51
|
Physiology, clinical evidence and diagnostic relevance of sound-induced and vibration-induced vestibular stimulation. Curr Opin Neurol 2020; 33:126-135. [DOI: 10.1097/wco.0000000000000770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Yang X, Sun P, Wu JP, Jiang W, Vai MI, Pun SH, Peng C, Chen F. Nondestructive and objective assessment of the vestibular function in rodent models: A review. Neurosci Lett 2020; 717:134608. [PMID: 31743751 DOI: 10.1016/j.neulet.2019.134608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
The normal function of the vestibular system is crucial for the sense of balance. The techniques used to assess the vestibular function plays a vital role in the research of the vestibular system. In this article, we have systematically reviewed some popular methods employing vestibular reflexes and vestibular evoked potentials for assessing the vestibular function in rodent models. These vestibular reflexes and vestibular evoked potentials to effective stimuli have been used as nondestructive and objective functional measures. The main types of vestibular reflexes include the vestibulo-ocular reflex (VOR), vestibulocollic reflex (VCR), and vestibulo-sympathetic reflex (VSR). They are all capable of indicating the functions of the semicircular canals and otoliths. However, the VOR assessment is much more prevalently used because of the relatively stereotypical inputoutput relationship and simple motion pattern of the ocular response. In contrast, the complicated motion pattern and small gain of the VCR response, as well as the undesired component possibly contributed from the acceleration receptors outside the labyrinths in the VSR response, restrict the widespread applications of VCR and VSR in the assessment of the vestibular system. The vestibular evoked myogenic potentials (VEMPs) and vestibular sensory evoked potentials (VsEPs) are the two typical evoked potentials that have been also employed for evaluating the vestibular function. Through exploiting different types of the VEMPs, the saccular and utricular functions can be evaluated separately. The sound-induced VEMPs, moreover, are capable of noninvasively assessing the unilateral vestibular function. The VsEPs, via the morphology of their signal waveforms, enable the access to the location-specific information that indicates the functional statuses of different components within the vestibular neural pathway.
Collapse
Affiliation(s)
- Xiaojie Yang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Peng Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China
| | - Jian-Ping Wu
- Academy of Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weitao Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China.
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau, China.
| | - Cheng Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
53
|
Differences Between Physical vs. Virtual Evoked Vestibular Responses. Ann Biomed Eng 2020; 48:1241-1255. [PMID: 31916127 DOI: 10.1007/s10439-019-02446-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
Electrovestibulography (EVestG), a technology purported to measure vestibular activity at the vestibular periphery, was used to compare the vestibular responses to two sensory inputs: (1) back-forward physical tilt (with eyes-open and eyes-closed) and (2) virtual reality replica of the back-forward tilt (eyes-open, physically static). Twenty-seven healthy participants (10 females) were tested. From each of the EVestG recordings, two feature curves: (1) average field potential (FP), and (2) distribution of time intervals between the detected FPs were extracted. For the eyes-closed physical tilt, except for the background segment, the FP response curve was generally wider compared to that evoked during the virtual replica tilt (p < 0.05). Moreover, the eyes-closed physical tilt produced longer time intervals between FP's compared to the virtual stimulus. For this measure, for the background segment, the eyes closed and open physical tilt responses were significantly different (p < 0.05) in both ears (repeated measure experimental design). The results support: (1) both vestibular and visual inputs evoking a measurably different EVestG response, (2) the differences between physical and virtual vestibular responses are dependent on the eyes being either open or closed, and (3) for the stimuli used, the modulation of vestibular afferent activity was measurably smaller for virtual than physical stimulation.
Collapse
|
54
|
Ramos Macias A, Ramos de Miguel A, Rodriguez Montesdeoca I, Borkoski Barreiro S, Falcón González JC. Chronic Electrical Stimulation of the Otolith Organ: Preliminary Results in Humans with Bilateral Vestibulopathy and Sensorineural Hearing Loss. Audiol Neurootol 2019; 25:79-90. [PMID: 31801137 DOI: 10.1159/000503600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Bilateral vestibulopathy is an important cause of imbalance that is misdiagnosed. The clinical management of patients with bilateral vestibular loss remains difficult as there is no clear evidence for an effective treatment. In this paper, we try to analyze the effect of chronic electrical stimulation and adaptation to electrical stimulation of the vestibular system in humans when stimulating the otolith organ with a constant pulse train to mitigate imbalance due to bilateral vestibular dysfunction (BVD). METHODS We included 2 patients in our study with BVD according to Criteria Consensus of the Classification Committee of the Bárány Society. Both cases were implanted by using a full-band straight electrode to stimulate the otoliths organs and simultaneously for the cochlear stimulation we use a perimodiolar electrode. RESULTS In both cases Vestibular and clinical test (video head impulse test, videonistagmography cervical vestibular evoked myogenic potentials, cVEMP and oVEMP), subjective visual vertical test, computerized dynamic posturography, dynamic gait index, Time UP and Go test and dizziness handicap index) were performed. Posture and gait metrics reveal important improvement if compare with preoperartive situation. Oscillopsia, unsteadiness, independence and quality of life improved to almost normal situation. DISCUSSION/CONCLUSION Prosthetic implantation of the otolith organ in humans is technically feasible. Electrical stimulation might have potential effects on balance and this is stable after 1 year follow-up. This research provides new possibilities for the development of vestibular implants to improve gravito-inertial acceleration sensation, in this case by the otoliths stimulation.
Collapse
Affiliation(s)
- Angel Ramos Macias
- Department of Otolaryngology, Faculty of Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain,
| | - Angel Ramos de Miguel
- Hearing and Balance Laboratory, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Isaura Rodriguez Montesdeoca
- Department of Otolaryngology, and Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Silvia Borkoski Barreiro
- Department of Otolaryngology, and Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| | - Juan Carlos Falcón González
- Department of Otolaryngology, and Head and Neck Surgery, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria, Las Palmas, Spain
| |
Collapse
|
55
|
Colebatch JG, Rosengren SM. Investigating short latency subcortical vestibular projections in humans: what have we learned? J Neurophysiol 2019; 122:2000-2015. [PMID: 31596627 DOI: 10.1152/jn.00157.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Vestibular evoked myogenic potentials (VEMPs) are now widely used for the noninvasive assessment of vestibular function and diagnosis in humans. This review focuses on the origin, properties, and mechanisms of cervical VEMPs and ocular VEMPs; how these reflexes relate to reports of vestibular projections to brain stem and cervical targets; and the physiological role of (otolithic) cervical and ocular reflexes. The evidence suggests that both VEMPs are likely to represent the effects of excitation of irregularly firing otolith afferents. While the air-conducted cervical VEMP appears to mainly arise from excitation of saccular receptors, the ocular VEMP evoked by bone-conducted stimulation, including impulsive bone-conducted stimuli, mainly arises from utricular afferents. The surface responses are generated by brief changes in motor unit firing. The effects that have been demonstrated are likely to represent otolith-dependent vestibulocollic and vestibulo-ocular reflexes, both linear and torsional. These observations add to previous reports of short latency otolith projections to the target muscles in the neck (sternocleidomastoid and splenius) and extraocular muscles (the inferior oblique). New insights have been provided by the investigation and application of these techniques.
Collapse
Affiliation(s)
- James G Colebatch
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,Neuroscience Research Australia, University of New South Wales, Sydney, New South Wales, Australia
| | - Sally M Rosengren
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
56
|
Dlugaiczyk J. [Evidence-based diagnostic use of VEMPs : From neurophysiological principles to clinical application. German version]. HNO 2019; 68:324-335. [PMID: 31578599 DOI: 10.1007/s00106-019-00757-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Vestibular evoked myogenic potentials (VEMPs) are increasingly being used for testing otolith organ function. OBJECTIVE This article provides an overview of the anatomical, biomechanical and neurophysiological principles of an evidence-based clinical application of ocular and cervical VEMPs (oVEMPs and cVEMPs). MATERIAL AND METHODS Systematic literature search in PubMed until April 2019. RESULTS Sound and vibration at a frequency of 500 Hz represent selective vestibular stimuli for the otolith organs. The predominant specificity of oVEMPs for contralateral utricular function and of cVEMPs for ipsilateral saccular function is defined by the different neuronal projections of the utricle and the saccule. VEMPs are particularly useful in the diagnosis of superior canal dehiscence and otolith organ-specific vestibular dysfunction and as an alternative diagnostic approach in situations when video oculography is not possible or useful. CONCLUSION The use of VEMPs is a simple, safe, reliable and selective test of dynamic function of otolith organs.
Collapse
Affiliation(s)
- J Dlugaiczyk
- Deutsches Schwindel- und Gleichgewichtszentrum (DSGZ), Klinikum der Universität München, LMU München, Marchioninistr. 15, 81377, München, Deutschland. .,Neurologische Klinik und Poliklinik, Klinikum der Universität München, LMU München, München, Deutschland.
| |
Collapse
|
57
|
Curthoys IS. Concepts and Physiological Aspects of the Otolith Organ in Relation to Electrical Stimulation. Audiol Neurootol 2019; 25:25-34. [PMID: 31553977 DOI: 10.1159/000502712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This paper discusses some of the concepts and major physiological issues in developing a means of electrically stimulating the otolithic system, with the final goal being the electrical stimulation of the otoliths in human patients. It contrasts the challenges of electrical stimulation of the otolith organs as compared to stimulation of the semicircular canals. Electrical stimulation may consist of trains of short-duration pulses (e.g., 0.1 ms duration at 400 Hz) by selective electrodes on otolith maculae or otolithic afferents, or unselective maintained DC stimulation by large surface electrodes on the mastoids - surface galvanic stimulation. SUMMARY Recent anatomical and physiological results are summarized in order to introduce some of the unique issues in electrical stimulation of the otoliths. The first challenge is that each otolithic macula contains receptors with opposite polarization (opposing preferred directions of stimulation), unlike the uniform polarization of receptors in each semicircular canal crista. The puzzle is that in response to the one linear acceleration in the one macula, some otolithic afferents have an increased activation whereas others have decreased activation. Key Messages: At the vestibular nucleus this opposite receptor hair cell polarization and consequent opposite afferent input allow enhanced response to the one linear acceleration, via a "push-pull" neural mechanism in a manner analogous to the enhancement of semicircular canal responses to angular acceleration. Within each otolithic macula there is not just one uniform otolithic neural input to the brain - there are very distinctly different channels of otolithic neural inputs transferring the neural data to the brainstem. As a simplification these channels are characterized as the sustained and transient systems. Afferents in each system have different responses to stimulus onset and maintained stimulation and likely different projections, and most importantly different thresholds for activation by electrical stimulation and different adaptation rates to maintained stimulation. The implications of these differences are considered.
Collapse
Affiliation(s)
- Ian S Curthoys
- Vestibular Research Laboratory, School of Psychology, University of Sydney, Sydney, New South Wales, Australia,
| |
Collapse
|
58
|
Fornos AP, van de Berg R, Armand S, Cavuscens S, Ranieri M, Crétallaz C, Kingma H, Guyot JP, Guinand N. Cervical myogenic potentials and controlled postural responses elicited by a prototype vestibular implant. J Neurol 2019; 266:33-41. [PMID: 31396689 PMCID: PMC6722147 DOI: 10.1007/s00415-019-09491-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 02/04/2023]
Abstract
Gaze stabilization and postural control are two key functions of the vestibular system. In consequence, oscillopsia and chronic imbalance are the two main complaints of patients presenting with a severe bilateral vestibular function loss. The vestibular implant is emerging as a promising treatment for this group of patients whose quality of life is significantly impaired. Although the final aim of the vestibular implant should be to restore vestibular function as a whole, until now the research has focused mainly on the restoration of the vestibulo-ocular reflex to improve gaze stabilization. In this study, we aimed to explore whether the vestibulo-collic and vestibulo-spinal pathways could be activated and controlled with the electrical stimuli provided by our vestibular implant prototype. This was first explored and demonstrated with recordings of electrically elicited cervical vestibular evoked myogenic potentials (ecVEMPs). ecVEMPs with characteristics similar to the classical acoustically elicited cervical vestibular evoked myogenic potentials (cVEMPs) were successfully evoked in five out of the eight tested patients. Amplitudes of the electrically elicited N–P complex varied, ranging from 44 to 120 µV. Mean latencies of the N and P waves were of 9.71(± 1.17) ms and 17.24 ms (± 1.74), respectively. We also evaluated the possibility of generating controlled postural responses using a stepping test. Here, we showed that controlled and consistent whole-body postural responses can be effectively obtained with rapid changes in the “baseline” (constant rate and amplitude) electrical activity delivered by the vestibular implant in two out of the three tested subjects. Furthermore, obtained amplitude of body rotations was significantly correlated with the intensity of stimulation and direction of body rotations correlated with the side of the delivered stimulus (implanted side). Altogether, these data suggest that the vestibular implant could also be used to improve postural control in patients with bilateral vestibulopathy.
Collapse
Affiliation(s)
- Angelica Perez Fornos
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Raymond van de Berg
- Division of Balance Disorders, Department of ENT, Maastricht University Medical Centre, Maastricht, The Netherlands
- Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Stéphane Armand
- Willy Taillard Laboratory of Kinesiology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Samuel Cavuscens
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Maurizio Ranieri
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Céline Crétallaz
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Herman Kingma
- Division of Balance Disorders, Department of ENT, Maastricht University Medical Centre, Maastricht, The Netherlands
- Faculty of Physics, Tomsk State University, Tomsk, Russia
| | - Jean-Philippe Guyot
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Nils Guinand
- Division of Otorhinolaryngology Head and Neck Surgery, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland.
| |
Collapse
|
59
|
Martins-Lopes V, Bellmunt A, Greguske EA, Maroto AF, Boadas-Vaello P, Llorens J. Quantitative Assessment of Anti-Gravity Reflexes to Evaluate Vestibular Dysfunction in Rats. J Assoc Res Otolaryngol 2019; 20:553-563. [PMID: 31297642 DOI: 10.1007/s10162-019-00730-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
The tail-lift reflex and the air-righting reflex are anti-gravity reflexes in rats that depend on vestibular function. To obtain objective and quantitative measures of performance, we recorded these reflexes with slow-motion video in two experiments. In the first experiment, vestibular dysfunction was elicited by acute exposure to 0 (control), 400, 600, or 1000 mg/kg of 3,3'-iminodipropionitrile (IDPN), which causes dose-dependent hair cell degeneration. In the second, rats were exposed to sub-chronic IDPN in the drinking water for 0 (control), 4, or 8 weeks; this causes reversible or irreversible loss of vestibular function depending on exposure time. In the tail-lift test, we obtained the minimum angle defined during the lift and descent maneuver by the nose, the back of the neck, and the base of the tail. In the air-righting test, we obtained the time to right the head. We also obtained vestibular dysfunction ratings (VDRs) using a previously validated behavioral test battery. Each measure, VDR, tail-lift angle, and air-righting time demonstrated dose-dependent loss of vestibular function after acute IDPN and time-dependent loss of vestibular function after sub-chronic IDPN. All measures showed high correlations between each other, and maximal correlation coefficients were found between VDRs and tail-lift angles. In scanning electron microscopy evaluation of the vestibular sensory epithelia, the utricle and the saccule showed diverse pathological outcomes, suggesting that they have a different role in these reflexes. We conclude that these anti-gravity reflexes provide useful objective and quantitative measures of vestibular function in rats that are open to further development.
Collapse
Affiliation(s)
- Vanessa Martins-Lopes
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Catalunya, Spain
| | - Anna Bellmunt
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Catalunya, Spain
| | - Erin A Greguske
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Catalunya, Spain.,Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Catalunya, Spain
| | - Alberto F Maroto
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Catalunya, Spain.,Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Catalunya, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Departament de Ciències Mèdiques, Facultat de Medicina, Universitat de Girona, 17003, Girona, Catalunya, Spain
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Institut de Neurociènces, Universitat de Barcelona, Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Catalunya, Spain. .,Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, 08907, L'Hospitalet de Llobregat, Catalunya, Spain.
| |
Collapse
|
60
|
Curthoys IS, Grant JW, Pastras CJ, Brown DJ, Burgess AM, Brichta AM, Lim R. A review of mechanical and synaptic processes in otolith transduction of sound and vibration for clinical VEMP testing. J Neurophysiol 2019; 122:259-276. [DOI: 10.1152/jn.00031.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Older studies of mammalian otolith physiology have focused mainly on sustained responses to low-frequency (<50 Hz) or maintained linear acceleration. So the otoliths have been regarded as accelerometers. Thus evidence of otolithic activation and high-precision phase locking to high-frequency sound and vibration appears to be very unusual. However, those results are exactly in accord with a substantial body of knowledge of otolith function in fish and frogs. It is likely that phase locking of otolith afferents to vibration is a general property of all vertebrates. This review examines the literature about the activation and phase locking of single otolithic neurons to air-conducted sound and bone-conducted vibration, in particular the high precision of phase locking shown by mammalian irregular afferents that synapse on striolar type I hair cells by calyx endings. Potassium in the synaptic cleft between the type I hair cell receptor and the calyx afferent ending may be responsible for the tight phase locking of these afferents even at very high discharge rates. Since frogs and fish do not possess full calyx endings, it is unlikely that they show phase locking with such high precision and to such high frequencies as has been found in mammals. The high-frequency responses have been modeled as the otoliths operating in a seismometer mode rather than an accelerometer mode. These high-frequency otolithic responses constitute the neural basis for clinical vestibular-evoked myogenic potential tests of otolith function.
Collapse
Affiliation(s)
- Ian S. Curthoys
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - J. Wally Grant
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia
| | - Christopher J. Pastras
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Daniel J. Brown
- The Meniere’s Laboratory, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ann M. Burgess
- Vestibular Research Laboratory, School of Psychology, the University of Sydney, New South Wales, Australia
| | - Alan M. Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute. Newcastle, New South Wales, Australia
| |
Collapse
|
61
|
Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol 2019; 121:2237-2255. [DOI: 10.1152/jn.00035.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galvanic vestibular stimulation (GVS) plays an important role in the quest to understand sensory signal processing in the vestibular system under normal and pathological conditions. It has become a highly relevant tool to probe neuronal computations and to assist in the differentiation and treatment of vestibular syndromes. Following its accidental discovery, GVS became a diagnostic tool that generates eye movements in the absence of head/body motion. With the possibility to record extracellular and intracellular spikes, GVS became an indispensable method to activate or block the discharge in vestibular nerve fibers by cathodal and anodal currents, respectively. Bernie Cohen, in his attempt to decipher vestibular signal processing, has used this method in a number of hallmark studies that have added to our present knowledge, such as the link between selective electrical stimulation of semicircular canal nerves and the generation of directionally corresponding eye movements. His achievements paved the way for other major milestones including the differential recruitment order of vestibular fibers for cathodal and anodal currents, pronounced discharge adaptation of irregularly firing afferents, potential activation of hair cells, and fiber type-specific activation of central circuits. Previous disputes about the structural substrate for GVS are resolved by integrating knowledge of ion channel-related response dynamics of afferents, fiber type-specific innervation patterns, and central convergence and integration of semicircular canal and otolith signals. On the basis of solid knowledge of the methodology, specific waveforms of GVS are currently used in clinical diagnosis and patient treatment, such as vestibular implants and noisy galvanic stimulation.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Hans Straka
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg, Germany
| |
Collapse
|
62
|
Utricular function in vestibular neuritis: a pilot study of concordance/discordance between ocular vestibular evoked myogenic potentials and ocular cycloposition. Exp Brain Res 2019; 237:1531-1538. [DOI: 10.1007/s00221-019-05529-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/22/2019] [Indexed: 12/20/2022]
|
63
|
Curthoys I, Burgess AM, Goonetilleke SC. Phase-locking of irregular guinea pig primary vestibular afferents to high frequency (>250 Hz) sound and vibration. Hear Res 2019; 373:59-70. [DOI: 10.1016/j.heares.2018.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022]
|
64
|
Impact of extremely low-frequency magnetic fields on human postural control. Exp Brain Res 2018; 237:611-623. [DOI: 10.1007/s00221-018-5442-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023]
|