51
|
Liang J, Wang Q, Li JQ, Guo T, Yu D. Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp Neurol 2019; 325:113139. [PMID: 31794744 DOI: 10.1016/j.expneurol.2019.113139] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Inflammasome contributes to ischemic brain injury by inducing pyroptosis and inflammation. The aim of this study is to unravel the mechanism of long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3)-mediated regulation of absent in melanoma 2 (AIM2) inflammasome during cerebral ischemia/reperfusion (I/R). METHODS In vivo middle cerebral artery occlusion (MCAO) rat model and in vitro oxygen-glucose deprivation/reperfusion (OGD/R)-treated neurocytes model were generated. TTC, H&E staining and TUNEL were performed to assess the cerebral ischemic injury. LDH and MTT assays were used to detect cell viability and cytotoxicity. qRT-PCR was used to detect the expression levels of MEG3, miR-485 and AIM2. Immunohistochemistry (IHC) and immunofluorescence were conducted to detect the AIM2 expression. ELISA and Western blotting were performed to determine the secretion and protein levels of inflammasome signaling proteins. Dual luciferase reporter assay and Ago2-RIP were used to validate the direct interaction among MEG3, miR-485 and AIM2. RESULTS In both MCAO rats and OGD/R-treated neurocytes, MEG3 and AIM2 were significantly up-regulated, whereas miR-485 was down-regulated. MCAO induces pyroptosis and release of IL-1β and IL-18 in ischemia brain. MEG3 acted as a molecular sponge to suppress miR-485, and AIM2 was identified as a direct target of miR-485. Knockdown of MEG3 inhibited OGD/R-induced pyroptosis and inflammation, and lack of MEG3 inhibited caspase1 signaling and decreased the expression of AIM2, ASC, cleaved-caspase1 and GSDMD-N. While overexpression of MEG3 exerted opposite effects. CONCLUSION MEG3/miR-485/AIM2 axis contributes to pyroptosis via activating caspase1 signaling during cerebral I/R, suggesting that this axis may be a potent therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Ji Liang
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, PR China
| | - Qiang Wang
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, PR China
| | - Jun-Qi Li
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, PR China
| | - Tie Guo
- Department of ICU, The First Affiliated Hospital of Zhengzhou University, PR China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan Province, PR China.
| |
Collapse
|
52
|
Jing H, Liu L, Jia Y, Yao H, Ma F. Overexpression of the long non-coding RNA Oprm1 alleviates apoptosis from cerebral ischemia-reperfusion injury through the Oprm1/miR-155/GATA3 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2431-2439. [PMID: 31187646 DOI: 10.1080/21691401.2019.1626408] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Numerous differentially expressed long non-coding RNAs (lncRNAs) have been identified in cerebral ischemia-reperfusion (I/R) injury using RNA-Seq analysis. However, little is known about whether and how lncRNAs are involved in cerebral I/R injury. In this study, we investigated the function of the lncRNA Oprm1 in cerebral I/R injury and explored the underlying mechanism. An oxygen-glucose deprivation model in N2a cells was utilized to mimic cerebral I/R injury in vitro. Trypan blue staining, terminal deoxytransferase-mediated dUTP-biotin nick end labelling and caspase-3 were measured to evaluate apoptosis. Middle cerebral artery occlusion was performed in mice to evaluate the function of lncRNA Oprm1 in vivo. Real-time PCR and western blotting were used to measure the expression levels of lncRNA Opmr1, caspase-3, miR-155, GATA binding protein 3 (GATA3) and nuclear factor (NF)-κB. lncRNA Oprm1 was mainly located in the cytoplasm. Overexpression of lncRNA Oprm1 alleviated the apoptosis induced by oxygen-glucose deprivation and significantly reduced cleaved caspase-3 levels. Infarct size was distinctly decreased in the lncRNA Oprm1-overexpression group. The neurological score was also improved. Our findings showed that the lncRNA Oprm1/miR-155/GATA3 axis plays an important role in cerebral I/R injury. lncRNA Oprm1 may attenuate cerebral injury through the NF-κB pathway. lncRNA Oprm1 may serve as a potential target for new therapeutic interventions in patients with ischemic stroke.
Collapse
Affiliation(s)
- Hongyu Jing
- a Department of Respiratory Medicine, First Hospital of Jilin University , Changchun , China
| | - Lingyun Liu
- b Department of Andrology, First Hospital of Jilin University , Changchun , China
| | - Ye Jia
- c Department of Nephrology, First Hospital of Jilin University , Changchun , China
| | - Hanxin Yao
- d Department of Clinical Laboratory, First Hospital of Jilin University , Changchun , China
| | - Fuzhe Ma
- c Department of Nephrology, First Hospital of Jilin University , Changchun , China
| |
Collapse
|
53
|
Deng W, Fan C, Shen R, Wu Y, Du R, Teng J. Long noncoding MIAT acting as a ceRNA to sponge microRNA-204-5p to participate in cerebral microvascular endothelial cell injury after cerebral ischemia through regulating HMGB1. J Cell Physiol 2019; 235:4571-4586. [PMID: 31628679 DOI: 10.1002/jcp.29334] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
This study is applied to the investigation of the long noncoding RNA myocardial infarction associated transcript's (MIAT's) role in regulating the expression of high-mobility group box 1 (HMGB1) in cerebral microvascular endothelial cell (CMEC) injury after cerebral ischemia by serving as a competitive endogenous RNA (ceRNA) to sponge microRNA-204-5p (miR-204-5p). The cerebral ischemia model of middle cerebral artery occlusion (MCAO) in rats was established by the suture method, in which rats were injected with empty plasmids and MIAT siRNA plasmids. The cerebral ischemia injury model in vitro was established through oxygen glucose deprivation (OGD) in primary cultured CMECs in rats. The cells were transfected with empty plasmids and MIAT siRNA plasmids. The MIAT/miR-204-5p/HMGB1 axis' function in damage and angiogenesis of CMECs were explored. The binding site between MIAT and miR-204-5p along with that between miR-204-5p and HMGB1 was determined. MIAT was overexpressed in MCAO rats' brain tissue and inhibited MIAT attenuated the injury of brain tissue in MCAO rats. Inhibition of MIAT promoted angiogenesis, promoted miR-204-5p expression and inhibited HMGB1 expression in brain tissue of MCAO rats. Inhibition of MIAT reduced CMEC damage, induced angiogenesis of CMECs, increased the number of surviving neurons, promoted miR-204-5p expression and inhibited HMGB1 expression in CMECs treated with OGD. MIAT promoted HMGB1 expression by competitive binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia. Our study showed that MIAT promoted HMGB1 expression by competitively binding to miR-204-5p to regulate the injury of CMECs after cerebral ischemia.
Collapse
Affiliation(s)
- Wenjing Deng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenghe Fan
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruile Shen
- The Neurology Department, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Yanzhi Wu
- The Neurology Department, Zhengzhou Central Hospital, Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Du
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junfang Teng
- The Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
54
|
Li Y, Guo S, Liu W, Jin T, Li X, He X, Zhang X, Su H, Zhang N, Duan C. Silencing of SNHG12 Enhanced the Effectiveness of MSCs in Alleviating Ischemia/Reperfusion Injuries via the PI3K/AKT/mTOR Signaling Pathway. Front Neurosci 2019; 13:645. [PMID: 31293373 PMCID: PMC6603177 DOI: 10.3389/fnins.2019.00645] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
Previous studies have reported that the long non-coding RNA SNHG12 (lncRNA SNHG12) plays a critical role in regulating the function of mesenchymal stem cells (MSCs); however, the effect of lncRNA SNHG12 on MSCs in injured brain tissue has rarely been reported. We studied the effect and mechanism of lncRNA SNHG12-modified mesenchymal stem cells (MSCs) in treating brain injuries caused by ischemia/reperfusion (I/R). I/R treated rat brain microvascular endothelial cells (BMECs) were co-cultured with MSCs or I/R pretreated MSCs. Next, BMEC proliferation was detected by using CCK-8 and EdU assays, and cell apoptosis was determined by using flow cytometry and the Hoechst staining method. Autophagy of BMECs was determined using immunofluorescence and expression of associated pathway proteins were measured by western blotting. Moreover, BMEC proliferation, apoptosis, and autophagy were also determined after the BMECs had been co-cultured with shSNHG12-MSCs. In addition, a rat model of middle cerebral artery occlusion (MCAO) was used to further confirm the findings obtained with cells. I/R treatment significantly decreased the proliferation of BMECs, but increased their levels of SNHG12 expression, apoptosis, and autophagy. However, co-culturing of BMECs with MSCs markedly alleviated the reduction in BMEC proliferation and the increases in BMEC apoptosis and autophagy, as well as the phosphorylation of PI3K, AKT, and mTOR proteins in BMECs that had been induced by I/R. Furthermore, shSNHG12 remarkably enhanced the effects of MSCs. In addition, an injection MSCs reduced the infarct areas and rates of cell apoptosis in MACO rats, and reduced the phosphorylation of PI3K, AKT, and mTOR proteins. Moreover, shSNHG12 enhanced the ameliorative effect of MSCs in treating brain injuries in the MACO rats. In conclusion, silencing of SNHG12 enhanced the effects of MSCs in reducing apoptosis and autophagy of BMECs by activating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yuanzhi Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurosurgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Shenquan Guo
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenchao Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Jin
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xifeng Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuying He
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hengxian Su
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanzhi Duan
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
55
|
Silva AM, Moura SR, Teixeira JH, Barbosa MA, Santos SG, Almeida MI. Long noncoding RNAs: a missing link in osteoporosis. Bone Res 2019; 7:10. [PMID: 30937214 PMCID: PMC6437190 DOI: 10.1038/s41413-019-0048-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a systemic disease that results in loss of bone density and increased fracture risk, particularly in the vertebrae and the hip. This condition and associated morbidity and mortality increase with population ageing. Long noncoding (lnc) RNAs are transcripts longer than 200 nucleotides that are not translated into proteins, but play important regulatory roles in transcriptional and post-transcriptional regulation. Their contribution to disease onset and development is increasingly recognized. Herein, we present an integrative revision on the studies that implicate lncRNAs in osteoporosis and that support their potential use as therapeutic tools. Firstly, current evidence on lncRNAs involvement in cellular and molecular mechanisms linked to osteoporosis and its major complication, fragility fractures, is reviewed. We analyze evidence of their roles in osteogenesis, osteoclastogenesis, and bone fracture healing events from human and animal model studies. Secondly, the potential of lncRNAs alterations at genetic and transcriptomic level are discussed as osteoporosis risk factors and as new circulating biomarkers for diagnosis. Finally, we conclude debating the possibilities, persisting difficulties, and future prospects of using lncRNAs in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Andreia Machado Silva
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Sara Reis Moura
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - José Henrique Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Mário Adolfo Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Susana Gomes Santos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Maria Inês Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| |
Collapse
|
56
|
Yang J, Gu L, Guo X, Huang J, Chen Z, Huang G, Kang Y, Zhang X, Long J, Su L. LncRNA ANRIL Expression and ANRIL Gene Polymorphisms Contribute to the Risk of Ischemic Stroke in the Chinese Han Population. Cell Mol Neurobiol 2018; 38:1253-1269. [PMID: 29881905 PMCID: PMC11481959 DOI: 10.1007/s10571-018-0593-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to explore the role of lncRNA ANRIL in the pathogenesis of ischemic stroke (IS) and coronary artery disease (CAD) and to determine the association between ANRIL variants and the genetic susceptibility of IS and CAD in the Chinese Han population. A genetic association study including 550 IS patients, 550 CAD patients, and 550 healthy controls was conducted. The expression levels of lncRNA ANRIL, CDKN2A, and CDKN2B were detected using qRT-PCR. Genotyping was performed by Sequenom MassARRAY on an Agena platform. Our study showed that IS patients had an increased lncRNA ANRIL expression (P = 0.002) and a decreased CDKN2A expression (P < 0.001) compared with normal controls. A significant difference with regard to the genotype distribution of rs2383207 was found between male IS patients and controls (P = 0.011). The minor allele of rs2383207 significantly increased the IS risk under a recessive model (OR = 1.52, 95% CI = 1.05-2.21, P = 0.027). The minor allele of rs1333049 was significantly associated with the risk of IS among the male patients under a recessive model (OR = 1.56, 95% CI = 1.04-2.35, P = 0.031). However, no significant association was found between the ANRIL variants and the risk of CAD (all P > 0.050). In addition, we found a decreased lncRNA ANRIL expression in IS patients who carried the GG genotype of rs1333049 compared with IS patients who carried the CC or CG genotype (P = 0.041). In summary, we found that IS patients had an increased lncRNA ANRIL expression and a decreased CDKN2A expression compared with the controls, which might play an impellent role in pathological processes of IS. The ANRIL variants rs2383207 and rs1333049 were significantly associated with the risk of IS among males but not females in the Chinese Han population.
Collapse
Affiliation(s)
- Jialei Yang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lian Gu
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - Xiaojing Guo
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiao Huang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Zhaoxia Chen
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Guifeng Huang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yiwen Kang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaoting Zhang
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jianxiong Long
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Li Su
- School of Public Health of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
57
|
Yu B, Wang S. Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics 2018; 8:3654-3675. [PMID: 30026873 PMCID: PMC6037039 DOI: 10.7150/thno.26024] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/16/2018] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) represent a large subgroup of RNAs that are longer than 200 nucleotides and have no apparent protein coding potential. They have diverse functions in different biological processes by regulating chromatin remodeling or protein translation. This review summarizes the recent progress of lncRNAs in angiogenesis and vascular diseases. A general overview of lncRNA functional mechanisms will be introduced. A list of lncRNAs, which are termed "Angio-LncRs", including MALAT1, MANTIS, PUNISHER, MEG3, MIAT, SENCR and GATA6-AS, will be discussed regarding their expression, regulation, function and mechanism of action in angiogenesis. Implications of lncRNAs in vascular diseases, such as atherosclerosis, hypertension, vascular retinopathies and tumor angiogenesis will also be discussed.
Collapse
Affiliation(s)
- Bo Yu
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA, 70118, USA
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, 6400 Freret Street, New Orleans, LA, 70118, USA
- Department of Ophthalmology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-69, New Orleans, LA 70112, USA
| |
Collapse
|