51
|
Sharma B, Tomaszczyk JC, Dawson D, Turner GR, Colella B, Green REA. Feasibility of online self-administered cognitive training in moderate-severe brain injury. Disabil Rehabil 2016; 39:1380-1390. [PMID: 27414703 DOI: 10.1080/09638288.2016.1195453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Cognitive environmental enrichment (C-EE) offers promise for offsetting neural decline that is observed in chronic moderate-severe traumatic brain injury (TBI). Brain games are a delivery modality for C-EE that can be self-administered over the Internet without therapist oversight. To date, only one study has examined the feasibility of self-administered brain games in TBI, and the study focused predominantly on mild TBI. Therefore, the primary purpose of the current study was to examine the feasibility of self-administered brain games in moderate-severe TBI. A secondary and related purpose was to examine the feasibility of remote monitoring of any C-EE-induced adverse symptoms with a self-administered evaluation tool. METHOD Ten patients with moderate-severe TBI were asked to complete 12 weeks (60 min/day, five days/week) of online brain games with bi-weekly self-evaluation, intended to measure any adverse consequences of cognitive training (e.g., fatigue, eye strain). RESULTS There was modest weekly adherence (42.6% ± 4.4%, averaged across patients and weeks) and 70% patient retention; of the seven retained patients, six completed the self-evaluation questionnaire at least once/week for each week of the study. CONCLUSIONS Even patients with moderate-severe TBI can complete a demanding, online C-EE intervention and a self-administered symptom evaluation tool with limited therapist oversight, though at daily rate closer to 30 than 60 min per day. Further self-administered C-EE research is underway in our lab, with more extensive environmental support. Implications for Rehabilitation Online brain games (which may serve as a rehabilitation paradigm that can help offset the neurodegeneration observed in chronic TBI) can be feasibly self-administered by moderate-to-severe TBI patients. Brain games are a promising therapy modality, as they can be accessed by all moderate-to-severe TBI patients irrespective of geographic location, clinic and/or therapist availability, or impairments that limit mobility and access to rehabilitation services. Future efficacy trials that examine the effect of brain games for offsetting neurodegeneration in moderate-to-severe TBI patients are warranted.
Collapse
Affiliation(s)
- Bhanu Sharma
- a Rehabilitation Sciences Institute (Formerly Graduate Department of Rehabilitation Science) , University of Toronto , Toronto , Ontario , Canada.,b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada
| | - Jennifer C Tomaszczyk
- b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada
| | - Deirdre Dawson
- a Rehabilitation Sciences Institute (Formerly Graduate Department of Rehabilitation Science) , University of Toronto , Toronto , Ontario , Canada.,b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada.,c Rotman Research Institute, Baycrest , Toronto , Ontario , Canada.,d Department of Occupational Science & Occupational Therapy , University of Toronto , Toronto , Ontario , Canada
| | - Gary R Turner
- e Department of Psychology , York University , Toronto , Ontario , Canada
| | - Brenda Colella
- b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada
| | - Robin E A Green
- a Rehabilitation Sciences Institute (Formerly Graduate Department of Rehabilitation Science) , University of Toronto , Toronto , Ontario , Canada.,b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada
| |
Collapse
|
52
|
Li L, Chopp M, Ding G, Qu C, Nejad-Davarani SP, Davoodi-Bojd E, Li Q, Mahmood A, Jiang Q. Diffusion-Derived Magnetic Resonance Imaging Measures of Longitudinal Microstructural Remodeling Induced by Marrow Stromal Cell Therapy after Traumatic Brain Injury. J Neurotrauma 2016; 34:182-191. [PMID: 26993214 DOI: 10.1089/neu.2015.4315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using magnetic resonance imaging (MRI) and an animal model of traumatic brain injury (TBI), we investigated the capacity and sensitivity of diffusion-derived measures, fractional anisotropy (FA), and diffusion entropy, to longitudinally identify structural plasticity in the injured brain in response to the transplantation of human bone marrow stromal cells (hMSCs). Male Wistar rats (300-350g, n = 30) were subjected to controlled cortical impact TBI. At 6 h or 1 week post-injury, these rats were intravenously injected with 1 mL of saline (at 6 h or 1 week, n = 5/group) or with hMSCs in suspension (∼3 × 106 hMSCs, at 6 h or 1 week, n = 10/group). In vivo MRI measurements and sensorimotor function estimates were performed on all animals pre-injury, 1 day post-injury, and weekly for 3 weeks post-injury. Bielschowsky's silver and Luxol fast blue staining were used to reveal the axon and myelin status, respectively, with and without cell treatment after TBI. Based on image data and histological observation, regions of interest encompassing the structural alterations were made and the values of FA and entropy were monitored in these specific brain regions. Our data demonstrate that administration of hMSCs after TBI leads to enhanced white matter reorganization particularly along the boundary of contusional lesion, which can be identified by both FA and entropy. Compared with the therapy performed at 1 week post-TBI, cell intervention executed at 6 h expedites the brain remodeling process and results in an earlier functional recovery. Although FA and entropy present a similar capacity to dynamically detect the microstructural changes in the tissue regions with predominant orientation of fiber tracts, entropy exhibits a sensitivity superior to that of FA, in probing the structural alterations in the tissue areas with complex fiber patterns.
Collapse
Affiliation(s)
- Lian Li
- 1 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| | - Michael Chopp
- 1 Department of Neurology, Henry Ford Hospital , Detroit, Michigan.,2 Department of Physics, Oakland University , Rochester, Michigan
| | - Guangliang Ding
- 1 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| | - Changsheng Qu
- 3 Department of Neurosurgery, Henry Ford Hospital , Detroit, Michigan
| | | | | | - Qingjiang Li
- 1 Department of Neurology, Henry Ford Hospital , Detroit, Michigan
| | - Asim Mahmood
- 3 Department of Neurosurgery, Henry Ford Hospital , Detroit, Michigan
| | - Quan Jiang
- 1 Department of Neurology, Henry Ford Hospital , Detroit, Michigan.,2 Department of Physics, Oakland University , Rochester, Michigan
| |
Collapse
|
53
|
Ware JB, Biester RC, Whipple E, Robinson KM, Ross RJ, Nucifora PG. Combat-related Mild Traumatic Brain Injury: Association between Baseline Diffusion-Tensor Imaging Findings and Long-term Outcomes. Radiology 2016; 280:212-9. [PMID: 27022770 DOI: 10.1148/radiol.2016151013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine whether functional outcomes of veterans who sustained combat-related mild traumatic brain injury (TBI) are associated with scalar metrics derived from diffusion-tensor (DT) imaging at their initial postdeployment evaluation. Materials and Methods This HIPAA-compliant retrospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. From 2010 to 2013, initial postdeployment evaluation, including clinical assessment and brain magnetic resonance (MR) examination with DT imaging, was performed in combat veterans who sustained mild TBI while deployed. Outcomes from chart review encompassed initial postdeployment clinical assessment as well as later functional status, including evaluation of occupational status and health care utilization. Scalar diffusion metrics from the initial postdeployment evaluation were compared with outcomes by using multivariate analysis. Veterans who did and did not return to work were also compared for differences in clinical variables by using t and χ(2) tests. Results Postdeployment evaluation was performed a mean of 3.8 years after injury (range, 0.5-9 years; standard deviation, 2.5 years). After a mean follow-up of 1.4 years (range, 0.5-2.5 years; standard deviation, 0.8 year), 34 of 57 veterans (60%) had returned to work. Return to work was associated with diffusion metrics in multiple regions of white matter, particularly in the left internal capsule and the left frontal lobe (P = .02-.05). Overall, veterans had a mean of 46 health care visits per year during the follow-up period (range, 3-196 visits per year; standard deviation, 41 visits per year). Cumulative health care visits over time were inversely correlated with diffusion anisotropy of the splenium of the corpus callosum and adjacent parietal white matter (P < .05). Clinical measures obtained during initial postdeployment evaluation were not predictive of later functional status (P = .12-.8). Conclusion Differences in white matter microstructure may partially account for the variance in functional outcomes among veterans who sustained combat-related mild TBI. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Jeffrey B Ware
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Rosette C Biester
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Elizabeth Whipple
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Keith M Robinson
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Richard J Ross
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Paolo G Nucifora
- From the Department of Radiology (J.B.W., P.G.N.), Department of Rehabilitation Medicine (R.C.B., E.W., K.M.R.), and Behavioral Health Service (R.J.R.), Philadelphia VA Medical Center, Philadelphia, Pa; and Departments of Radiology (J.B.W., P.G.N.) and Psychiatry (R.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| |
Collapse
|
54
|
Konstantinou N, Pettemeridou E, Seimenis I, Eracleous E, Papacostas SS, Papanicolaou AC, Constantinidou F. Assessing the Relationship between Neurocognitive Performance and Brain Volume in Chronic Moderate-Severe Traumatic Brain Injury. Front Neurol 2016; 7:29. [PMID: 27014183 PMCID: PMC4785138 DOI: 10.3389/fneur.2016.00029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/24/2016] [Indexed: 11/13/2022] Open
Abstract
Objectives Characterize the scale and pattern of long-term atrophy in gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) in chronic moderate–severe traumatic brain injury (TBI) and its relationship to neurocognitive outcomes. Participants The TBI group consisted of 17 males with primary diagnosis of moderate–severe closed head injury. Participants had not received any systematic, post-acute rehabilitation and were recruited on average 8.36 years post-injury. The control group consisted of 15 males matched on age and education. Main measures Neurocognitive battery included widely used tests of verbal memory, visual memory, executive functioning, and attention/organization. GM, WM, and CSF volumes were calculated from segmented T1-weighted anatomical MR images. Voxel-based morphometry was employed to identify brain regions with differences in GM and WM between TBI and control groups. Results Chronic TBI results in significant neurocognitive impairments, and significant loss of GM and WM volume, and significant increase in CSF volume. Brain atrophy is not widespread, but it is rather distributed in a fronto-thalamic network. The extent of volume loss is predictive of performance on the neurocognitive tests. Conclusion Significant brain atrophy and associated neurocognitive impairments during the chronic stages of TBI support the notion that TBI results in a chronic condition with lifelong implications.
Collapse
Affiliation(s)
- Nikos Konstantinou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Eva Pettemeridou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Seimenis
- Department of Medical Physics, Medical School, Democritus University of Thrace , Alexandroupolis , Greece
| | - Eleni Eracleous
- Medical Diagnostic Center "Ayios Therissos" , Nicosia , Cyprus
| | - Savvas S Papacostas
- Neurology Clinic B, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine , Nicosia , Cyprus
| | - Andrew C Papanicolaou
- Division of Clinical Neurosciences, Department of Pediatrics, The Le Bonheur Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA; Division of Clinical Neurosciences, Department of Neurobiology and Anatomy, The Le Bonheur Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Fofi Constantinidou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus; Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
55
|
Pohl KM, Sullivan EV, Rohlfing T, Chu W, Kwon D, Nichols BN, Zhang Y, Brown SA, Tapert SF, Cummins K, Thompson WK, Brumback T, Colrain IM, Baker FC, Prouty D, De Bellis MD, Voyvodic JT, Clark DB, Schirda C, Nagel BJ, Pfefferbaum A. Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. Neuroimage 2016; 130:194-213. [PMID: 26872408 DOI: 10.1016/j.neuroimage.2016.01.061] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/23/2016] [Accepted: 01/28/2016] [Indexed: 01/18/2023] Open
Abstract
Neurodevelopment continues through adolescence, with notable maturation of white matter tracts comprising regional fiber systems progressing at different rates. To identify factors that could contribute to regional differences in white matter microstructure development, large samples of youth spanning adolescence to young adulthood are essential to parse these factors. Recruitment of adequate samples generally relies on multi-site consortia but comes with the challenge of merging data acquired on different platforms. In the current study, diffusion tensor imaging (DTI) data were acquired on GE and Siemens systems through the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA), a multi-site study designed to track the trajectories of regional brain development during a time of high risk for initiating alcohol consumption. This cross-sectional analysis reports baseline Tract-Based Spatial Statistic (TBSS) of regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1), and radial diffusivity (LT) from the five consortium sites on 671 adolescents who met no/low alcohol or drug consumption criteria and 132 adolescents with a history of exceeding consumption criteria. Harmonization of DTI metrics across manufacturers entailed the use of human-phantom data, acquired multiple times on each of three non-NCANDA participants at each site's MR system, to determine a manufacturer-specific correction factor. Application of the correction factor derived from human phantom data measured on MR systems from different manufacturers reduced the standard deviation of the DTI metrics for FA by almost a half, enabling harmonization of data that would have otherwise carried systematic error. Permutation testing supported the hypothesis of higher FA and lower diffusivity measures in older adolescents and indicated that, overall, the FA, MD, and L1 of the boys were higher than those of the girls, suggesting continued microstructural development notable in the boys. The contribution of demographic and clinical differences to DTI metrics was assessed with General Additive Models (GAM) testing for age, sex, and ethnicity differences in regional skeleton mean values. The results supported the primary study hypothesis that FA skeleton mean values in the no/low-drinking group were highest at different ages. When differences in intracranial volume were covaried, FA skeleton mean reached a maximum at younger ages in girls than boys and varied in magnitude with ethnicity. Our results, however, did not support the hypothesis that youth who exceeded exposure criteria would have lower FA or higher diffusivity measures than the no/low-drinking group; detecting the effects of excessive alcohol consumption during adolescence on DTI metrics may require longitudinal study.
Collapse
Affiliation(s)
- Kilian M Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Torsten Rohlfing
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Weiwei Chu
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Dongjin Kwon
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - B Nolan Nichols
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yong Zhang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra A Brown
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States; Veterans Affairs San Diego Healthcare System, La Jolla, CA, United States
| | - Kevin Cummins
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Wesley K Thompson
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ty Brumback
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ian M Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Devin Prouty
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Michael D De Bellis
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - James T Voyvodic
- Department of Radiology, Duke University School of Medicine, Durham, NC, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claudiu Schirda
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
56
|
Abstract
Traumatic brain injury (TBI) represents a huge global medical and public health problem across all ages and in all populations. In this review, we discussed the changing concepts and approaches. Globally, the incidence is increasing and in high income countries epidemiologic patterns are changing with consequences for prevention campaigns. TBI should not be viewed as an event, but as a progressive and chronic disease with lifetime consequences. In the clinical field, precision approaches to treatment are being developed, which require more accurate disease phenotyping. Recent advances in genomics, neuroimaging and biomarker development offer great opportunities to develop improved phenotyping and better disease characterization. In clinical research, randomized controlled clinical trials are being complemented by large data collections in broad TBI populations in comparative effectiveness designs. Global collaborations are being developed among funding agencies, research organizations and researchers. Only by combining efforts and collaboration will we be able to advance the field by providing long-needed evidence to support practice recommendations and to improve treatment.
Collapse
|
57
|
Abstract
OBJECTIVES Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition. METHODS We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury. RESULTS The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes. CONCLUSIONS TBI has a negative impact on distributed brain networks that lead to behavioral disturbance.
Collapse
|
58
|
Green REA. Editorial: Brain Injury as a Neurodegenerative Disorder. Front Hum Neurosci 2016; 9:615. [PMID: 26778994 PMCID: PMC4700280 DOI: 10.3389/fnhum.2015.00615] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Robin E A Green
- Cognitive Neurorehabilitation Sciences Lab, Toronto Rehabilitation InstituteToronto, ON, Canada; Department of Psychiatry, Division of Neurosciences, University of TorontoToronto, ON, Canada
| |
Collapse
|
59
|
Newcombe VFJ, Correia MM, Ledig C, Abate MG, Outtrim JG, Chatfield D, Geeraerts T, Manktelow AE, Garyfallidis E, Pickard JD, Sahakian BJ, Hutchinson PJA, Rueckert D, Coles JP, Williams GB, Menon DK. Dynamic Changes in White Matter Abnormalities Correlate With Late Improvement and Deterioration Following TBI: A Diffusion Tensor Imaging Study. Neurorehabil Neural Repair 2016; 30:49-62. [PMID: 25921349 DOI: 10.1177/1545968315584004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is not a single insult with monophasic resolution, but a chronic disease, with dynamic processes that remain active for years. We aimed to assess patient trajectories over the entire disease narrative, from ictus to late outcome. METHODS Twelve patients with moderate-to-severe TBI underwent magnetic resonance imaging in the acute phase (within 1 week of injury) and twice in the chronic phase of injury (median 7 and 21 months), with some undergoing imaging at up to 2 additional time points. Longitudinal imaging changes were assessed using structural volumetry, deterministic tractography, voxel-based diffusion tensor analysis, and region of interest analyses (including corpus callosum, parasagittal white matter, and thalamus). Imaging changes were related to behavior. RESULTS Changes in structural volumes, fractional anisotropy, and mean diffusivity continued for months to years postictus. Changes in diffusion tensor imaging were driven by increases in both axial and radial diffusivity except for the earliest time point, and were associated with changes in reaction time and performance in a visual memory and learning task (paired associates learning). Dynamic structural changes after TBI can be detected using diffusion tensor imaging and could explain changes in behavior. CONCLUSIONS These data can provide further insight into early and late pathophysiology, and begin to provide a framework that allows magnetic resonance imaging to be used as an imaging biomarker of therapy response. Knowledge of the temporal pattern of changes in TBI patient populations also provides a contextual framework for assessing imaging changes in individuals at any given time point.
Collapse
Affiliation(s)
| | | | | | - Maria G Abate
- University of Cambridge, Cambridge, UK Gerardo Hospital, Monza, Milan, Italy
| | | | | | - Thomas Geeraerts
- University of Cambridge, Cambridge, UK University Hospital of Toulouse, Toulouse, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Stephens JA, Williamson KNC, Berryhill ME. Cognitive Rehabilitation After Traumatic Brain Injury: A Reference for Occupational Therapists. OTJR-OCCUPATION PARTICIPATION AND HEALTH 2015; 35:5-22. [PMID: 26623474 DOI: 10.1177/1539449214561765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nearly 1.7 million Americans sustain a traumatic brain injury (TBI) each year. These injuries can result in physical, emotional, and cognitive consequences. While many individuals receive cognitive rehabilitation from occupational therapists (OTs), the interdisciplinary nature of TBI research makes it difficult to remain up-to-date on relevant findings. We conducted a literature review to identify and summarize interdisciplinary evidence-based practice targeting cognitive rehabilitation for civilian adults with TBI. Our review summarizes TBI background, and our cognitive remediation section focuses on the findings from 37 recent (since 2006) empirical articles directly related to cognitive rehabilitation for individuals (i.e., excluding special populations such as veterans or athletes). This manuscript is offered as a tool for OTs engaged in cognitive rehabilitation and as a means to highlight arenas where more empirical, interdisciplinary research is needed.
Collapse
|
61
|
Venkatraman VK, Gonzalez CE, Landman B, Goh J, Reiter DA, An Y, Resnick SM. Region of interest correction factors improve reliability of diffusion imaging measures within and across scanners and field strengths. Neuroimage 2015; 119:406-16. [PMID: 26146196 DOI: 10.1016/j.neuroimage.2015.06.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/01/2015] [Accepted: 06/29/2015] [Indexed: 11/28/2022] Open
Abstract
Diffusion tensor imaging (DTI) measures are commonly used as imaging markers to investigate individual differences in relation to behavioral and health-related characteristics. However, the ability to detect reliable associations in cross-sectional or longitudinal studies is limited by the reliability of the diffusion measures. Several studies have examined the reliability of diffusion measures within (i.e. intra-site) and across (i.e. inter-site) scanners with mixed results. Our study compares the test-retest reliability of diffusion measures within and across scanners and field strengths in cognitively normal older adults with a follow-up interval less than 2.25 years. Intra-class correlation (ICC) and coefficient of variation (CoV) of fractional anisotropy (FA) and mean diffusivity (MD) were evaluated in sixteen white matter and twenty-six gray matter bilateral regions. The ICC for intra-site reliability (0.32 to 0.96 for FA and 0.18 to 0.95 for MD in white matter regions; 0.27 to 0.89 for MD and 0.03 to 0.79 for FA in gray matter regions) and inter-site reliability (0.28 to 0.95 for FA in white matter regions, 0.02 to 0.86 for MD in gray matter regions) with longer follow-up intervals were similar to earlier studies using shorter follow-up intervals. The reliability of across field strengths comparisons was lower than intra- and inter-site reliabilities. Within and across scanner comparisons showed that diffusion measures were more stable in larger white matter regions (>1500 mm(3)). For gray matter regions, the MD measure showed stability in specific regions and was not dependent on region size. Linear correction factor estimated from cross-sectional or longitudinal data improved the reliability across field strengths. Our findings indicate that investigations relating diffusion measures to external variables must consider variable reliability across the distinct regions of interest and that correction factors can be used to improve consistency of measurement across field strengths. An important result of this work is that inter-scanner and field strength effects can be partially mitigated with linear correction factors specific to regions of interest. These data-driven linear correction techniques can be applied in cross-sectional or longitudinal studies.
Collapse
Affiliation(s)
- Vijay K Venkatraman
- Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.
| | - Christopher E Gonzalez
- Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA
| | - Bennett Landman
- Institute of Imaging Science and Department of Electrical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joshua Goh
- Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA; Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan
| | - David A Reiter
- Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA
| | - Yang An
- Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
62
|
Shetty T, Raince A, Manning E, Tsiouris AJ. Imaging in Chronic Traumatic Encephalopathy and Traumatic Brain Injury. Sports Health 2015; 8:26-36. [PMID: 26733590 PMCID: PMC4702153 DOI: 10.1177/1941738115588745] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Context: The diagnosis of chronic traumatic encephalopathy (CTE) can only be made pathologically, and there is no concordance of defined clinical criteria for premorbid diagnosis. The absence of established criteria and the insufficient imaging findings to detect this disease in a living athlete are of growing concern. Evidence Acquisition: The article is a review of the current literature on CTE. Databases searched include Medline, PubMed, JAMA evidence, and evidence-based medicine guidelines Cochrane Library, Hospital for Special Surgery, and Cornell Library databases. Study Design: Clinical review. Level of Evidence: Level 4. Results: Chronic traumatic encephalopathy cannot be diagnosed on imaging. Examples of imaging findings in common types of head trauma are discussed. Conclusion: Further study is necessary to correlate the clinical and imaging findings of repetitive head injuries with the pathologic diagnosis of CTE.
Collapse
Affiliation(s)
- Teena Shetty
- Hospital for Special Surgery, New York, New York
| | | | - Erin Manning
- Hospital for Special Surgery, New York, New York
| | | |
Collapse
|
63
|
Abstract
Network science provides theoretical, computational, and empirical tools that can be used to understand the structure and function of the human brain in novel ways using simple concepts and mathematical representations. Network neuroscience is a rapidly growing field that is providing considerable insight into human structural connectivity, functional connectivity while at rest, changes in functional networks over time (dynamics), and how these properties differ in clinical populations. In addition, a number of studies have begun to quantify network characteristics in a variety of cognitive processes and provide a context for understanding cognition from a network perspective. In this review, we outline the contributions of network science to cognitive neuroscience. We describe the methodology of network science as applied to the particular case of neuroimaging data and review its uses in investigating a range of cognitive functions including sensory processing, language, emotion, attention, cognitive control, learning, and memory. In conclusion, we discuss current frontiers and the specific challenges that must be overcome to integrate these complementary disciplines of network science and cognitive neuroscience. Increased communication between cognitive neuroscientists and network scientists could lead to significant discoveries under an emerging scientific intersection known as cognitive network neuroscience.
Collapse
|
64
|
Carpenter KLH, Czosnyka M, Jalloh I, Newcombe VFJ, Helmy A, Shannon RJ, Budohoski KP, Kolias AG, Kirkpatrick PJ, Carpenter TA, Menon DK, Hutchinson PJ. Systemic, local, and imaging biomarkers of brain injury: more needed, and better use of those already established? Front Neurol 2015; 6:26. [PMID: 25741315 PMCID: PMC4332345 DOI: 10.3389/fneur.2015.00026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/30/2015] [Indexed: 02/02/2023] Open
Abstract
Much progress has been made over the past two decades in the treatment of severe acute brain injury, including traumatic brain injury and subarachnoid hemorrhage, resulting in a higher proportion of patients surviving with better outcomes. This has arisen from a combination of factors. These include improvements in procedures at the scene (pre-hospital) and in the hospital emergency department, advances in neuromonitoring in the intensive care unit, both continuously at the bedside and intermittently in scans, evolution and refinement of protocol-driven therapy for better management of patients, and advances in surgical procedures and rehabilitation. Nevertheless, many patients still experience varying degrees of long-term disabilities post-injury with consequent demands on carers and resources, and there is room for improvement. Biomarkers are a key aspect of neuromonitoring. A broad definition of a biomarker is any observable feature that can be used to inform on the state of the patient, e.g., a molecular species, a feature on a scan, or a monitoring characteristic, e.g., cerebrovascular pressure reactivity index. Biomarkers are usually quantitative measures, which can be utilized in diagnosis and monitoring of response to treatment. They are thus crucial to the development of therapies and may be utilized as surrogate endpoints in Phase II clinical trials. To date, there is no specific drug treatment for acute brain injury, and many seemingly promising agents emerging from pre-clinical animal models have failed in clinical trials. Large Phase III studies of clinical outcomes are costly, consuming time and resources. It is therefore important that adequate Phase II clinical studies with informative surrogate endpoints are performed employing appropriate biomarkers. In this article, we review some of the available systemic, local, and imaging biomarkers and technologies relevant in acute brain injury patients, and highlight gaps in the current state of knowledge.
Collapse
Affiliation(s)
- Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,*Correspondence: Keri L. H. Carpenter, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK e-mail:
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Virginia F. J. Newcombe
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard J. Shannon
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Karol P. Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Angelos G. Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J. Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K. Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
65
|
Armstrong RC, Mierzwa AJ, Marion CM, Sullivan GM. White matter involvement after TBI: Clues to axon and myelin repair capacity. Exp Neurol 2015; 275 Pt 3:328-333. [PMID: 25697845 DOI: 10.1016/j.expneurol.2015.02.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 11/17/2022]
Abstract
Impact-acceleration forces to the head cause traumatic brain injury (TBI) with damage in white matter tracts comprised of long axons traversing the brain. White matter injury after TBI involves both traumatic axonal injury (TAI) and myelin pathology that evolves throughout the post-injury time course. The axon response to initial mechanical forces and secondary insults follows the process of Wallerian degeneration, which initiates as a potentially reversible phase of intra-axonal damage and proceeds to an irreversible phase of axon fragmentation. Distal to sites of axon disconnection, myelin sheaths remain for prolonged periods, which may activate neuroinflammation and inhibit axon regeneration. In addition to TAI, TBI can cause demyelination of intact axons. These evolving features of axon and myelin pathology also represent opportunities for repair. In experimental TBI, demyelinated axons exhibit remyelination, which can serve to both protect axons and facilitate recovery of function. Myelin remodeling may also contribute to neuroplasticity. Efficient clearance of myelin debris is a potential target to attenuate the progression of chronic pathology. During the early phase of Wallerian degeneration, interventions that prevent the transition from reversible damage to axon disconnection warrant the highest priority, based on the poor regenerative capacity of axons in the CNS. Clinical evaluation of TBI will need to address the challenge of accurately detecting the extent and stage of axon damage. Distinguishing the complex white matter changes associated with axons and myelin is necessary for interpreting advanced neuroimaging approaches and for identifying a broader range of therapeutic opportunities to improve outcome after TBI.
Collapse
Affiliation(s)
- Regina C Armstrong
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | - Amanda J Mierzwa
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Christina M Marion
- Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Genevieve M Sullivan
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
66
|
White matter disruption in moderate/severe pediatric traumatic brain injury: advanced tract-based analyses. NEUROIMAGE-CLINICAL 2015; 7:493-505. [PMID: 25737958 PMCID: PMC4338205 DOI: 10.1016/j.nicl.2015.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/01/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging) are uniquely sensitive to the white matter (WM) damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy) characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction) method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases). We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD). In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children. We examined pediatric traumatic brain injury patients at 2 time points post injury. Cross sectional analyses were completed at the post-acute and chronic stages. We used novel tract-based methods to reveal widespread white matter disruption. White matter disruption chronically was related to cognitive deficits.
Collapse
|
67
|
Bigler ED, Stern Y. Traumatic brain injury and reserve. HANDBOOK OF CLINICAL NEUROLOGY 2015; 128:691-710. [DOI: 10.1016/b978-0-444-63521-1.00043-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
68
|
Tomaszczyk JC, Green NL, Frasca D, Colella B, Turner GR, Christensen BK, Green REA. Negative neuroplasticity in chronic traumatic brain injury and implications for neurorehabilitation. Neuropsychol Rev 2014; 24:409-27. [PMID: 25421811 PMCID: PMC4250564 DOI: 10.1007/s11065-014-9273-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Based on growing findings of brain volume loss and deleterious white matter alterations during the chronic stages of injury, researchers posit that moderate-severe traumatic brain injury (TBI) may act to “age” the brain by reducing reserve capacity and inducing neurodegeneration. Evidence that these changes correlate with poorer cognitive and functional outcomes corroborates this progressive characterization of chronic TBI. Borrowing from a framework developed to explain cognitive aging (Mahncke et al., Progress in Brain Research, 157, 81–109, 2006a; Mahncke et al., Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12523–12528, 2006b), we suggest here that environmental factors (specifically environmental impoverishment and cognitive disuse) contribute to a downward spiral of negative neuroplastic change that may modulate the brain changes described above. In this context, we review new literature supporting the original aging framework, and its extrapolation to chronic TBI. We conclude that negative neuroplasticity may be one of the mechanisms underlying cognitive and neural decline in chronic TBI, but that there are a number of points of intervention that would permit mitigation of this decline and better long-term clinical outcomes.
Collapse
Affiliation(s)
- Jennifer C Tomaszczyk
- Research Department, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
69
|
Imagawa KK, Hamilton A, Ceschin R, Tokar E, Pham P, Bluml S, Wisnowski J, Panigrahy A. Characterization of microstructural injury: a novel approach in infant abusive head trauma-initial experience. J Neurotrauma 2014; 31:1632-8. [PMID: 24831582 DOI: 10.1089/neu.2013.3228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abusive head trauma (AHT) is the leading cause of morbidity and mortality among abused children, yet the neuroanatomical underpinnings of AHT outcome is incompletely understood. The aim of this study was to characterize white matter (WM) abnormalities in infants with AHT using diffusion tensor imaging (DTI) and determine which microstructural abnormalities are associated with poor outcome. Retrospective DTI data from 17 infants (>3 months) with a diagnosis of AHT and a comparison cohort of 34 term infants of similar post-conceptual age (PCA) were compared using a voxel-based DTI analysis of cerebral WM. AHT cases were dichotomously classified into mild/moderate versus severe outcome. Clinical variables and conventional imaging findings were also analyzed in relation to outcome. Outcomes were classified in accordance with the Pediatric Cerebral Performance Category Score (PCPCS). Reduced axial diffusivity (AD) was shown in widespread WM regions in the AHT infants compared with controls as well as in the AHT severe outcome group compared with the AHT mild/moderate outcome group. Reduced mean diffusivity (MD) was also associated with severe outcome. Radial diffusivity (RD), conventional magnetic resonance findings, brain metric measurements, and clinical/laboratory variables (with the exception of Glascow Coma Scale) did not differ among AHT outcome groups. Findings support the unique role of DTI techniques, beyond conventional imaging, in the evaluation of microstructural WM injury of AHT. Reduced AD (likely reflecting axonal damage) and MD were associated with poor clinical outcome. DTI abnormalities may uniquely reflect AHT patterns of axonal injury that are not characterized by conventional imaging, which may have both therapeutic and prognostic implications.
Collapse
Affiliation(s)
- Karen Kay Imagawa
- 1 Department of Pediatrics, Children's Hospital Los Angeles , Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Davenport EM, Whitlow CT, Urban JE, Espeland MA, Jung Y, Rosenbaum DA, Gioia GA, Powers AK, Stitzel JD, Maldjian JA. Abnormal white matter integrity related to head impact exposure in a season of high school varsity football. J Neurotrauma 2014; 31:1617-24. [PMID: 24786802 DOI: 10.1089/neu.2013.3233] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to determine whether the cumulative effects of head impacts from a season of high school football produce magnetic resonance imaging (MRI) measureable changes in the brain in the absence of clinically diagnosed concussion. Players from a local high school football team were instrumented with the Head Impact Telemetry System (HITS™) during all practices and games. All players received pre- and postseason MRI, including diffusion tensor imaging (DTI). Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) was also conducted. Total impacts and risk-weighted cumulative exposure (RWE), including linear (RWELinear), rotational (RWERotational), and combined components (RWECP), were computed from the sensor data. Fractional, linear, planar, and spherical anisotropies (FA, CL, CP, and CS, respectively), as well as mean diffusivity (MD), were used to determine total number of abnormal white matter voxels defined as 2 standard deviations above or below the group mean. Delta (post-preseason) ImPACT scores for each individual were computed and compared to the DTI measures using Spearman's rank correlation coefficient. None of the players analyzed experienced clinical concussion (N=24). Regression analysis revealed a statistically significant linear relationship between RWECP and FA. Secondary analyses demonstrated additional statistically significant linear associations between RWE (RWECP and RWELinear) and all DTI measures. There was also a strong correlation between DTI measures and change in Verbal Memory subscore of the ImPACT. We demonstrate that a single season of football can produce brain MRI changes in the absence of clinical concussion. Similar brain MRI changes have been previously associated with mild traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M Davenport
- 1 Advanced Neuroscience Imaging Research (ANSIR) Laboratory , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Green REA, Colella B, Maller JJ, Bayley M, Glazer J, Mikulis DJ. Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Front Hum Neurosci 2014; 8:67. [PMID: 24744712 PMCID: PMC3978360 DOI: 10.3389/fnhum.2014.00067] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/27/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Moderate-severe traumatic brain injury (TBI) is increasingly being understood as a progressive disorder, with growing evidence of reduced brain volume and white matter (WM) integrity as well as lesion expansion in the chronic phases of injury. The scale of these losses has yet to be investigated, and pattern of change across structures has received limited attention. OBJECTIVES (1) To measure the percentage of patients in our TBI sample showing atrophy from 5 to 20 months post-injury in the whole brain and in structures with known vulnerability to acute TBI, and (2) To examine relative vulnerability and patterns of volume loss across structures. METHODS Fifty-six TBI patients [complicated mild to severe, with mean Glasgow Coma Scale (GCS) in severe range] underwent MRI at, on average, 5 and 20 months post-injury; 12 healthy controls underwent MRI twice, with a mean gap between scans of 25.4 months. Mean monthly percent volume change was computed for whole brain (ventricle-to-brain ratio; VBR), corpus callosum (CC), and right and left hippocampi (HPC). RESULTS (1) Using a threshold of 2 z-scores below controls, 96% of patients showed atrophy across time points in at least one region; 75% showed atrophy in at least 3 of the 4 regions measured. (2) There were no significant differences in the proportion of patients who showed atrophy across structures. For those showing decline in VBR, there was a significant association with both the CC and the right HPC (P < 0.05 for both comparisons). There were also significant associations between those showing decline in (i) right and left HPC (P < 0.05); (ii) all combinations of genu, body and splenium of the CC (P < 0.05), and (iii) head and tail of the right HPC (P < 0.05 all sub-structure comparisons). CONCLUSIONS Atrophy in chronic TBI is robust, and the CC, right HPC and left HPC appear equally vulnerable. Significant associations between the right and left HPC, and within substructures of the CC and right HPC, raise the possibility of common mechanisms for these regions, including transneuronal degeneration. Given the 96% incidence rate of atrophy, a genetic explanation is unlikely to explain all findings. Multiple and possibly synergistic mechanisms may explain findings. Atrophy has been associated with poorer functional outcomes, but recent findings suggest there is potential to offset this. A better, understanding of the underlying mechanisms could permit targeted therapy enabling better long-term outcomes.
Collapse
Affiliation(s)
- Robin E. A. Green
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Brenda Colella
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Jerome J. Maller
- Brain Stimulation and Neuroimaging Laboratory, Monash Alfred Psychiatry Research Centre, Alfred HospitalMelbourne, VIC, Australia
| | - Mark Bayley
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Joanna Glazer
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - David J. Mikulis
- fMRI Laboratory, Division of Applied and Interventional Research, Toronto Western Research InstituteToronto, ON, Canada
- Department of Medical Imaging, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
72
|
Keightley ML, Sinopoli KJ, Davis KD, Mikulis DJ, Wennberg R, Tartaglia MC, Chen JK, Tator CH. Is there evidence for neurodegenerative change following traumatic brain injury in children and youth? A scoping review. Front Hum Neurosci 2014; 8:139. [PMID: 24678292 PMCID: PMC3958726 DOI: 10.3389/fnhum.2014.00139] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/24/2014] [Indexed: 11/13/2022] Open
Abstract
While generalized cerebral atrophy and neurodegenerative change following traumatic brain injury (TBI) is well recognized in adults, it remains comparatively understudied in the pediatric population, suggesting that research should address the potential for neurodegenerative change in children and youth following TBI. This focused review examines original research findings documenting evidence for neurodegenerative change following TBI of all severities in children and youth. Our relevant inclusion and exclusion criteria identified a total of 16 articles for review. Taken together, the studies reviewed suggest there is evidence for long-term neurodegenerative change following TBI in children and youth. In particular both cross-sectional and longitudinal studies revealed volume loss in selected brain regions including the hippocampus, amygdala, globus pallidus, thalamus, periventricular white matter, cerebellum, and brain stem as well as overall decreased whole brain volume and increased CSF and ventricular space. Diffusion Tensor Imaging (DTI) studies also report evidence for decreased cellular integrity, particularly in the corpus callosum. Sensitivity of the hippocampus and deep limbic structures in pediatric populations are similar to findings in the adult literature and we consider the data supporting these changes as well as the need to investigate the possibility of neurodegenerative onset in childhood associated with mild traumatic brain injury (mTBI).
Collapse
Affiliation(s)
- Michelle L. Keightley
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation HospitalToronto, ON, Canada
- Department of Occupational Science and Occupational Therapy, University of TorontoToronto, ON, Canada
- Graduate Department of Rehabilitation Science, University of TorontoON, Canada
- Department of Psychology, University of TorontoON, Canada
- Cognitive Neurorehabilitation Sciences, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Katia J. Sinopoli
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation HospitalToronto, ON, Canada
- Department of Psychology and Division of Neurology, Sickids Hospital for Sick ChildrenToronto, ON, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, ON, Canada
- Department of Surgery and Institute of Medical Science, University of TorontoToronto, ON, Canada
| | - David J. Mikulis
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, ON, Canada
| | - Richard Wennberg
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network and University of TorontoToronto, ON, Canada
| | - Maria C. Tartaglia
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network and University of TorontoToronto, ON, Canada
| | - Jen-Kai Chen
- Neuropsychology/Cognitive Neuroscience Unit, Montreal Neurological InstituteMontreal, QC, Canada
| | - Charles H. Tator
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network and University of TorontoToronto, ON, Canada
| |
Collapse
|
73
|
Holschneider DP, Guo Y, Wang Z, Roch M, Scremin OU. Remote brain network changes after unilateral cortical impact injury and their modulation by acetylcholinesterase inhibition. J Neurotrauma 2014; 30:907-19. [PMID: 23343118 DOI: 10.1089/neu.2012.2657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We explored whether cerebral cortical impact injury (CCI) effects extend beyond direct lesion sites to affect remote brain networks, and whether acetylcholinesterase (AChE) inhibition elicits discrete changes in functional activation of motor circuits following CCI. Adult male rats underwent unilateral motor-sensory CCI or sham injury. Physostigmine (AChE inhibitor) or saline were administered subcutaneously continuously via implanted minipumps (1.6 micromoles/kg/day) for 3 weeks, followed by cerebral perfusion mapping during treadmill walking using [(14)C]-iodoantipyrine. Quantitative autoradiographs were analyzed by statistical parametric mapping and functional connectivity (FC) analysis. CCI resulted in functional deficits in the ipsilesional basal ganglia, with increased activation contralesionally. Recruitment was also observed, especially contralesionally, of the red nucleus, superior colliculus, pedunculopontine tegmental nucleus, thalamus (ventrolateral n., central medial n.), cerebellum, and sensory cortex. FC decreased significantly within ipsi- and contralesional motor circuits and between hemispheres, but increased between midline cerebellum and select regions of the basal ganglia within each hemisphere. Physostigmine significantly increased functional brain activation in the cerebellar thalamocortical pathway (midline cerebellum→ventrolateral thalamus→motor cortex), subthalamic nucleus/zona incerta, and red nucleus and bilateral sensory cortex. In conclusion, CCI resulted in increased functional recruitment of contralesional motor cortex and bilateral subcortical motor regions, as well as recruitment of the cerebellar-thalamocortical circuit and contralesional sensory cortex. This phenomenon, augmented by physostigmine, may partially compensate motor deficits. FC decreased inter-hemispherically and in negative, but not positive, intra-hemispherical FC, and it was not affected by physostigmine. Circuit-based approaches into functional brain reorganization may inform future behavioral or molecular strategies to augment targeted neurorehabilitation.
Collapse
Affiliation(s)
- Daniel P Holschneider
- Department of Psychiatry, Keck School of Medicine at University of Southern California , Los Angeles, California 90033, USA.
| | | | | | | | | |
Collapse
|
74
|
Adnan A, Crawley A, Mikulis D, Moscovitch M, Colella B, Green R. Moderate-severe traumatic brain injury causes delayed loss of white matter integrity: evidence of fornix deterioration in the chronic stage of injury. Brain Inj 2013; 27:1415-22. [PMID: 24102365 DOI: 10.3109/02699052.2013.823659] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To examine structural integrity loss in the fornix from 5-30 months after moderate and severe traumatic brain injury (TBI) using diffusion tensor imaging. METHODS MRIs were prospectively undertaken in 29 adults with moderate and severe TBI at two time points. Fractional anisotropy (FA) was calculated for the fornix (column/body, right crux and left crux) at 5 and 30 months post-injury. RESULTS Paired t-tests revealed significant FA reductions with large effect sizes across time in the column/body, p < 0.001, right crux, p < 0.001 and left crux, p < 0.001. CONCLUSIONS These data contribute to the growing body of evidence that loss of white matter continues in moderate and severe TBI even after the acute neurological effects of TBI have resolved. As the fornix plays a critical role in memory, this may be a contributing factor to the poor clinical outcomes observed in these patients.
Collapse
Affiliation(s)
- Areeba Adnan
- Toronto Rehabilitation Institute , Toronto, ON , Canada
| | | | | | | | | | | |
Collapse
|
75
|
Miller LS, Colella B, Mikulis D, Maller J, Green REA. Environmental enrichment may protect against hippocampal atrophy in the chronic stages of traumatic brain injury. Front Hum Neurosci 2013; 7:506. [PMID: 24093011 PMCID: PMC3782701 DOI: 10.3389/fnhum.2013.00506] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/07/2013] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To examine the relationship between environmental enrichment (EE) and hippocampal atrophy in the chronic stages of moderate to severe traumatic brain injury (TBI). DESIGN Retrospective analysis of prospectively collected data; observational, within-subjects. PARTICIPANTS Patients (N = 25) with moderate to severe TBI. MEASURES Primary predictors: (1) An aggregate of self-report rating of EE (comprising hours of cognitive, physical, and social activities) at 5 months post-injury; (2) pre-injury years of education as a proxy for pre-morbid EE (or cognitive reserve). PRIMARY OUTCOME bilateral hippocampal volume change from 5 to 28 months post-injury. RESULTS As predicted, self-reported EE was significantly negatively correlated with bilateral hippocampal atrophy (p < 0.05), with greater EE associated with less atrophy from 5 to 28 months. Contrary to prediction, years of education (a proxy for cognitive reserve) was not significantly associated with atrophy. CONCLUSION Post-injury EE may serve as a buffer against hippocampal atrophy in the chronic stages of moderate-severe TBI. Clinical application of EE should be considered for optimal maintenance of neurological functioning in the chronic stages of moderate-severe TBI.
Collapse
Affiliation(s)
- Lesley S Miller
- Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
76
|
Bigler ED. Neuroimaging biomarkers in mild traumatic brain injury (mTBI). Neuropsychol Rev 2013; 23:169-209. [PMID: 23974873 DOI: 10.1007/s11065-013-9237-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
Reviewed herein are contemporary neuroimaging methods that detect abnormalities associated with mild traumatic brain injury (mTBI). Despite advances in demonstrating underlying neuropathology in a subset of individuals who sustain mTBI, considerable disagreement persists in neuropsychology about mTBI outcome and metrics for evaluation. This review outlines a thesis for the select use of sensitive neuroimaging methods as potential biomarkers of brain injury recognizing that the majority of individuals who sustain an mTBI recover without neuroimaging signs or neuropsychological sequelae detected with methods currently applied. Magnetic resonance imaging (MRI) provides several measures that could serve as mTBI biomarkers including the detection of hemosiderin and white matter abnormalities, assessment of white matter integrity derived from diffusion tensor imaging (DTI), and quantitative measures that directly assess neuroanatomy. Improved prediction of neuropsychological outcomes in mTBI may be achieved with the use of targeted neuroimaging markers.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University, 1001 SWKT, Provo, UT 84602, USA.
| |
Collapse
|
77
|
Treble A, Hasan KM, Iftikhar A, Stuebing KK, Kramer LA, Cox CS, Swank PR, Ewing-Cobbs L. Working memory and corpus callosum microstructural integrity after pediatric traumatic brain injury: a diffusion tensor tractography study. J Neurotrauma 2013; 30:1609-19. [PMID: 23627735 DOI: 10.1089/neu.2013.2934] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deficits in working memory (WM) are a common consequence of pediatric traumatic brain injury (TBI) and are believed to contribute to difficulties in a range of cognitive and academic domains. Reduced integrity of the corpus callosum (CC) after TBI may disrupt the connectivity between bilateral frontoparietal neural networks underlying WM. In the present investigation, diffusion tensor imaging (DTI) tractography of eight callosal subregions (CC1-CC8) was examined in relation to measures of verbal and visuospatial WM in 74 children sustaining TBI and 49 typically developing comparison children. Relative to the comparison group, children with TBI demonstrated poorer visuospatial WM, but comparable verbal WM. Microstructure of the CC was significantly compromised in brain-injured children, with lower fractional anisotropy (FA) and higher axial and radial diffusivity metrics in all callosal subregions. In both groups of children, lower FA and/or higher radial diffusivity in callosal subregions connecting anterior and posterior parietal cortical regions predicted poorer verbal WM, whereas higher radial diffusivity in callosal subregions connecting anterior and posterior parietal, as well as temporal, cortical regions predicted poorer visuospatial WM. DTI metrics, especially radial diffusivity, in predictive callosal subregions accounted for significant variance in WM over and above remaining callosal subregions. Reduced microstructural integrity of the CC, particularly in subregions connecting parietal and temporal cortices, may act as a neuropathological mechanism contributing to long-term WM deficits. The future clinical use of neuroanatomical biomarkers may allow for the early identification of children at highest risk for WM deficits and earlier provision of interventions for these children.
Collapse
Affiliation(s)
- Amery Treble
- 1 Department of Psychology, University of Houston , Houston, Texas
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Shin W, Mahmoud SY, Sakaie K, Banks SJ, Lowe MJ, Phillips M, Modic MT, Bernick C. Diffusion measures indicate fight exposure-related damage to cerebral white matter in boxers and mixed martial arts fighters. AJNR Am J Neuroradiol 2013; 35:285-90. [PMID: 23928146 DOI: 10.3174/ajnr.a3676] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury is common in fighting athletes such as boxers, given the frequency of blows to the head. Because DTI is sensitive to microstructural changes in white matter, this technique is often used to investigate white matter integrity in patients with traumatic brain injury. We hypothesized that previous fight exposure would predict DTI abnormalities in fighting athletes after controlling for individual variation. MATERIALS AND METHODS A total of 74 boxers and 81 mixed martial arts fighters were included in the analysis and scanned by use of DTI. Individual information and data on fight exposures, including number of fights and knockouts, were collected. A multiple hierarchical linear regression model was used in region-of-interest analysis to test the hypothesis that fight-related exposure could predict DTI values separately in boxers and mixed martial arts fighters. Age, weight, and years of education were controlled to ensure that these factors would not account for the hypothesized effects. RESULTS We found that the number of knockouts among boxers predicted increased longitudinal diffusivity and transversal diffusivity in white matter and subcortical gray matter regions, including corpus callosum, isthmus cingulate, pericalcarine, precuneus, and amygdala, leading to increased mean diffusivity and decreased fractional anisotropy in the corresponding regions. The mixed martial arts fighters had increased transversal diffusivity in the posterior cingulate. The number of fights did not predict any DTI measures in either group. CONCLUSIONS These findings suggest that the history of fight exposure in a fighter population can be used to predict microstructural brain damage.
Collapse
Affiliation(s)
- W Shin
- From the Imaging Institute (W.S., S.Y.M., K.S., M.J.L., M.P.)
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Bigler ED. Traumatic brain injury, neuroimaging, and neurodegeneration. Front Hum Neurosci 2013; 7:395. [PMID: 23964217 PMCID: PMC3734373 DOI: 10.3389/fnhum.2013.00395] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 07/05/2013] [Indexed: 12/14/2022] Open
Abstract
Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University Provo, UT, USA ; Neuroscience Center, Brigham Young University Provo, UT, USA ; Department of Psychiatry, University of Utah Salt Lake City, UT, USA ; The Brain Institute of Utah, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
80
|
Dinkel J, Drier A, Khalilzadeh O, Perlbarg V, Czernecki V, Gupta R, Gomas F, Sanchez P, Dormont D, Galanaud D, Stevens RD, Puybasset L. Long-term white matter changes after severe traumatic brain injury: a 5-year prospective cohort. AJNR Am J Neuroradiol 2013; 35:23-9. [PMID: 23846796 DOI: 10.3174/ajnr.a3616] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Extensive white matter damage has been documented in patients with severe traumatic brain injury, yet how this damage evolves in the long term is not well understood. We used DTI to study white matter changes at 5 years after traumatic brain injury. MATERIALS AND METHODS There were 8 healthy control participants and 13 patients with severe traumatic brain injury who were enrolled in a prospective observational study, which included clinical assessment and brain MR imaging in the acute setting (< 6 weeks) and 2 years and 5 years after injury. Only subjects with mild to moderate disability or no disability at 1 year were included in this analysis. DTI parameters were measured in 20 different brain regions and were normalized to values obtained in an age-matched control group. RESULTS In the acute setting, fractional anisotropy was significantly lower in the genu and body of the corpus callosum and in the bilateral corona radiata in patients compared with control participants, whereas radial diffusivity was significantly (P < .05) higher in these tracts. At 2 years, fractional anisotropy in these tracts had further decreased and radial diffusivity had increased. No significant changes were detected between 2 and 5 years after injury. The baseline radial diffusivity and fractional anisotropy values in the anterior aspect of the brain stem, genu and body of the corpus callosum, and the right and left corona radiata were significantly (P < .05) associated with neurocognitive sequelae (including amnesia, aphasia, and dyspraxia) at year 5. CONCLUSIONS DTI changes in major white matter tracts persist up to 5 years after severe traumatic brain injury and are most pronounced in the corpus callosum and corona radiata. Limited structural change is noted in the interval between 2 and 5 years.
Collapse
Affiliation(s)
- J Dinkel
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Use of functional imaging across clinical phases in CNS drug development. Transl Psychiatry 2013; 3:e282. [PMID: 23860483 PMCID: PMC3731782 DOI: 10.1038/tp.2013.43] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022] Open
Abstract
The use of novel brain biomarkers using nuclear magnetic resonance imaging holds potential of making central nervous system (CNS) drug development more efficient. By evaluating changes in brain function in the disease state or drug effects on brain function, the technology opens up the possibility of obtaining objective data on drug effects in the living awake brain. By providing objective data, imaging may improve the probability of success of identifying useful drugs to treat CNS diseases across all clinical phases (I-IV) of drug development. The evolution of functional imaging and the promise it holds to contribute to drug development will require the development of standards (including good imaging practice), but, if well integrated into drug development, functional imaging can define markers of CNS penetration, drug dosing and target engagement (even for drugs that are not amenable to positron emission tomography imaging) in phase I; differentiate objective measures of efficacy and side effects and responders vs non-responders in phase II, evaluate differences between placebo and drug in phase III trials and provide insights into disease modification in phase IV trials.
Collapse
|
82
|
Frasca D, Tomaszczyk J, McFadyen BJ, Green RE. Traumatic brain injury and post-acute decline: what role does environmental enrichment play? A scoping review. Front Hum Neurosci 2013; 7:31. [PMID: 23616755 PMCID: PMC3628363 DOI: 10.3389/fnhum.2013.00031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES While a growing number of studies provide evidence of neural and cognitive decline in traumatic brain injury (TBI) survivors during the post-acute stages of injury, there is limited research as of yet on environmental factors that may influence this decline. The purposes of this paper, therefore, are to (1) examine evidence that environmental enrichment (EE) can influence long-term outcome following TBI, and (2) examine the nature of post-acute environments, whether they vary in degree of EE, and what impact these variations have on outcomes. METHODS We conducted a scoping review to identify studies on EE in animals and humans, and post-discharge experiences that relate to barriers to recovery. RESULTS One hundred and twenty-three articles that met inclusion criteria demonstrated the benefits of EE on brain and behavior in healthy and brain-injured animals and humans. Nineteen papers on post-discharge experiences revealed that variables such as insurance coverage, financial, and social support, home therapy, and transition from hospital to home, can have an impact on clinical outcomes. CONCLUSION There is evidence to suggest that lack of EE, whether from lack of resources or limited ability to engage in such environments, may play a role in post-acute cognitive and neural decline. Maximizing EE in the post-acute stages of TBI may improve long-term outcomes for the individual, their family and society.
Collapse
Affiliation(s)
- Diana Frasca
- Graduate Department of Rehabilitation Science, University of TorontoToronto, ON, Canada
- Cognitive Neurorehabilitation Sciences Laboratory, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Jennifer Tomaszczyk
- Cognitive Neurorehabilitation Sciences Laboratory, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Bradford J. McFadyen
- Département de Réadaptation, Université LavalQuébec City, QC, Canada
- Centre Interdisciplinaire Recherche en Réadaptation et Intégration SocialeQuébec City, QC, Canada
| | - Robin E. Green
- Graduate Department of Rehabilitation Science, University of TorontoToronto, ON, Canada
- Cognitive Neurorehabilitation Sciences Laboratory, Toronto Rehabilitation InstituteToronto, ON, Canada
| |
Collapse
|
83
|
Ham TE, Sharp DJ. How can investigation of network function inform rehabilitation after traumatic brain injury? Curr Opin Neurol 2012; 25:662-9. [DOI: 10.1097/wco.0b013e328359488f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|