51
|
Zhang W, Feng C, Jiang H. Novel target for treating Alzheimer's Diseases: Crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev 2021; 65:101207. [PMID: 33144123 DOI: 10.1016/j.arr.2020.101207] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/02/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
In mammals, the Keap1-Nrf2-ARE pathway (henceforth, "the Nrf2 pathway") and autophagy are major intracellular defence systems that combat oxidative damage and maintain homeostasis. p62/SQSTM1, a ubiquitin-binding autophagy receptor protein, links the Nrf2 pathway and autophagy. Phosphorylation of p62 dramatically enhances its affinity for Keap1, which induces Keap1 to release Nrf2, and the p62-Keap1 heterodimer recruits LC3 and mediates the permanent degradation of Keap1 in the selective autophagy pathway. Eventually, Nrf2 accumulates in the cytoplasm and then translocates into the nucleus to activate the transcription of downstream genes that encode antioxidant enzymes, which protect cells from oxidative damage. Since Nrf2 also upregulates the expression of the p62 gene, a p62-Keap1-Nrf2 positive feedback loop is created that further enhances the protective effect on cells. Studies have shown that the p62-activated noncanonical Nrf2 pathway is an important marker of neurodegenerative diseases. The p62-Keap1-Nrf2 positive feedback loop and the Nrf2 pathway are involved in eliminating the ROS and protein aggregates induced by AD. Therefore, maintaining the homeostasis of the p62-Keap1-Nrf2 positive feedback loop, which is a bridge between the Nrf2 pathway and autophagy, may be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
52
|
Bityutsky VS, Tsekhmistrenko SI, Tsekhmistrenko ОS, Tymoshok NO, Spivak MY. Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The article is devoted to the mechanisms of regulation of redox processes in cells, a review of the Keap1 / Nrf2 / ARE redox-sensitive signaling system as a fundamental pathway that plays a key role in maintaining cellular redox homeostasis under stressful, inflammatory, carcinogenic and proapoptotic conditions. The structure of the cysteine-rich repressor protein Keap1, which is responsible for sensory perception of electrophiles and reactive oxygen species, the structure and functions of the transcription factor Nrf2, mechanisms of Nrf2 activation through the Keap1 / Nrf2 / ARE signaling system, which regulates the transcription and expression of cellular cytoprotective and antioxidant proteins, are described. Published data on the specificity of the interaction of the components of this cellular signaling pathway, the mechanisms of Keap1 dependent and independent adaptive response to the action of inductors, the role of biogenic selenium nanoparticles synthesized by green chemistry with the participation of bacteria in these processes are analyzed; features of Nrf2 induction depending on the type of bacteria and the stabilizing shell. It has been shown that biogenic selenium nanoparticles (BNSe), synthesized by different types of bacteria, activate the transcription factor Nrf2 using the Keap1-independent activation pathway through mitogen-protein kinases (MAPK): p38, ERK1 / 2 and AKT-mediated phosphorylation of Nrf2, protect the intestinal epithelial barrier function from the effects of oxidative damage, normalize mitochondrial function. A detailed understanding of thiol-dependent and independent redox signaling mechanisms under physiological and pathological conditions will lead to a deeper understanding of the redox component in human and animal diseases. The use of biogenic nanoselen, synthesized with the participation of various bacterial species, has been demonstrated to activate the Keap1 / Nrf2 / ARE signaling pathway, which may be of practical interest as a therapeutic target for many redox-mediated diseases.
Collapse
|
53
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D, Ferrington D. Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res 2020; 79:100858. [PMID: 32298788 PMCID: PMC7650008 DOI: 10.1016/j.preteyeres.2020.100858] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
Oxidative stress-induced damage to the retinal pigment epithelium (RPE) is considered to be a key factor in age-related macular degeneration (AMD) pathology. RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, lipids, nucleic acids, and cellular organelles, including mitochondria. The ubiquitin-proteasome and the lysosomal/autophagy pathways are the two major proteolytic systems to remove damaged proteins and organelles. There is increasing evidence that proteostasis is disturbed in RPE as evidenced by lysosomal lipofuscin and extracellular drusen accumulation in AMD. Nuclear factor-erythroid 2-related factor-2 (NFE2L2) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) are master transcription factors in the regulation of antioxidant enzymes, clearance systems, and biogenesis of mitochondria. The precise cause of RPE degeneration and the onset and progression of AMD are not fully understood. However, mitochondria dysfunction, increased reactive oxygen species (ROS) production, and mitochondrial DNA (mtDNA) damage are observed together with increased protein aggregation and inflammation in AMD. In contrast, functional mitochondria prevent RPE cells damage and suppress inflammation. Here, we will discuss the role of mitochondria in RPE degeneration and AMD pathology focused on mtDNA damage and repair, autophagy/mitophagy signaling, and regulation of inflammation. Mitochondria are putative therapeutic targets to prevent or treat AMD.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Hannu Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland and Tays Eye Centre, Tampere University Hospital, P.O.Box 2000, 33521 Tampere, Finland
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236, Lodz, Poland
| | - Szabolcs Felszeghy
- Department of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, 1355 San Pablo St, Los Angeles, CA, 90033, USA
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Debasish Sinha
- Glia Research Laboratory, Department of Ophthalmology, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, PA 15224, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Room M035 Robert and Clarice Smith Bldg, 400 N Broadway, Baltimore, MD, 21287, USA
| | - Deborah Ferrington
- Department of Ophthalmology and Visual Neurosciences, 2001 6th St SE, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
54
|
Protective effects of Clostridium butyricum against oxidative stress induced by food processing and lipid-derived aldehydes in Caco-2 cells. Appl Microbiol Biotechnol 2020; 104:9343-9361. [PMID: 32965561 DOI: 10.1007/s00253-020-10896-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
The human body is almost always facing the oxidative stress caused by foodborne aldehydes such as glyoxal (GO) and methylglyoxal (MGO), 4-hydroxyhexenal (HHE), and 4-hydroxynonenal (HNE). When these aldehydes build up, they can cause a range of harm. However, a probiotic, Clostridium butyricum, can increase nuclear factor erythroid-2 related factor 2 (Nrf2) and may have the potential to relieve oxidative stress. If C. butyricum is indeed resistant to aldehydes, the advantages (accessibility, convenience, and safety) will be of great significance compared with drugs. Unfortunately, whether C. butyricum can play a role in alleviating toxic effects of foodborne aldehydes in the intestine (the first line of defense against food-derived toxin) was unclear. To investigate these, we measured the viability, ROS, autophagy, and inflammatory cytokine expression of Caco-2 which were co-cultured with C. butyricum and stimulated by the four aldehydes via Nrf2 pathway (Staphylococcus aureus and Enterococcus faecium as controls). Then, we explored the link among C. butyricum, NLRP6, and Nrf2 signaling pathways when facing the stimuli. In the present study, we demonstrated that Clostridium butyricum relieved the oxidative stress induced by the aldehydes in Caco-2. Most interestingly, we found a "complementary" relationship between NLRP6 and Nrf2 in C. butyricum treatment under aldehyde stress. Our research not only makes a contribution to the popularization of C. butyricum as a probiotic-rich food instead of medicines but also sheds new light on the application of subsequent microecological formulation of C. butyricum. KEY POINTS: • The adverse effects are caused in a dose-dependent manner by foodborne aldehydes. • Clostridium butyricum can significantly ameliorate oxidative stress. • There is a "complementary" relationship between the NLRP6 and Nrf2 signaling pathways. • Using Clostridium butyricum foods to alleviate oxidative stress shows great prospects.
Collapse
|
55
|
Role of TLR2 and TLR4 in regulation of articular chondrocyte homeostasis. Osteoarthritis Cartilage 2020; 28:669-674. [PMID: 32007503 PMCID: PMC7214200 DOI: 10.1016/j.joca.2020.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Toll-like receptor (TLR)-mediated catabolic responses are implicated to contribute to osteoarthritis (OA). However, deficiency of TLRs has little chondroprotection in mice in vivo. Here, we studied the effect of deficiency of TLR2 and TLR4 in articular chondrocytes on cellular stress responses in vitro. DESIGN Chondrocytes isolated from TLR2 and TLR4 double knockout (TLR2/4dKO) and wild type (WT) mice and recombinant HMGB1 (rHMGB1) and LPS were used. Expression of anti-oxidant and DNA repair enzymes including SOD1, SOD2 and OGG1, and phosphorylation of H2AX (a marker for DNA damage) were examined by Western blotting. MitoSOX Red staining was used for assessing mitochondrial superoxide generation. Autophagic activity was monitored by flow cytometry analysis of mean fluorescence intensity (MFI) of GFP and RFP in chondrocytes transfected with a tandem GFP-mRFP-LC3 plasmid, and by Western blot analysis of expression of LC3 and p62, a selective autophagy adaptor. RESULTS Basal expression of SOD2 but not SOD1 was largely reduced in TLR2/4dKO compared to WT chondrocytes, correlated with significantly enhanced menadione-induced mitochondrial superoxide generation (2.85-3.92 and 3.39 to 8.97 with mean difference 3.39 and 6.18 for 25 and 50μM menadione, respectively) and phosphorylation of H2AX. LPS and rHMGB1 induced expression of SOD2, OGG1 and p62 in WT but not TLR2/4dKO chondrocytes. Autophagy flux was impaired in TLR2/4dKO chondrocytes after acute nutrient stress and by LPS and rHMGB1. CONCLUSIONS TLR2 and TLR4 deficiency appears to reduce chondrocyte anti-oxidative stress and autophagy flux capacity, which may compromise cartilage homeostasis as a result of chondrocyte dysfunction.
Collapse
|
56
|
Mijanović O, Branković A, Borovjagin AV, Butnaru DV, Bezrukov EA, Sukhanov RB, Shpichka A, Timashev P, Ulasov I. Battling Neurodegenerative Diseases with Adeno-Associated Virus-Based Approaches. Viruses 2020; 12:E460. [PMID: 32325732 PMCID: PMC7232215 DOI: 10.3390/v12040460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are most commonly found in adults and remain essentially incurable. Gene therapy using AAV vectors is a rapidly-growing field of experimental medicine that holds promise for the treatment of NDDs. To date, the delivery of a therapeutic gene into target cells via AAV represents a major obstacle in the field. Ideally, transgenes should be delivered into the target cells specifically and efficiently, while promiscuous or off-target gene delivery should be minimized to avoid toxicity. In the pursuit of an ideal vehicle for NDD gene therapy, a broad variety of vector systems have been explored. Here we specifically outline the advantages of adeno-associated virus (AAV)-based vector systems for NDD therapy application. In contrast to many reviews on NDDs that can be found in the literature, this review is rather focused on AAV vector selection and their preclinical testing in experimental and preclinical NDD models. Preclinical and in vitro data reveal the strong potential of AAV for NDD-related diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Olja Mijanović
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Ana Branković
- Department of Forensics, University of Criminal Investigation and Police Studies, Belgrade 11000, Serbia;
| | - Anton V. Borovjagin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Denis V. Butnaru
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
| | - Evgeny A. Bezrukov
- Institute for Uronephrology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Institute for Uronephrology and Reproductive Health, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (E.A.B.); (R.B.S.)
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia; (D.V.B.); (A.S.); (P.T.)
- Institute of Photonic Technologies, Research Center “Crystallography and Photonics”, Russian Academy of Sciences, Troitsk, Moscow 142190, Russia
- Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow 119991, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
57
|
Lin G, Sun Y, Long J, Sui X, Yang J, Wang Q, Wang S, He H, Luo Y, Qiu Z, Wang Y. Involvement of the Nrf2-Keap1 signaling pathway in protection against thallium-induced oxidative stress and mitochondrial dysfunction in primary hippocampal neurons. Toxicol Lett 2020; 319:66-73. [DOI: 10.1016/j.toxlet.2019.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
|
58
|
Hwang SK, Jeong YJ, Chang YC. PDCD4 inhibits lung tumorigenesis by the suppressing p62-Nrf2 signaling pathway and upregulating Keap1 expression. Am J Cancer Res 2020; 10:424-439. [PMID: 32195018 PMCID: PMC7061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023] Open
Abstract
Programmed cell death 4 (PDCD4) suppresses tumorigenesis, tumor progression, and invasion by inhibiting transcription and translation of oncogenes. However, the role of PDCD4 in lung tumorigenesis is unclear. Sequestosome1/p62 mediates cell proliferation, survival, and death through multiple signaling pathways, including autophagy and cell metabolism. p62/SQSTM1 is transcriptional target of Nrf2 and an important regulator of tumor growth. The aim of this study was to clarify whether and how PDCD4 regulates the p62-Nrf2 pathway, and how this regulation relates to tumorigenesis in human lung cancer cells. We established two stable human lung cancer cell lines, A549 and H460 that each overexpressed PDCD4. We found that PDCD4 overexpression decreased p62 expression levels and inhibited cell proliferation, and also increased the expression levels of cleaved PARP and cleaved caspase 3. Knockdown of p62 markedly increased the apoptotic rate of A549 and H460 cells overexpressing PDCD4. Furthermore levels of the epithelial-mesenchymal transition-related markers Slug, Snail, Twist1 and Vimentin were decreased and expression level of E-cadherin was increased in PDCD4-overexpressing cells. We also found that PDCD4 suppressed transcriptional activation of Nrf2 (an upstream regulator of p62) and increased endogenous levels of Keap1 (a negative regulator of Nrf2). Upregulation of Keap1 induced apoptosis and inhibited cell proliferation by suppressing activity of the p62-Nrf2 pathway in PDCD4-overexpressing cells. As anticipated, results from a mouse xenograft model showed that PDCD4 overexpression in xenografts inhibited cell proliferation and tumorigenesis. Taken together, our results demonstrate that PDCD4 overexpression, which increased Keap1 expression, reduces the levels and activity of the p62-Nrf2 pathway, thereby inhibiting tumorigenesis. Our findings suggest that PDCD4 may be a potential target for lung cancer therapies.
Collapse
Affiliation(s)
- Soon-Kyung Hwang
- Research Institute of Biomedical Engineering and Department of Cell Biology, Catholic University of Daegu School of Medicine Daegu 705-718, Republic of Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Cell Biology, Catholic University of Daegu School of Medicine Daegu 705-718, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Cell Biology, Catholic University of Daegu School of Medicine Daegu 705-718, Republic of Korea
| |
Collapse
|
59
|
Vivarini ADC, Lopes UG. The Potential Role of Nrf2 Signaling in Leishmania Infection Outcomes. Front Cell Infect Microbiol 2020; 9:453. [PMID: 31998662 PMCID: PMC6966304 DOI: 10.3389/fcimb.2019.00453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023] Open
Abstract
Nrf2 [nuclear factor erythroid 2-related factor 2 (Nrf2)] regulates the expression of a plethora of genes involved in the response to oxidative stress due to inflammation, aging, and tissue damage, among other pathological conditions. Deregulation of this cytoprotective system may also interfere with innate and adaptive immune responses. Oxidative burst, one of the main microbicidal mechanisms, could be impaired during initial phagocytosis of parasites, which could lead to the successful establishment of infection and promote susceptibility to diseases. A wide diversity of infections, mainly those caused by intracellular pathogens such as viruses, bacteria, and protozoan parasites, modulate the activation of Nrf2 by interfering with post-translational modifications, interactions between different protein complexes and the immune response. Nrf2 may be induced by pathogens via distinct pathways such as those involving the engagement of Toll-like receptors, the activation of PI3K/Akt, and endoplasmic reticulum stress. Recent studies have revealed the importance of Nrf2 on leishmaniasis. This mini-review discusses relevant findings that reveal the connection between Leishmania-induced modifications of the host pathways and their relevance to the modulation of the Nrf2-dependent antioxidative response to the infection.
Collapse
Affiliation(s)
- Aislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
60
|
Hyttinen JMT, Kannan R, Felszeghy S, Niittykoski M, Salminen A, Kaarniranta K. The Regulation of NFE2L2 (NRF2) Signalling and Epithelial-to-Mesenchymal Transition in Age-Related Macular Degeneration Pathology. Int J Mol Sci 2019; 20:ijms20225800. [PMID: 31752195 PMCID: PMC6888570 DOI: 10.3390/ijms20225800] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a mounting cause of loss of sight in the elderly in the developed countries, a trend enhanced by the continual ageing of the population. AMD is a multifactorial and only partly understood, malady. Unfortunately, there is no effective treatment for most AMD patients. It is known that oxidative stress (OS) damages the retinal pigment epithelium (RPE) and contributes to the progression of AMD. We review here the potential importance of two OS-related cellular systems in relation to AMD. First, the nuclear factor erythroid 2-related factor 2 (NFE2L2; NRF2)-mediated OS response signalling pathway is important in the prevention of oxidative damage and a failure of this system could be critical in the development of AMD. Second, epithelial-to-mesenchymal transition (EMT) represents a change in the cellular phenotype, which ultimately leads to the fibrosis encountered in RPE, a characteristic of AMD. Many of the pathways triggering EMT are promoted by OS. The possible interconnections between these two signalling routes are discussed here. From a broader perspective, the control of NFE2L2 and EMT as ways of preventing OS-derived cellular damage could be potentially valuable in the therapy of AMD.
Collapse
Affiliation(s)
- Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Correspondence:
| | - Ram Kannan
- The Stephen J. Ryan Initiative for Macular Research (RIMR), Doheny Eye Institute, DVRC 203, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Szabolcs Felszeghy
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Institute of Dentistry, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Minna Niittykoski
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS Kuopio, Finland
| |
Collapse
|
61
|
The ICP0 Protein of Herpes Simplex Virus 1 (HSV-1) Downregulates Major Autophagy Adaptor Proteins Sequestosome 1 and Optineurin during the Early Stages of HSV-1 Infection. J Virol 2019; 93:JVI.01258-19. [PMID: 31375597 DOI: 10.1128/jvi.01258-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects mucosal epithelial cells and establishes lifelong infections in sensory neurons. Following reactivation, the virus is transferred anterograde to the initial site of infection or to sites innervated by infected neurons, causing vesicular lesions. Upon immunosuppression, frequent HSV-1 reactivation can cause severe diseases, such as blindness and encephalitis. Autophagy is a process whereby cell components are recycled, but it also serves as a defense mechanism against pathogens. HSV-1 is known to combat autophagy through the functions of the γ134.5 protein, which prevents formation of the autophagophore by binding to Beclin 1, a key factor involved in the elongation of the isolation membrane, and by redirecting the protein phosphatase 1α (PP1α) to dephosphorylate the translation initiation factor 2α (eIF2α) to prevent host translational shutoff. Other viral proteins that counteract innate immunity negatively impact autophagy. Here, we present a novel strategy of HSV-1 to evade the host through the downregulation of the autophagy adaptor protein sequestosome (p62/SQSTM1) and of the mitophagy adaptor optineurin (OPTN). This down-modulation occurs during the early steps of the infection. We also found that infected cell protein 0 (ICP0) of the virus mediates the down-modulation of the two autophagy adaptors in a mechanism independent of its E3 ubiquitin ligase activity. Cells depleted of either p62 or OPTN were able to mount greater antiviral responses, whereas cells expressing exogenous p62 displayed decreased virus yields. We conclude that downregulation of p62/SQSTM1 and OPTN is a viral strategy to counteract the host.IMPORTANCE Autophagy is a homeostatic mechanism of cells to recycle components, as well as a defense mechanism to get rid of pathogens. Strategies that HSV-1 has developed to counteract autophagy have been described and involve inhibition of autophagosome formation or indirect mechanisms. Here, we present a novel mechanism that involves downregulation of two major autophagy adaptor proteins, sequestosome 1 (p62/SQSTM1) and optineurin (OPTN). These findings generate the question of why the virus targets two major autophagy adaptors if it has mechanisms to block autophagosome formation. P62/SQSTM1 and OPTN proteins have pleiotropic functions, including regulation of innate immunity, inflammation, protein sorting, and chromatin remodeling. The decrease in virus yields in the presence of exogenous p62/SQSTM1 suggests that these adaptors have an antiviral function. Thus, HSV-1 may have developed multiple strategies to incapacitate autophagy to ensure replication. Alternatively, the virus may target another antiviral function of these proteins.
Collapse
|
62
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
63
|
Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med 2019; 44:3-15. [PMID: 31115493 PMCID: PMC6559295 DOI: 10.3892/ijmm.2019.4188] [Citation(s) in RCA: 516] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022] Open
Abstract
The mammalian mitochondrial electron transport chain (ETC) includes complexes I-IV, as well as the electron transporters ubiquinone and cytochrome c. There are two electron transport pathways in the ETC: Complex I/III/IV, with NADH as the substrate and complex II/III/IV, with succinic acid as the substrate. The electron flow is coupled with the generation of a proton gradient across the inner membrane and the energy accumulated in the proton gradient is used by complex V (ATP synthase) to produce ATP. The first part of this review briefly introduces the structure and function of complexes I-IV and ATP synthase, including the specific electron transfer process in each complex. Some electrons are directly transferred to O2 to generate reactive oxygen species (ROS) in the ETC. The second part of this review discusses the sites of ROS generation in each ETC complex, including sites IF and IQ in complex I, site IIF in complex II and site IIIQo in complex III, and the physiological and pathological regulation of ROS. As signaling molecules, ROS play an important role in cell proliferation, hypoxia adaptation and cell fate determination, but excessive ROS can cause irreversible cell damage and even cell death. The occurrence and development of a number of diseases are closely related to ROS overproduction. Finally, proton leak and uncoupling proteins (UCPS) are discussed. Proton leak consists of basal proton leak and induced proton leak. Induced proton leak is precisely regulated and induced by UCPs. A total of five UCPs (UCP1-5) have been identified in mammalian cells. UCP1 mainly plays a role in the maintenance of body temperature in a cold environment through non-shivering thermogenesis. The core role of UCP2-5 is to reduce oxidative stress under certain conditions, therefore exerting cytoprotective effects. All diseases involving oxidative stress are associated with UCPs.
Collapse
Affiliation(s)
- Ru-Zhou Zhao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
64
|
CDK5RAP3 Participates in Autophagy Regulation and Is Downregulated in Renal Cancer. DISEASE MARKERS 2019; 2019:6171782. [PMID: 31061682 PMCID: PMC6466961 DOI: 10.1155/2019/6171782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/05/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022]
Abstract
Renal cancer is one of the most common malignant urological tumors; however, its diagnosis and treatment are not well established. In the present study, we identified that CDK5 regulatory subunit-associated protein 3 (CDK5RAP3), a putative tumor suppressor in many cancers, was downregulated in renal cancer tissues. Through loss- and gain-of-function experiments, we observed that the action of CDK5RAP3 in renal cancer cells was different in Caki-1 and 769-P cell lines. Knockdown of endogenous CDK5RAP3 in Caki-1 slightly increased cell viability, whereas overexpression of CDK5RAP3 in 769-P cells inhibited cell viability. In addition, we observed that CDK5RAP3 participated in the regulation of autophagy in renal cancer. Knockdown of CDK5RAP3 induced significant inhibition of autophagy in Caki-1 cells but not in 769-P cells. In contrast, overexpression of CDK5RAP3 significantly activated autophagy in 769-P cells, as evidenced by increased LC3-II levels. However, the LC3-II could not be altered by CDK5RAP3 overexpression in Caki-1 cells. These findings demonstrated that CDK5RAP3 is downregulated in renal cancer and may be associated with autophagy.
Collapse
|
65
|
Mampay M, Sheridan GK. REST: An epigenetic regulator of neuronal stress responses in the young and ageing brain. Front Neuroendocrinol 2019; 53:100744. [PMID: 31004616 DOI: 10.1016/j.yfrne.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
The transcriptional repressor REST (Repressor Element-1 Silencing Transcription factor) is a key modulator of the neuronal epigenome and targets genes involved in neuronal differentiation, axonal growth, vesicular transport, ion channel conductance and synaptic plasticity. Whilst its gene expression-modifying properties have been examined extensively in neuronal development, REST's response towards stress-induced neuronal insults has only recently been explored. Overall, REST appears to be an ideal candidate to fine-tune neuronal gene expression following different forms of cellular, neuropathological, psychological and physical stressors. Upregulation of REST is reportedly protective against premature neural stem cell depletion, neuronal hyperexcitability, oxidative stress, neuroendocrine system dysfunction and neuropathology. In contrast, neuronal REST activation has also been linked to neuronal dysfunction and neurodegeneration. Here, we highlight key findings and discrepancies surrounding our current understanding of REST's function in neuronal adaptation to stress and explore its potential role in neuronal stress resilience in the young and ageing brain.
Collapse
Affiliation(s)
- Myrthe Mampay
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Graham K Sheridan
- Neuroimmunology & Neurotherapeutics Laboratory, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| |
Collapse
|
66
|
Abdelsalam HM, Samak MA, Alsemeh AE. Synergistic therapeutic effects of Vitis vinifera extract and Silymarin on experimentally induced cardiorenal injury: The pertinent role of Nrf2. Biomed Pharmacother 2018; 110:37-46. [PMID: 30458346 DOI: 10.1016/j.biopha.2018.11.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cardiorenal crosstalk has gained growing scientific curiosity recently. Clinical observations have approved that heart and kidney performances are intimately interrelated; acute or chronic dysfunction of either is inevitably mirrored on the other. This coexistence usually has the poor prognosis and worsened outcome. METHODS We designed this study to explore therapeutic potentials of combined Vitis vinifera and Silymarin extracts on histopathological alterations of experimentally induced cardiorenal injury model. Moreover, to examine the pertinent role of Nrf2 in their bio-molecular actions. Sixty adult male Wistar albino rats were utilized, further subdivided into control, doxorubicin (DXR), DXR + Silymarin, DXR + Aqueous Vitis, DXR + Ethanolic Vitis, DXR + Ethanolic Vitis + Silymarin. Left ventricle and renal cortex sections from all groups were processed for histopathological examination, biochemical estimation of serum Urea, Creatinine, BUN, lipid profile and hs-CRP and real-time PCR of Nrf2 expression in cardiac and renal tissue homogenate were performed. RESULTS Our results proved that combined ethanolic extract of Vitis vinifera and Silymarin restored normal renal and cardiac histomorphology. Significant improvement of Creatinine, BUN, lipid profile and hs-CRP cardiac and renal biochemical indicators confirmed our results. Moreover, significant elevation of mRNA expression levels of Nrf2 proved that combined Vitis vinifera and Silymarin action was directly related to the redox-sensitive regulator pathway. CONCLUSIONS We concluded that synergistic therapeutic effect of Vitis vinifera extract and Silymarin on experimental cardiorenal injury model owes principally to promoting activation of the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Hani M Abdelsalam
- Department of Zoology, Faculty of Science, Zagazig University, Egypt.
| | - Mai A Samak
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Egypt.
| | - Amira E Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Egypt.
| |
Collapse
|