51
|
Zarucchi A, Vismara L, Frazzitta G, Mauro A, Priano L, Maestri R, Bergna A, Tarantino AG. Efficacy of Osteopathic Manipulative Treatment on postural control in Parkinsonian patients with Pisa syndrome: A pilot randomized placebo-controlled trial. NeuroRehabilitation 2020; 46:529-537. [PMID: 32538880 DOI: 10.3233/nre-203068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Pisa syndrome (PS) is a clinical condition frequently associated with Parkinson's disease (PD). It is characterized by a trunk lateral flexion higher than 10 degrees and reversible when lying. One pathophysiological hypothesis is the altered verticality perception, due to a somatosensory impairment. Osteopathic Manipulative Treatment (OMT) manages fascial-system alterations, linked to somatic dysfunctions. Fascial system showed to be implicated in proprioceptive sensibility. OBJECTIVE The aim of the study was to assess OMT efficacy on postural control in PD-PS patients by stabilometry. METHODS In this single-blinded trial we studied 24 PD-PS patients, 12 of whom were randomly assigned to receive a multidisciplinary physical therapy protocol (MIRT) and sham OMT, while the other 12 received four OMT plus MIRT, for one month. The primary endpoint was the eye closed sway area assessment after the intervention. Evaluation of trunk lateral flexion (TLF) with DIERS formetrics was also performed. RESULTS At one month, the sway area of the OMT group significantly decreased compared to placebo (mean delta OMT - 326.00±491.24 mm2, p = 0.01). In the experimental group TLF showed a mean inclination reduction of 3.33 degrees after treatment (p = 0.044, mean d = 0.54). Moreover, a significant positive association between delta ECSA and delta TLF was observed (p = 0.04, r = 0.46). DISCUSSION Among PD-PS patients, MIRT plus OMT showed preliminary evidence of postural control and TLF improvement, compared to the control group.
Collapse
Affiliation(s)
- A Zarucchi
- Department of Brain Injury and Parkinson's Disease Rehabilitation, Ospedale "Moriggia-Pelascini", Gravedona ed Uniti (Como), Italy.,Department of Clinical Research, SOMA Istituto Osteopatia Milano, Italy
| | - L Vismara
- "Rita Levi Montalcini" Department of Neurosciences, University of Turin, Turin, Italy.,Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano Piancavallo-Verbania, Italy.,MANIMA, Not-for-Profit Healthcare and Assistance, Milan, Italy
| | - G Frazzitta
- Department of Brain Injury and Parkinson's Disease Rehabilitation, Ospedale "Moriggia-Pelascini", Gravedona ed Uniti (Como), Italy
| | - A Mauro
- "Rita Levi Montalcini" Department of Neurosciences, University of Turin, Turin, Italy.,Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano Piancavallo-Verbania, Italy
| | - L Priano
- "Rita Levi Montalcini" Department of Neurosciences, University of Turin, Turin, Italy.,Division of Neurology and Neurorehabilitation, IRCCS Istituto Auxologico Italiano Piancavallo-Verbania, Italy
| | - R Maestri
- Department of Biomedical Engineering, Istituti Clinici Scientifici Maugeri Spa Società Benefit, IRCCS, Montescano, Italy
| | - A Bergna
- Department of Clinical Research, SOMA Istituto Osteopatia Milano, Italy
| | - A G Tarantino
- Department of Clinical Research, SOMA Istituto Osteopatia Milano, Italy.,MANIMA, Not-for-Profit Healthcare and Assistance, Milan, Italy
| |
Collapse
|
52
|
The Effect of Virtual Reality on the Ability to Perform Activities of Daily Living, Balance During Gait, and Motor Function in Parkinson Disease Patients: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil 2020; 99:917-924. [PMID: 32304383 DOI: 10.1097/phm.0000000000001447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The study aimed to evaluate the effect of virtual reality on balance, motor function, gait, and the ability to perform activities of daily living in patients with Parkinson disease. METHODS We searched Cochran Central Register of Controlled Trials, Embase, PubMed, Wanfang Data, VIP Database, and China National Knowledge Infrastructure from their inception to June 2019. Two authors independently screened articles for inclusion, extracted data, and evaluated quality. RESULTS Twelve randomized clinical trials involving 360 patients were included. It demonstrated that virtual reality can improve balance, measured by the Berg Balance Scale (fixed model weighted mean difference = 2.28, 95% CI = 1.39 to 3.16, P < 0.00001); strengthen motor function, assessed by the Timed Up and Go test (fixed model weighted mean difference = -1.66, 95% CI = -2.74 to 0.58, P = 0.003); enhance gait ability, assessed by the 10-Meter Walk Test Time (fixed model weighted mean difference = 0.13, 95% CI = 0.02 to 0.24, P = 0.02) in patients with Parkinson disease. It also showed that virtual reality can improve individuals' ability to perform activities of daily living, assessed by modified Barthel Index (fixed model weighted mean difference = 2.93, 95% CI = 0.8 to 5.06, P = 0.007). CONCLUSIONS The findings suggest that virtual reality rehabilitation may be valuable in improving the balance, motor function, gait, and ability to perform activities of daily living in patients with Parkinson disease.
Collapse
|
53
|
Thanalakshmi J, Archana R, Senthilkumar S, Shakila R, Pazhanivel N, Subhashini S. Role of caloric vestibular stimulation in improvement of motor symptoms and inhibition of neuronal degeneration in rotenone model of Parkinson's disease - An experimental study. Physiol Int 2020; 107:390-405. [PMID: 33021954 DOI: 10.1556/2060.2020.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022]
Abstract
Objective Parkinson's disease (PD) is a progressive neurodegenerative disorder. In order to explore a noninvasive treatment of PD, in the current study the authors evaluated the neuroprotective efficacy of caloric vestibular stimulation (CVS) using the rotenone-induced rat model of PD. The rotenone models of PD are gaining attention due to high reproducibility. It is also considered to be an improved model to exhibit the pathogenesis of PD and test the neuroprotective effect of various therapeutic interventions. Materials and methods Rotenone was i.p. injected (3 mg/kg body weight) to male Wistar albino rats for 21 days to induce PD. As PD is chronic and progressive in nature, the efficacy of chronic CVS intervention was evaluated for 30 days after inducing PD in rats. Motor symptoms were evaluated by assessing locomotor activity in actophotometer, whereas movement analysis was done using Ludolph test and motor coordination was evaluated using rotarod apparatus. The neurochemical and neuropathological changes were also observed in the corpus striatum of rats. Results Rotenone administration showed decreased locomotor activity, motor coordination and general movement associated with significant (P < 0.05) reduction in dopamine content in the corpus striatum. The immunohistochemical analysis revealed a marked decrease in tyrosine hydroxylase (TH) immunoreactivity in striatal neurons indicating the significant loss of dopaminergic neurons in substantia nigra (SN) following rotenone injection. However, chronic treatment with CVS restored the nerve terminals in the striatum from rotenone damage. CVS treatment improved the dopaminergic system function by restoring dopamine content in the striatum. CVS also improved the motor deformities clearly suggesting the neuroprotective function. Conclusion The results of the present study suggested CVS to be a safe and simple neuroprotective measure against neurodegenerative changes in PD and a promising noninvasive technique to overcome the motor symptoms associated with it. The findings could be useful for further investigations and clinical applications of CVS in the treatment of PD.
Collapse
Affiliation(s)
- J Thanalakshmi
- 1Department of Physiology, Saveetha Medical College Hospital, Saveetha Nagar, Thandalam,Chennai 602105, Tamil Nadu, India
| | - R Archana
- 1Department of Physiology, Saveetha Medical College Hospital, Saveetha Nagar, Thandalam,Chennai 602105, Tamil Nadu, India
| | - S Senthilkumar
- 2Department of Research and Development, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - R Shakila
- 3Department of Chemistry, Siddha Central Research Institute, Arumbakkam,Chennai, India
| | - N Pazhanivel
- 4Department of Veterinary Pathology, Madras Veterinary College, Chennai 602105, India
| | - S Subhashini
- 3Department of Chemistry, Siddha Central Research Institute, Arumbakkam,Chennai, India
| |
Collapse
|
54
|
Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat Rev Neurol 2020; 16:409-425. [DOI: 10.1038/s41582-020-0370-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
|
55
|
Rastoldo G, Marouane E, El Mahmoudi N, Péricat D, Bourdet A, Timon-David E, Dumas O, Chabbert C, Tighilet B. Quantitative Evaluation of a New Posturo-Locomotor Phenotype in a Rodent Model of Acute Unilateral Vestibulopathy. Front Neurol 2020; 11:505. [PMID: 32582016 PMCID: PMC7291375 DOI: 10.3389/fneur.2020.00505] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
Vestibular pathologies are difficult to diagnose. Existing devices make it possible to quantify and follow the evolution of posturo-locomotor symptoms following vestibular loss in static conditions. However, today, there are no diagnostic tools allowing the quantitative and spontaneous analysis of these symptoms in dynamic situations. With this in mind, we used an open-field video tracking test aiming at identifying specific posturo-locomotor markers in a rodent model of vestibular pathology. Using Ethovision XT 14 software (Noldus), we identified and quantified several behavioral parameters typical of unilateral vestibular lesions in a rat model of vestibular pathology. The unilateral vestibular neurectomy (UVN) rat model reproduces the symptoms of acute unilateral peripheral vestibulopathy in humans. Our data show deficits in locomotion velocity, distance traveled and animal mobility in the first day after the injury. We also highlighted alterations in several parameters, such as head and body acceleration, locomotor pattern, and position of the body, as well as “circling” behavior after vestibular loss. Here, we provide an enriched posturo-locomotor phenotype specific to full and irreversible unilateral vestibular loss. This test helps to strengthen the quantitative evaluation of vestibular disorders in unilateral vestibular lesion rat model. It may also be useful for testing pharmacological compounds promoting the restoration of balance. Transfer of these novel evaluation parameters to human pathology may improve the diagnosis of acute unilateral vestibulopathies and could better follow the evolution of the symptoms upon pharmacological and physical rehabilitation.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Emna Marouane
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Nada El Mahmoudi
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - David Péricat
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Audrey Bourdet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Elise Timon-David
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Olivier Dumas
- Société Française de Kinésithérapie Vestibulaire, Lyon, France
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Sensorielles et Cognitives, LNSC UMR 7260, Equipe Physiopathologie et Thérapie des Désordres Vestibulaires, Groupe de Recherche Vertige (GDR#2074), Marseille, France
| |
Collapse
|
56
|
Yakubovich S, Israeli-Korn S, Halperin O, Yahalom G, Hassin-Baer S, Zaidel A. Visual self-motion cues are impaired yet overweighted during visual-vestibular integration in Parkinson's disease. Brain Commun 2020; 2:fcaa035. [PMID: 32954293 PMCID: PMC7425426 DOI: 10.1093/braincomms/fcaa035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease is prototypically a movement disorder. Although perceptual and motor functions are highly interdependent, much less is known about perceptual deficits in Parkinson's disease, which are less observable by nature, and might go unnoticed if not tested directly. It is therefore imperative to seek and identify these, to fully understand the challenges facing patients with Parkinson's disease. Also, perceptual deficits may be related to motor symptoms. Posture, gait and balance, affected in Parkinson's disease, rely on veridical perception of one's own motion (self-motion) in space. Yet it is not known whether self-motion perception is impaired in Parkinson's disease. Using a well-established multisensory paradigm of heading discrimination (that has not been previously applied to Parkinson's disease), we tested unisensory visual and vestibular self-motion perception, as well as multisensory integration of visual and vestibular cues, in 19 Parkinson's disease, 23 healthy age-matched and 20 healthy young-adult participants. After experiencing vestibular (on a motion platform), visual (optic flow) or multisensory (combined visual-vestibular) self-motion stimuli at various headings, participants reported whether their perceived heading was to the right or left of straight ahead. Parkinson's disease participants and age-matched controls were tested twice (Parkinson's disease participants on and off medication). Parkinson's disease participants demonstrated significantly impaired visual self-motion perception compared with age-matched controls on both visits, irrespective of medication status. Young controls performed slightly (but not significantly) better than age-matched controls and significantly better than the Parkinson's disease group. The visual self-motion perception impairment in Parkinson's disease correlated significantly with clinical disease severity. By contrast, vestibular performance was unimpaired in Parkinson's disease. Remarkably, despite impaired visual self-motion perception, Parkinson's disease participants significantly overweighted the visual cues during multisensory (visual-vestibular ) integration (compared with Bayesian predictions of optimal integration) and significantly more than controls. These findings indicate that self-motion perception in Parkinson's disease is affected by impaired visual cues and by suboptimal visual-vestibular integration (overweighting of visual cues). Notably, vestibular self-motion perception was unimpaired. Thus, visual self-motion perception is specifically impaired in early-stage Parkinson's disease. This can impact Parkinson's disease diagnosis and subtyping. Overweighting of visual cues could reflect a general multisensory integration deficit in Parkinson's disease, or specific overestimation of visual cue reliability. Finally, impaired self-motion perception in Parkinson's disease may contribute to impaired balance and gait control. Future investigation into this connection might open up new avenues of alternative therapies to better treat these difficult symptoms.
Collapse
Affiliation(s)
- Sol Yakubovich
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Simon Israeli-Korn
- Department of Neurology, Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan 5266202, Israel
- The Neurology and Neurosurgery Department, The Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Orly Halperin
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Gilad Yahalom
- Department of Neurology, Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan 5266202, Israel
- Department of Neurology, Movement Disorders Clinic, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Sharon Hassin-Baer
- Department of Neurology, Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan 5266202, Israel
- The Neurology and Neurosurgery Department, The Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
57
|
Halperin O, Israeli‐Korn S, Yakubovich S, Hassin‐Baer S, Zaidel A. Self‐motion perception in Parkinson's disease. Eur J Neurosci 2020; 53:2376-2387. [DOI: 10.1111/ejn.14716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Orly Halperin
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| | - Simon Israeli‐Korn
- Department of Neurology Movement Disorders Institute Sheba Medical Center Ramat Gan Israel
- The Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Sol Yakubovich
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| | - Sharon Hassin‐Baer
- Department of Neurology Movement Disorders Institute Sheba Medical Center Ramat Gan Israel
- The Sackler School of Medicine Tel Aviv University Tel Aviv Israel
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center Bar Ilan University Ramat Gan Israel
| |
Collapse
|
58
|
Physiology, clinical evidence and diagnostic relevance of sound-induced and vibration-induced vestibular stimulation. Curr Opin Neurol 2020; 33:126-135. [DOI: 10.1097/wco.0000000000000770] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|