and aldolase c (ALDOC) were detected at higher levels the first days after trauma. In contrast, hypoxia inducing factor (HIF)1α, amyloid precursor protein (APP) and WBSCR17 increased over the subsequent weeks. S100A9 levels were higher in hypoxic-compared to normoxic rats, together with a majority of the analyzed proteins, albeit few reached statistical significance. The principal component analysis revealed a variance in the data, highlighting clusters of proteins. CONCLUSIONS Protein profiling of serum following TBI using an antibody based microarray revealed temporal changes of several proteins over an extended period of up to four weeks. Further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - David Just
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden.
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Anna Häggmark-Månberg
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden.
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden.
| | - Bo-Michael Bellander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
54
|
Wright DK, Trezise J, Kamnaksh A, Bekdash R, Johnston LA, Ordidge R, Semple BD, Gardner AJ, Stanwell P, O'Brien TJ, Agoston DV, Shultz SR. Behavioral, blood, and magnetic resonance imaging biomarkers of experimental mild traumatic brain injury. Sci Rep 2016; 6:28713. [PMID: 27349514 PMCID: PMC4923906 DOI: 10.1038/srep28713] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Repeated mild traumatic brain injuries (mTBI) may lead to serious neurological consequences, especially if re-injury occurs within the period of increased cerebral vulnerability (ICV) triggered by the initial insult. MRI and blood proteomics might provide objective measures of pathophysiological changes in mTBI, and indicate when the brain is no longer in a state of ICV. This study assessed behavioral, MRI, and blood-based markers in a rat model of mTBI. Rats were given a sham or mild fluid percussion injury (mFPI), and behavioral testing, MRI, and blood collections were conducted up to 30 days post-injury. There were cognitive impairments for three days post-mFPI, before normalizing by day 5 post-injury. In contrast, advanced MRI (i.e., tractography) and blood proteomics (i.e., vascular endothelial growth factor) detected a number of abnormalities, some of which were still present 30 days post-mFPI. These findings suggest that MRI and blood proteomics are sensitive measures of the molecular and subtle structural changes following mTBI. Of particular significance, this study identified novel tractography measures that are able to detect mTBI and may be more sensitive than traditional diffusion-tensor measures. Furthermore, the blood and MRI findings may have important implications in understanding ICV and are translatable to the clinical setting.
Collapse
Affiliation(s)
- David K Wright
- Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Jack Trezise
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Alaa Kamnaksh
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Ramsey Bekdash
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Leigh A Johnston
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.,Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Roger Ordidge
- Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bridgette D Semple
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Andrew J Gardner
- Centre for Stroke and Brain Injury, School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Peter Stanwell
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Sandy R Shultz
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
55
|
Huang L, Deng M, He Y, Lu S, Ma R, Fang Y. β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating P-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain. Clin Exp Pharmacol Physiol 2016; 43:634-43. [PMID: 26991136 DOI: 10.1111/1440-1681.12570] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Liping Huang
- Hainan Medical University; Haikou China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Minzhen Deng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Yuping He
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Shiyao Lu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Ruanxin Ma
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| | - Yongqi Fang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine; Guangzhou China
| |
Collapse
|
56
|
Ellis MJ, Ryner LN, Sobczyk O, Fierstra J, Mikulis DJ, Fisher JA, Duffin J, Mutch WAC. Neuroimaging Assessment of Cerebrovascular Reactivity in Concussion: Current Concepts, Methodological Considerations, and Review of the Literature. Front Neurol 2016; 7:61. [PMID: 27199885 PMCID: PMC4850165 DOI: 10.3389/fneur.2016.00061] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/07/2023] Open
Abstract
Concussion is a form of traumatic brain injury (TBI) that presents with a wide spectrum of subjective symptoms and few objective clinical findings. Emerging research suggests that one of the processes that may contribute to concussion pathophysiology is dysregulation of cerebral blood flow (CBF) leading to a mismatch between CBF delivery and the metabolic needs of the injured brain. Cerebrovascular reactivity (CVR) is defined as the change in CBF in response to a measured vasoactive stimulus. Several magnetic resonance imaging (MRI) techniques can be used as a surrogate measure of CBF in clinical and laboratory studies. In order to provide an accurate assessment of CVR, these sequences must be combined with a reliable, reproducible vasoactive stimulus that can manipulate CBF. Although CVR imaging currently plays a crucial role in the diagnosis and management of many cerebrovascular diseases, only recently have studies begun to apply this assessment tool in patients with concussion. In order to evaluate the quality, reliability, and relevance of CVR studies in concussion, it is important that clinicians and researchers have a strong foundational understanding of the role of CBF regulation in health, concussion, and more severe forms of TBI, and an awareness of the advantages and limitations of currently available CVR measurement techniques. Accordingly, in this review, we (1) discuss the role of CVR in TBI and concussion, (2) examine methodological considerations for MRI-based measurement of CVR, and (3) provide an overview of published CVR studies in concussion patients.
Collapse
Affiliation(s)
- Michael J Ellis
- Department of Surgery, University of Manitoba, Winnipeg, MB, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada; Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada; Pan Am Concussion Program, University of Manitoba, Winnipeg, MB, Canada; Childrens Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada; Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada; University of Manitoba, Winnipeg, MB, Canada
| | - Lawrence N Ryner
- Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada; Department of Radiology, University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Olivia Sobczyk
- Institute of Medical Sciences, University of Toronto , Toronto, ON , Canada
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich , Zurich , Switzerland
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada; University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada
| | - Joseph A Fisher
- University of Toronto, Toronto, ON, Canada; University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada; Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - James Duffin
- University of Toronto, Toronto, ON, Canada; University Health Network Cerebrovascular Reactivity Research Group, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - W Alan C Mutch
- Canada North Concussion Network, University of Manitoba, Winnipeg, MB, Canada; University of Manitoba, Winnipeg, MB, Canada; Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada; Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
57
|
Jin H, Li W, Dong C, Ma L, Wu J, Zhao W. Effects of Different Doses of Levetiracetam on Aquaporin 4 Expression in Rats with Brain Edema Following Fluid Percussion Injury. Med Sci Monit 2016; 22:678-86. [PMID: 26927633 PMCID: PMC4774575 DOI: 10.12659/msm.897201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background This study was designed to investigate the effects of different doses of levetiracetam on aquaporin 4 (AQP4) expression in rats after fluid percussion injury. Material/Methods Sprague-Dawley rats were randomly divided into 4 groups: sham operation group, traumatic brain injury group, low-dose levetiracetam group, and high-dose levetiracetam group. Brain edema models were established by fluid percussion injury, and intervened by the administration of levetiracetam. Samples from the 4 groups were collected at 2, 6, 12, and 24 h, and at 3 and 7 days after injury. Histological observation was performed using hematoxylin-eosin staining and immunohistochemical staining. AQP4 and AQP4 mRNA expression was detected using Western blot assay and RT-PCR. Brain water content was measured by the dry-wet method. Results Compared with the traumatic brain injury group, brain water content, AQP4 expression, and AQP4 mRNA expression were lower in the levetiracetam groups at each time point and the differences were statistically significant (P<0.05). The intervention effects of high-dose levetiracetam were more apparent. Conclusions Levetiracetam can lessen brain edema from fluid percussion injury by down-regulating AQP4 and AQP4 mRNA expression. There is a dose-effect relationship in the preventive effect of levetiracetam within a certain extent.
Collapse
Affiliation(s)
- Hongbo Jin
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Wenling Li
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Changzheng Dong
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Li Ma
- Department of Neurosurgery, Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, China (mainland)
| | - Jiang Wu
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Wenqing Zhao
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|