51
|
Bangel KA, Batty M, Ye AX, Meaux E, Taylor MJ, Doesburg SM. Reduced beta band connectivity during number estimation in autism. NEUROIMAGE-CLINICAL 2014; 6:202-13. [PMID: 25379432 PMCID: PMC4215403 DOI: 10.1016/j.nicl.2014.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 12/20/2022]
Abstract
Recent evidence suggests that disruption of integrative processes in sensation and perception may play a critical role in cognitive and behavioural atypicalities characteristic of ASD. In line with this, ASD is associated with altered structural and functional brain connectivity and atypical patterns of inter-regional communication which have been proposed to contribute to cognitive difficulties prevalent in this group. The present MEG study used atlas-guided source space analysis of inter-regional phase synchronization in ASD participants, as well as matched typically developing controls, during a dot number estimation task. This task included stimuli with globally integrated forms (animal shapes) as well as randomly-shaped stimuli which lacked a coherent global pattern. Early task-dependent increases in inter-regional phase synchrony in theta, alpha and beta frequency bands were observed. Reduced long-range beta-band phase synchronization was found in participants with ASD at 70-145 ms during presentation of globally coherent dot patterns. This early reduction in task-dependent inter-regional connectivity encompassed numerous areas including occipital, parietal, temporal, and frontal lobe regions. These results provide the first evidence for inter-regional phase synchronization during numerosity estimation, as well as its alteration in ASD, and suggest that problems with communication among brain areas may contribute to difficulties with integrative processes relevant to extraction of meaningful 'Gestalt' features in this population.
Collapse
Affiliation(s)
- Katrin A Bangel
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada ; Neurosciences & Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada ; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Magali Batty
- INSERM, UMR U930 Imagerie et Cerveau, Université François de Tours, Tours, France
| | - Annette X Ye
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada ; Neurosciences & Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada ; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Emilie Meaux
- Laboratory for Neurology and Imaging of Cognition, Department of Neurosciences and Clinical Neurology, University Medical Center, Geneva, Switzerland
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada ; Neurosciences & Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada ; Department of Medical Imaging, University of Toronto, Toronto, Canada ; Department of Psychology, University of Toronto, Toronto, Canada
| | - Sam M Doesburg
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada ; Neurosciences & Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada ; Department of Medical Imaging, University of Toronto, Toronto, Canada ; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
52
|
Taylor MJ, Doesburg SM, Pang EW. Neuromagnetic vistas into typical and atypical development of frontal lobe functions. Front Hum Neurosci 2014; 8:453. [PMID: 24994980 PMCID: PMC4061489 DOI: 10.3389/fnhum.2014.00453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/03/2014] [Indexed: 11/24/2022] Open
Abstract
The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG) is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups – children with autism spectrum disorder and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms.
Collapse
Affiliation(s)
- Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children , Toronto, ON , Canada ; Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute , Toronto, ON , Canada ; Department of Medical Imaging, University of Toronto , Toronto, ON , Canada ; Department of Psychology, University of Toronto , Toronto, ON , Canada ; Department of Paediatrics, University of Toronto , Toronto, ON , Canada
| | - Sam M Doesburg
- Department of Diagnostic Imaging, Hospital for Sick Children , Toronto, ON , Canada ; Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute , Toronto, ON , Canada ; Department of Medical Imaging, University of Toronto , Toronto, ON , Canada ; Department of Psychology, University of Toronto , Toronto, ON , Canada
| | - Elizabeth W Pang
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute , Toronto, ON , Canada ; Department of Paediatrics, University of Toronto , Toronto, ON , Canada ; Division of Neurology, Hospital for Sick Children , Toronto, ON , Canada
| |
Collapse
|
53
|
Schäfer CB, Morgan BR, Ye AX, Taylor MJ, Doesburg SM. Oscillations, networks, and their development: MEG connectivity changes with age. Hum Brain Mapp 2014; 35:5249-61. [PMID: 24861830 DOI: 10.1002/hbm.22547] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/05/2014] [Indexed: 11/10/2022] Open
Abstract
Magnetoencephalographic (MEG) investigations of inter-regional amplitude correlations have yielded new insights into the organization and neurophysiology of resting-state networks (RSNs) first identified using fMRI. Inter-regional MEG amplitude correlations in adult RSNs have been shown to be most prominent in alpha and beta frequency ranges and to express strong congruence with RSN topologies found using fMRI. Despite such advances, little is known about how oscillatory connectivity in RSNs develops throughout childhood and adolescence. This study used a novel fMRI-guided MEG approach to investigate the maturation of resting-state amplitude correlations in physiologically relevant frequency ranges within and among six RSNs in 59 participants, aged 6-34 years. We report age-related increases in inter-regional amplitude correlations that were largest in alpha and beta frequency bands. In contrast to fMRI reports, these changes were observed both within and between the various RSNs analyzed. Our results provide the first evidence of developmental changes in spontaneous neurophysiological connectivity in source-resolved RSNs, which indicate increasing integration within and among intrinsic functional brain networks throughout childhood, adolescence, and early adulthood.
Collapse
Affiliation(s)
- Carmen B Schäfer
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada; Institute of Anatomy and Cell Biology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
54
|
Mišić B, Doesburg SM, Fatima Z, Vidal J, Vakorin VA, Taylor MJ, McIntosh AR. Coordinated Information Generation and Mental Flexibility: Large-Scale Network Disruption in Children with Autism. Cereb Cortex 2014; 25:2815-27. [PMID: 24770713 PMCID: PMC4537433 DOI: 10.1093/cercor/bhu082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorder (ASD) includes deficits in social cognition, communication, and executive function. Recent neuroimaging studies suggest that ASD disrupts the structural and functional organization of brain networks and, presumably, how they generate information. Here, we relate deficits in an aspect of cognitive control to network-level disturbances in information processing. We recorded magnetoencephalography while children with ASD and typically developing controls performed a set-shifting task designed to test mental flexibility. We used multiscale entropy (MSE) to estimate the rate at which information was generated in a set of sources distributed across the brain. Multivariate partial least-squares analysis revealed 2 distributed networks, operating at fast and slow time scales, that respond completely differently to set shifting in ASD compared with control children, indicating disrupted temporal organization within these networks. Moreover, when typically developing children engaged these networks, they achieved faster reaction times. When children with ASD engaged these networks, there was no improvement in performance, suggesting that the networks were ineffective in children with ASD. Our data demonstrate that the coordination and temporal organization of large-scale neural assemblies during the performance of cognitive control tasks is disrupted in children with ASD, contributing to executive function deficits in this group.
Collapse
Affiliation(s)
- Bratislav Mišić
- Rotman Research Institute, Baycrest Centre, Toronto, Canada Department of Psychology, University of Toronto, Toronto, Canada
| | - Sam M Doesburg
- Department of Psychology, University of Toronto, Toronto, Canada Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Zainab Fatima
- Rotman Research Institute, Baycrest Centre, Toronto, Canada
| | - Julie Vidal
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Margot J Taylor
- Department of Psychology, University of Toronto, Toronto, Canada Department of Medical Imaging, University of Toronto, Toronto, Canada Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest Centre, Toronto, Canada Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
55
|
Doesburg SM, Moiseev A, Herdman AT, Ribary U, Grunau RE. Region-Specific Slowing of Alpha Oscillations is Associated with Visual-Perceptual Abilities in Children Born Very Preterm. Front Hum Neurosci 2013; 7:791. [PMID: 24298250 PMCID: PMC3828614 DOI: 10.3389/fnhum.2013.00791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/30/2013] [Indexed: 01/16/2023] Open
Abstract
Children born very preterm (≤32 weeks gestational age) without major intellectual or neurological impairments often express selective deficits in visual-perceptual abilities. The alterations in neurophysiological development underlying these problems, however, remain poorly understood. Recent research has indicated that spontaneous alpha oscillations are slowed in children born very preterm, and that atypical alpha-mediated functional network connectivity may underlie selective developmental difficulties in visual-perceptual ability in this group. The present study provides the first source-resolved analysis of slowing of spontaneous alpha oscillations in very preterm children, indicating alterations in a distributed set of brain regions concentrated in areas of posterior parietal and inferior temporal regions associated with visual perception, as well as prefrontal cortical regions and thalamus. We also uniquely demonstrate that slowing of alpha oscillations is associated with selective difficulties in visual-perceptual ability in very preterm children. These results indicate that region-specific slowing of alpha oscillations contribute to selective developmental difficulties prevalent in this population.
Collapse
Affiliation(s)
- Sam M. Doesburg
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
- Neurosciences & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Alexander Moiseev
- Behavioral and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
| | - Anthony T. Herdman
- Behavioral and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
- Department of Audiology and Speech Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Urs Ribary
- Behavioral and Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
- Developmental Neurosciences and Child Health, Child and Family Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Ruth E. Grunau
- Developmental Neurosciences and Child Health, Child and Family Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|