51
|
Kapur M, Ackerman SL. mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease. Trends Genet 2018; 34:218-231. [PMID: 29352613 DOI: 10.1016/j.tig.2017.12.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Errors during mRNA translation can lead to a reduction in the levels of functional proteins and an increase in deleterious molecules. Advances in next-generation sequencing have led to the discovery of rare genetic disorders, many caused by mutations in genes encoding the mRNA translation machinery, as well as to a better understanding of translational dynamics through ribosome profiling. We discuss here multiple neurological disorders that are linked to errors in tRNA aminoacylation and ribosome decoding. We draw on studies from genetic models, including yeast and mice, to enhance our understanding of the translational defects observed in these diseases. Finally, we emphasize the importance of tRNA, their associated enzymes, and the inextricable link between accuracy and efficiency in the maintenance of translational fidelity.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
52
|
Jonkhout N, Tran J, Smith MA, Schonrock N, Mattick JS, Novoa EM. The RNA modification landscape in human disease. RNA (NEW YORK, N.Y.) 2017; 23:1754-1769. [PMID: 28855326 PMCID: PMC5688997 DOI: 10.1261/rna.063503.117] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps.
Collapse
Affiliation(s)
- Nicky Jonkhout
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Julia Tran
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
| | - Martin A Smith
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Nicole Schonrock
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- Genome.One, Darlinghurst, 2010 NSW, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
| | - Eva Maria Novoa
- Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
- St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
53
|
Kapur M, Monaghan CE, Ackerman SL. Regulation of mRNA Translation in Neurons-A Matter of Life and Death. Neuron 2017; 96:616-637. [PMID: 29096076 DOI: 10.1016/j.neuron.2017.09.057] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022]
Abstract
Dynamic regulation of mRNA translation initiation and elongation is essential for the survival and function of neural cells. Global reductions in translation initiation resulting from mutations in the translational machinery or inappropriate activation of the integrated stress response may contribute to pathogenesis in a subset of neurodegenerative disorders. Aberrant proteins generated by non-canonical translation initiation may be a factor in the neuron death observed in the nucleotide repeat expansion diseases. Dysfunction of central components of the elongation machinery, such as the tRNAs and their associated enzymes, can cause translational infidelity and ribosome stalling, resulting in neurodegeneration. Taken together, dysregulation of mRNA translation is emerging as a unifying mechanism underlying the pathogenesis of many neurodegenerative disorders.
Collapse
Affiliation(s)
- Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Caitlin E Monaghan
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
54
|
Dauden MI, Jaciuk M, Müller CW, Glatt S. Structural asymmetry in the eukaryotic Elongator complex. FEBS Lett 2017; 592:502-515. [DOI: 10.1002/1873-3468.12865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Maria I. Dauden
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Marcin Jaciuk
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Christoph W. Müller
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| |
Collapse
|