51
|
Alluri V, Toiviainen P, Burunat I, Kliuchko M, Vuust P, Brattico E. Connectivity patterns during music listening: Evidence for action-based processing in musicians. Hum Brain Mapp 2017; 38:2955-2970. [PMID: 28349620 DOI: 10.1002/hbm.23565] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022] Open
Abstract
Musical expertise is visible both in the morphology and functionality of the brain. Recent research indicates that functional integration between multi-sensory, somato-motor, default-mode (DMN), and salience (SN) networks of the brain differentiates musicians from non-musicians during resting state. Here, we aimed at determining whether brain networks differentially exchange information in musicians as opposed to non-musicians during naturalistic music listening. Whole-brain graph-theory analyses were performed on participants' fMRI responses. Group-level differences revealed that musicians' primary hubs comprised cerebral and cerebellar sensorimotor regions whereas non-musicians' dominant hubs encompassed DMN-related regions. Community structure analyses of the key hubs revealed greater integration of motor and somatosensory homunculi representing the upper limbs and torso in musicians. Furthermore, musicians who started training at an earlier age exhibited greater centrality in the auditory cortex, and areas related to top-down processes, attention, emotion, somatosensory processing, and non-verbal processing of speech. We here reveal how brain networks organize themselves in a naturalistic music listening situation wherein musicians automatically engage neural networks that are action-based while non-musicians use those that are perception-based to process an incoming auditory stream. Hum Brain Mapp 38:2955-2970, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vinoo Alluri
- Department of Music, University of Jyväskylä, Jyväskylä, Finland
| | - Petri Toiviainen
- Department of Music, University of Jyväskylä, Jyväskylä, Finland
| | - Iballa Burunat
- Department of Music, University of Jyväskylä, Jyväskylä, Finland
| | - Marina Kliuchko
- Cognitive Brain Research Unit, Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Peter Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Elvira Brattico
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & Royal Academy of Music Aarhus/Aalborg, Denmark.,Advanced Magnetic Imaging (AMI) Centre, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
52
|
Vuoskoski JK, Eerola T. The Pleasure Evoked by Sad Music Is Mediated by Feelings of Being Moved. Front Psychol 2017; 8:439. [PMID: 28377740 PMCID: PMC5359245 DOI: 10.3389/fpsyg.2017.00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Why do we enjoy listening to music that makes us sad? This question has puzzled music psychologists for decades, but the paradox of “pleasurable sadness” remains to be solved. Recent findings from a study investigating the enjoyment of sad films suggest that the positive relationship between felt sadness and enjoyment might be explained by feelings of being moved (Hanich et al., 2014). The aim of the present study was to investigate whether feelings of being moved also mediated the enjoyment of sad music. In Experiment 1, 308 participants listened to five sad music excerpts and rated their liking and felt emotions. A multilevel mediation analysis revealed that the initial positive relationship between liking and felt sadness (r = 0.22) was fully mediated by feelings of being moved. Experiment 2 explored the interconnections of perceived sadness, beauty, and movingness in 27 short music excerpts that represented independently varying levels of sadness and beauty. Two multilevel mediation analyses were carried out to test competing hypotheses: (A) that movingness mediates the effect of perceived sadness on liking, or (B) that perceived beauty mediates the effect of sadness on liking. Stronger support was obtained for Hypothesis A. Our findings suggest that – similarly to the enjoyment of sad films – the aesthetic appreciation of sad music is mediated by being moved. We argue that felt sadness may contribute to the enjoyment of sad music by intensifying feelings of being moved.
Collapse
Affiliation(s)
- Jonna K Vuoskoski
- Faculty of Music, University of OxfordOxford, UK; Department of Music, University of JyväskyläJyväskylä, Finland
| | - Tuomas Eerola
- Department of Music, University of JyväskyläJyväskylä, Finland; Department of Music, Durham UniversityDurham, UK
| |
Collapse
|
53
|
Wassiliwizky E, Jacobsen T, Heinrich J, Schneiderbauer M, Menninghaus W. Tears Falling on Goosebumps: Co-occurrence of Emotional Lacrimation and Emotional Piloerection Indicates a Psychophysiological Climax in Emotional Arousal. Front Psychol 2017; 8:41. [PMID: 28223946 PMCID: PMC5293808 DOI: 10.3389/fpsyg.2017.00041] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022] Open
Abstract
This psychophysiological study is the first to examine the relationship between emotional tears and emotional piloerection (i.e., goosebumps). Although both phenomena have been related to peak states of being moved, details about their temporal occurrence and the associated levels of physiological arousal have remained unknown. In our study, we used emotionally powerful film scenes that were self-selected by participants. Our findings show that even within peak moments of emotional arousal, a gradation of intensity is possible. The overlap of tears and goosebumps signifies a maximal climax within peak moments. On the side of the stimulus, we found that displays of prosocial behavior play a crucial role in the elicitation of tears and goosebumps. Finally, based on the results of a formal film analysis of the tears-eliciting clips provided by our participants, as compared to randomly extracted, equally long control clips from the same films, we show how the technical and artistic making of the clips was optimized for the display of social interaction and emotional expressions.
Collapse
Affiliation(s)
- Eugen Wassiliwizky
- Language and Literature Department, Max Planck Institute for Empirical AestheticsFrankfurt am Main, Germany
- Department of Education and Psychology, Freie Universität BerlinBerlin, Germany
| | - Thomas Jacobsen
- Experimental Psychology Unit, Helmut Schmidt University/University of the Federal Armed Forces HamburgHamburg, Germany
| | - Jan Heinrich
- Department of Education and Psychology, Freie Universität BerlinBerlin, Germany
| | - Manuel Schneiderbauer
- Language and Literature Department, Max Planck Institute for Empirical AestheticsFrankfurt am Main, Germany
- Departments of Time-based Media and Film, University of Fine Arts HamburgHamburg, Germany
| | - Winfried Menninghaus
- Language and Literature Department, Max Planck Institute for Empirical AestheticsFrankfurt am Main, Germany
| |
Collapse
|
54
|
Jacobsen T, Beudt S. Stability and Variability in Aesthetic Experience: A Review. Front Psychol 2017; 8:143. [PMID: 28223955 PMCID: PMC5293782 DOI: 10.3389/fpsyg.2017.00143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/19/2017] [Indexed: 11/23/2022] Open
Abstract
Based on psychophysics’ pragmatic dualism, we trace the cognitive neuroscience of stability and variability in aesthetic experience. With regard to different domains of aesthetic processing, we touch upon the relevance of cognitive schemata for aesthetic preference. Attitudes and preferences are explored in detail. Evolutionary constraints on attitude formation or schema generation are elucidated, just as the often seemingly arbitrary influences of social, societal, and cultural nature are. A particular focus is put on the concept of critical periods during an individual’s ontogenesis. The latter contrasting with changes of high frequency, such as fashion influences. Taken together, these analyses document the state of the art in the field and, potentially, highlight avenues for future research.
Collapse
Affiliation(s)
- Thomas Jacobsen
- Experimental Psychology Unit, Humanities and Social Sciences, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Hamburg, Germany
| | - Susan Beudt
- Experimental Psychology Unit, Humanities and Social Sciences, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg Hamburg, Germany
| |
Collapse
|
55
|
Eerola T, Vuoskoski JK, Kautiainen H. Being Moved by Unfamiliar Sad Music Is Associated with High Empathy. Front Psychol 2016; 7:1176. [PMID: 27695424 PMCID: PMC5025521 DOI: 10.3389/fpsyg.2016.01176] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022] Open
Abstract
The paradox of enjoying listening to music that evokes sadness is yet to be fully understood. Unlike prior studies that have explored potential explanations related to lyrics, memories, and mood regulation, we investigated the types of emotions induced by unfamiliar, instrumental sad music, and whether these responses are consistently associated with certain individual difference variables. One hundred and two participants were drawn from a representative sample to minimize self-selection bias. The results suggest that the emotional responses induced by unfamiliar sad music could be characterized in terms of three underlying factors: Relaxing sadness, Moving sadness, and Nervous sadness. Relaxing sadness was characterized by felt and perceived peacefulness and positive valence. Moving sadness captured an intense experience that involved feelings of sadness and being moved. Nervous sadness was associated with felt anxiety, perceived scariness and negative valence. These interpretations were supported by indirect measures of felt emotion. Experiences of Moving sadness were strongly associated with high trait empathy and emotional contagion, but not with other previously suggested traits such as absorption or nostalgia-proneness. Relaxing sadness and Nervous sadness were not significantly predicted by any of the individual difference variables. The findings are interpreted within a theoretical framework of embodied emotions.
Collapse
Affiliation(s)
- Tuomas Eerola
- Department of Music, Durham UniversityDurham, UK; Department of Music, University of JyväskyläJyväskylä, Finland
| | - Jonna K Vuoskoski
- Department of Music, University of JyväskyläJyväskylä, Finland; Faculty of Music, University of OxfordOxford, UK
| | - Hannu Kautiainen
- Department of General Practice and Primary Health Care, University of Helsinki Helsinki, Finland
| |
Collapse
|
56
|
Bogert B, Numminen-Kontti T, Gold B, Sams M, Numminen J, Burunat I, Lampinen J, Brattico E. Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions. Neuropsychologia 2016; 89:393-402. [PMID: 27394152 DOI: 10.1016/j.neuropsychologia.2016.07.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 11/28/2022]
Abstract
Music is often used to regulate emotions and mood. Typically, music conveys and induces emotions even when one does not attend to them. Studies on the neural substrates of musical emotions have, however, only examined brain activity when subjects have focused on the emotional content of the music. Here we address with functional magnetic resonance imaging (fMRI) the neural processing of happy, sad, and fearful music with a paradigm in which 56 subjects were instructed to either classify the emotions (explicit condition) or pay attention to the number of instruments playing (implicit condition) in 4-s music clips. In the implicit vs. explicit condition, stimuli activated bilaterally the inferior parietal lobule, premotor cortex, caudate, and ventromedial frontal areas. The cortical dorsomedial prefrontal and occipital areas activated during explicit processing were those previously shown to be associated with the cognitive processing of music and emotion recognition and regulation. Moreover, happiness in music was associated with activity in the bilateral auditory cortex, left parahippocampal gyrus, and supplementary motor area, whereas the negative emotions of sadness and fear corresponded with activation of the left anterior cingulate and middle frontal gyrus and down-regulation of the orbitofrontal cortex. Our study demonstrates for the first time in healthy subjects the neural underpinnings of the implicit processing of brief musical emotions, particularly in frontoparietal, dorsolateral prefrontal, and striatal areas of the brain.
Collapse
Affiliation(s)
- Brigitte Bogert
- Cognitive Brain Research Unit (CBRU), Institute of Behavioural Sciences, University of Helsinki, Finland.
| | - Taru Numminen-Kontti
- Cognitive Brain Research Unit (CBRU), Institute of Behavioural Sciences, University of Helsinki, Finland
| | - Benjamin Gold
- Cognitive Brain Research Unit (CBRU), Institute of Behavioural Sciences, University of Helsinki, Finland; Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mikko Sams
- Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), School of Science, Aalto University, Espoo, Finland
| | - Jussi Numminen
- Helsinki Medical Imaging Center, University of Helsinki, Töölö Hospital, Finland
| | - Iballa Burunat
- Finnish Center for Interdisciplinary Music Research, Department of Music, University of Jyväskylä, Finland
| | - Jouko Lampinen
- Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), School of Science, Aalto University, Espoo, Finland
| | - Elvira Brattico
- Cognitive Brain Research Unit (CBRU), Institute of Behavioural Sciences, University of Helsinki, Finland; Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark; AMI Centre, Aalto University, Espoo, Finland.
| |
Collapse
|
57
|
Eerola T, Peltola HR. Memorable Experiences with Sad Music-Reasons, Reactions and Mechanisms of Three Types of Experiences. PLoS One 2016; 11:e0157444. [PMID: 27300268 PMCID: PMC4907454 DOI: 10.1371/journal.pone.0157444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
Reactions to memorable experiences of sad music were studied by means of a survey administered to a convenience (N = 1577), representative (N = 445), and quota sample (N = 414). The survey explored the reasons, mechanisms, and emotions of such experiences. Memorable experiences linked with sad music typically occurred in relation to extremely familiar music, caused intense and pleasurable experiences, which were accompanied by physiological reactions and positive mood changes in about a third of the participants. A consistent structure of reasons and emotions for these experiences was identified through exploratory and confirmatory factor analyses across the samples. Three types of sadness experiences were established, one that was genuinely negative (Grief-Stricken Sorrow) and two that were positive (Comforting Sorrow and Sweet Sorrow). Each type of emotion exhibited certain individual differences and had distinct profiles in terms of the underlying reasons, mechanisms, and elicited reactions. The prevalence of these broad types of emotional experiences suggested that positive experiences are the most frequent, but negative experiences were not uncommon in any of the samples. The findings have implications for measuring emotions induced by music and fiction in general, and call attention to the non-pleasurable aspects of these experiences.
Collapse
Affiliation(s)
- Tuomas Eerola
- Department of Music, University of Jyväskylä, Jyväskylä, Finland
- Department of Music, Durham University, Durham, United Kingdom
- * E-mail:
| | | |
Collapse
|
58
|
Lepping RJ, Atchley RA, Chrysikou E, Martin LE, Clair AA, Ingram RE, Simmons WK, Savage CR. Neural Processing of Emotional Musical and Nonmusical Stimuli in Depression. PLoS One 2016; 11:e0156859. [PMID: 27284693 PMCID: PMC4902194 DOI: 10.1371/journal.pone.0156859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/21/2016] [Indexed: 12/16/2022] Open
Abstract
Background Anterior cingulate cortex (ACC) and striatum are part of the emotional neural circuitry implicated in major depressive disorder (MDD). Music is often used for emotion regulation, and pleasurable music listening activates the dopaminergic system in the brain, including the ACC. The present study uses functional MRI (fMRI) and an emotional nonmusical and musical stimuli paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered within the ACC and striatum in depression. Method Nineteen MDD and 20 never-depressed (ND) control participants listened to standardized positive and negative emotional musical and nonmusical stimuli during fMRI scanning and gave subjective ratings of valence and arousal following scanning. Results ND participants exhibited greater activation to positive versus negative stimuli in ventral ACC. When compared with ND participants, MDD participants showed a different pattern of activation in ACC. In the rostral part of the ACC, ND participants showed greater activation for positive information, while MDD participants showed greater activation to negative information. In dorsal ACC, the pattern of activation distinguished between the types of stimuli, with ND participants showing greater activation to music compared to nonmusical stimuli, while MDD participants showed greater activation to nonmusical stimuli, with the greatest response to negative nonmusical stimuli. No group differences were found in striatum. Conclusions These results suggest that people with depression may process emotional auditory stimuli differently based on both the type of stimulation and the emotional content of that stimulation. This raises the possibility that music may be useful in retraining ACC function, potentially leading to more effective and targeted treatments.
Collapse
Affiliation(s)
- Rebecca J. Lepping
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| | - Ruth Ann Atchley
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
| | - Evangelia Chrysikou
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
| | - Laura E. Martin
- Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Preventive Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Alicia A. Clair
- Department of Music Education and Music Therapy, University of Kansas, Lawrence, Kansas, United States of America
| | - Rick E. Ingram
- Department of Psychology, University of Kansas, Lawrence, Kansas, United States of America
| | - W. Kyle Simmons
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
- Faculty of Community Medicine, University of Tulsa, Tulsa, Oklahoma, United States of America
| | - Cary R. Savage
- Center for Health Behavior Neuroscience, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Psychiatry, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
59
|
Rogenmoser L, Zollinger N, Elmer S, Jäncke L. Independent component processes underlying emotions during natural music listening. Soc Cogn Affect Neurosci 2016; 11:1428-39. [PMID: 27217116 DOI: 10.1093/scan/nsw048] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the brain processes underlying emotions during natural music listening. To address this, we recorded high-density electroencephalography (EEG) from 22 subjects while presenting a set of individually matched whole musical excerpts varying in valence and arousal. Independent component analysis was applied to decompose the EEG data into functionally distinct brain processes. A k-means cluster analysis calculated on the basis of a combination of spatial (scalp topography and dipole location mapped onto the Montreal Neurological Institute brain template) and functional (spectra) characteristics revealed 10 clusters referring to brain areas typically involved in music and emotion processing, namely in the proximity of thalamic-limbic and orbitofrontal regions as well as at frontal, fronto-parietal, parietal, parieto-occipital, temporo-occipital and occipital areas. This analysis revealed that arousal was associated with a suppression of power in the alpha frequency range. On the other hand, valence was associated with an increase in theta frequency power in response to excerpts inducing happiness compared to sadness. These findings are partly compatible with the model proposed by Heller, arguing that the frontal lobe is involved in modulating valenced experiences (the left frontal hemisphere for positive emotions) whereas the right parieto-temporal region contributes to the emotional arousal.
Collapse
Affiliation(s)
- Lars Rogenmoser
- Division of Neuropsychology, Institute of Psychology, University of Zurich, 8050, Zurich, Switzerland Neuroimaging and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, 02215, Boston, MA, USA Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8050, Zurich, Switzerland
| | - Nina Zollinger
- Division of Neuropsychology, Institute of Psychology, University of Zurich, 8050, Zurich, Switzerland
| | - Stefan Elmer
- Division of Neuropsychology, Institute of Psychology, University of Zurich, 8050, Zurich, Switzerland
| | - Lutz Jäncke
- Division of Neuropsychology, Institute of Psychology, University of Zurich, 8050, Zurich, Switzerland Center for Integrative Human Physiology (ZIHP), University of Zurich, 8050, Zurich, Switzerland International Normal Aging and Plasticity Imaging Center (INAPIC), University of Zurich, 8050, Zurich, Switzerland University Research Priority Program (URPP) "Dynamic of Healthy Aging," University of Zurich, 8050, Zurich, Switzerland Department of Special Education, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|