51
|
Putka AF, Mato JP, McLoughlin HS. Myelinating Glia: Potential Therapeutic Targets in Polyglutamine Spinocerebellar Ataxias. Cells 2023; 12:601. [PMID: 36831268 PMCID: PMC9953858 DOI: 10.3390/cells12040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Human studies, in combination with animal and cellular models, support glial cells as both major contributors to neurodegenerative diseases and promising therapeutic targets. Among glial cells, oligodendrocytes and Schwann cells are the myelinating glial cells of the central and peripheral nervous system, respectively. In this review, we discuss the contributions of these central and peripheral myelinating glia to the pathomechanisms of polyglutamine (polyQ) spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17. First, we highlight the function of oligodendrocytes in healthy conditions and how they are disrupted in polyQ SCA patients and diseased model systems. We then cover the role of Schwann cells in peripheral nerve function and repair as well as their possible role in peripheral neuropathy in polyQ SCAs. Finally, we discuss potential polyQ SCA therapeutic interventions in myelinating glial.
Collapse
Affiliation(s)
- Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan P. Mato
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
52
|
Wang Y, Zhang S, Zhi J, Huang M, Pei F. A bibliometric analysis: Current status and frontier trends of Schwann cells in neurosciences. Front Mol Neurosci 2023; 15:1087550. [PMID: 36710927 PMCID: PMC9877341 DOI: 10.3389/fnmol.2022.1087550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Background This review aims to present a comprehensive bibliometric analysis related to Schwann cells (SCs) in neurosciences from 2012 to 2021. Methods We used the Web of Science core collection database to obtain publications on SCs in the field of neurosciences from 2012 to 2021. The obtained data were further visually analyzed by using CiteSpace, VOSviewer, and an online bibliometric platform. Results We retrieved a total of 1,923 publications related to SCs in neurosciences. The number of publications in this field fluctuates steadily each year, and the number of citations is increasing year by year. The United States is leading the field, with LERU and the University OF London as influential institutions, Jessen KR and Feltri ML as the most representative authors, and GLIA and JOURNAL OF NEUROSCIENCE as authoritative journals in the field. Meanwhile, we predict that a more in-depth study of autophagy and phagocytosis functions of SCs and the key regulator c-Jun will probably be a hot spot for future research. Conclusion This study summarizes the current research results and predicts research trends for further research, which will facilitate researchers in quickly understanding the current state of research in the field while referring to new research directions.
Collapse
Affiliation(s)
- Yan Wang
- Rehabilitation Center of the Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang,
| | - Shiwen Zhang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jincao Zhi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meiling Huang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fei Pei
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
53
|
Pandamooz S, Jurek B, Dianatpour M, Haerteis S, Limm K, Oefner PJ, Dargahi L, Borhani-Haghighi A, Miyan JA, Salehi MS. The beneficial effects of chick embryo extract preconditioning on hair follicle stem cells: A promising strategy to generate Schwann cells. Cell Prolif 2023:e13397. [PMID: 36631409 DOI: 10.1111/cpr.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
The beneficial effects of hair follicle stem cells in different animal models of nervous system conditions have been extensively studied. While chick embryo extract (CEE) has been used as a growth medium supplement for these stem cells, this is the first study to show the effect of CEE on them. The rat hair follicle stem cells were isolated and supplemented with 10% fetal bovine serum plus 10% CEE. The migration rate, proliferative capacity and multipotency were evaluated along with morphometric alteration and differentiation direction. The proteome analysis of CEE content identified effective factors of CEE that probably regulate fate and function of stem cells. The CEE enhances the migration rate of stem cells from explanted bulges as well as their proliferation, likely due to activation of AP-1 and translationally controlled tumour protein (TCTP) by thioredoxin found in CEE. The increased length of outgrowth may be the result of cyclic AMP response element binding protein (CREB) phosphorylation triggered by active CamKII contained in CEE. Further, CEE supplementation upregulates the expression of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The elevated expression of target genes and proteins may be due to CREB, AP-1 and c-Myc activation in these stem cells. Given the increased transcript levels of neurotrophins, VEGF, and the expression of PDGFR-α, S100B, MBP and SOX-10 protein, it is possible that CEE promotes the fate of these stem cells towards Schwann cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benjamin Jurek
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.,Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Jaleel A Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology, The University of Manchester, Manchester, UK
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
54
|
Yu P, Zhang G, Hou B, Song E, Wen J, Ba Y, Zhu D, Wang G, Qin F. Effects of ECM proteins (laminin, fibronectin, and type IV collagen) on the biological behavior of Schwann cells and their roles in the process of remyelination after peripheral nerve injury. Front Bioeng Biotechnol 2023; 11:1133718. [PMID: 37034260 PMCID: PMC10080002 DOI: 10.3389/fbioe.2023.1133718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: It is important to note that complete myelination and formation of myelinated fibers are essential for functional nerve regeneration after peripheral nerve injury (PNI). However, suboptimal myelin regeneration is common and can hinder ideal nerve regeneration. Therefore, it is important to closely monitor and support myelin regeneration in patients with PNI to achieve optimal outcomes. Methods: This study analyzed the effects of three extracellular matrix (ECM) proteins on Schwann cells (SCs) in the nerve regeneration environment, including their adhesion, proliferation, and migration. The study also explored the use of composite sodium alginate hydrogel neural scaffolds with ECM components and investigated the effects of ECM proteins on remyelination following peripheral nerve injury. Results: The results showed that laminin (LN), fibronectin (FN), and collagen Ⅳ (type IV Col) promoted the early adhesion of SCs in 2-dimensional culture but the ratios of early cell adhesion were quite different and the maintenance of cells' morphology by different ECM proteins were significantly different. In transwell experiment, the ability of LN and FN to induce the migration of SCs was obviously higher than that of type IV Col. An vitro co-culture model of SCs and dorsal root ganglia (DRG) neurons showed that LN promoted the transition of SCs to a myelinated state and the maturation of the myelin sheath, and increased the thickness of neurofilaments. Animal experiments showed that LN had superior effects in promoting myelin sheath formation, axon repair, and reaching an ideal G-ratio after injury compared to FN and Col IV. The situation of gastrocnemius atrophy was significantly better in the LN group. Notably, the thickness of the regenerated myelin sheaths in the type IV Col group was the thickest. Conclusion: In this experiment, we analyzed and compared the effects of LN, FN, and type IV Col on the biological behavior of SCs and their effects on remyelination after PNI and further clarified their unique roles in the process of remyelination. Further research is necessary to explore the underlying mechanisms.
Collapse
Affiliation(s)
- Peng Yu
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guanhua Zhang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Hou
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Enpeng Song
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiaming Wen
- Department of Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yueyang Ba
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Donglin Zhu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- *Correspondence: Donglin Zhu, ; Gangwei Wang, ; Feng Qin,
| | - Gangwei Wang
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- *Correspondence: Donglin Zhu, ; Gangwei Wang, ; Feng Qin,
| | - Feng Qin
- Department of Neurosurgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Donglin Zhu, ; Gangwei Wang, ; Feng Qin,
| |
Collapse
|
55
|
Bedoui Y, De Larichaudy D, Daniel M, Ah-Pine F, Selambarom J, Guiraud P, Gasque P. Deciphering the Role of Schwann Cells in Inflammatory Peripheral Neuropathies Post Alphavirus Infection. Cells 2022; 12:cells12010100. [PMID: 36611893 PMCID: PMC9916230 DOI: 10.3390/cells12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Old world alphaviruses (e.g., chikungunya) are known to cause severe acute and chronic debilitating arthralgia/arthritis. However, atypical neurological manifestations and, in particular, unexpected cases of acute inflammatory Guillain-Barre syndrome (GBS) have been associated with the arthritogenic alphaviruses. The pathogenesis of alphavirus-associated GBS remains unclear. We herein addressed for the first time the role of Schwann cells (SC) in peripheral neuropathy post-alphaviral infection using the prototypical ONNV alphavirus model. We demonstrated that human SC expressed the recently identified alphavirus receptor MxRA8 and granting viral entry and robust replication. A canonical innate immune response was engaged by ONNV-infected SC with elevated gene expression for RIG-I, MDA5, IFN-β, and ISG15 and inflammatory chemokine CCL5. Transcription levels of prostaglandin E2-metabolizing enzymes including cPLA2α, COX-2, and mPGES-1 were also upregulated in ONNV-infected SC. Counterintuitively, we found that ONNV failed to affect SC regenerative properties as indicated by elevated expression of the pro-myelinating genes MPZ and MBP1 as well as the major pro-myelin transcription factor Egr2. While ONNV infection led to decreased expression of CD55 and CD59, essential to control complement bystander cytotoxicity, it increased TRAIL expression, a major pro-apoptotic T cell signal. Anti-apoptotic Bcl2 transcription levels were also increased in infected SC. Hence, our study provides new insights regarding the remarkable immunomodulatory role of SC of potential importance in the pathogenesis of GBS following alphavirus infection.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Correspondence:
| | - Dauriane De Larichaudy
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Matthieu Daniel
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Franck Ah-Pine
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Service D’anatomopathologie du CHU Sud de La Réunion, 97410 Saint Pierre, France
| | - Jimmy Selambarom
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (D.D.L.); (M.D.); (F.A.-P.); (J.S.); (P.G.); (P.G.)
- Laboratoire D’immunologie Clinique et Expérimentale de la Zone de L’océan Indien (LICE-OI) CHU La Réunion Site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
56
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
57
|
Dziadkowiak E, Nowakowska-Kotas M, Budrewicz S, Koszewicz M. Pathology of Initial Axon Segments in Chronic Inflammatory Demyelinating Polyradiculoneuropathy and Related Disorders. Int J Mol Sci 2022; 23:13621. [PMID: 36362407 PMCID: PMC9658771 DOI: 10.3390/ijms232113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 07/30/2023] Open
Abstract
The diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is based on a combination of clinical, electrodiagnostic and laboratory features. The different entities of the disease include chronic immune sensory polyradiculopathy (CISP) and autoimmune nodopathies. It is debatable whether CIDP occurring in the course of other conditions, i.e., monoclonal IgG or IgA gammopathy, should be treated as a separate disease entity from idiopathic CIDP. This study aims to evaluate the molecular differences of the nodes of Ranvier and the initial axon segment (AIS) and juxtaparanode region (JXP) as the potential cause of phenotypic variation of CIDP while also seeking new pathomechanisms since JXP is sequestered behind the paranode and autoantibodies may not access the site easily. The authors initially present the structure of the different parts of the neuron and its functional significance, then discuss the problem of whether damage to the juxtaparanodal region, Schwann cells and axons could cause CIDP or if these damages should be separated as separate disease entities. In particular, AIS's importance for modulating neural excitability and carrying out transport along the axon is highlighted. The disclosure of specific pathomechanisms, including novel target antigens, in the heterogeneous CIDP syndrome is important for diagnosing and treating these patients.
Collapse
|
58
|
Kim JS, Tian J, Gross A, Aggarwal S, May L, Leyngold IM. Peripheral Neurectomy With Customized Nerve Reconstruction for Periorbital Neuropathic Pain: Initial Experience and Clinical Outcomes. Ophthalmic Plast Reconstr Surg 2022; 38:577-582. [PMID: 35604391 DOI: 10.1097/iop.0000000000002210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To describe a novel, minimally invasive surgical technique to treat severe, intractable periorbital neuropathic pain. METHODS A retrospective analysis of patients with severe, treatment-refractory periorbital pain who underwent transection of affected sensory trigeminal branches with nerve repair was performed. Collected data included etiology and duration of neuropathic pain, comorbidities, prior treatment history, surgical technique including site of transected sensory nerves and type of nerve repair, preoperative and postoperative pain scores as well as follow-up duration. Differences between preoperative and postoperative values were analyzed by the Wilcoxon signed-rank test. RESULTS A total of 5 patients with severe periorbital neuropathic pain underwent transection of affected supraorbital, supratrochlear, infratrochlear, infraorbital, zygomaticotemporal, and zygomaticofacial nerves with customized nerve reconstruction. All 5 had improvement of periorbital pain after surgery, with 3 (60%) noting complete resolution of pain and 2 (40%) experiencing partial pain relief over a median follow-up period of 9 months (interquartile range [IQR], 6-19 months). Of the 3 patients who had complete resolution of pain, all reported continued pain relief. Median McGill pain scores significantly decreased from 8.4 (IQR, 8.2-10.0) preoperatively to 0.0 (IQR, 0.0-4.8; p < 0.001) postoperatively. All patients reported satisfaction with the surgical procedure and stated that they would undergo the procedure again if given the option. One patient with history of postherpetic neuralgia (PHN) had reactivation of herpes zoster at postoperative month 3, which was self-limited, without worsening of her neuropathic pain. Another patient with PHN required a staged procedure to achieve complete pain relief. CONCLUSION Peripheral neurectomy with customized reconstruction of involved sensory nerves can successfully reduce and even eradicate periorbital neuropathic pain that was previously recalcitrant to combination pharmacotherapy and prior neurolysis procedures.
Collapse
Affiliation(s)
- Jane S Kim
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, U.S.A
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A
| | - James Tian
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Andrew Gross
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Sahil Aggarwal
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Lauren May
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, U.S.A
| | - Ilya M Leyngold
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, U.S.A
| |
Collapse
|
59
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
60
|
Arena KA, Zhu Y, Kucenas S. Transforming growth factor-beta signaling modulates perineurial glial bridging following peripheral spinal motor nerve injury in zebrafish. Glia 2022; 70:1826-1849. [PMID: 35616185 PMCID: PMC9378448 DOI: 10.1002/glia.24220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Spinal motor nerves are necessary for organismal locomotion and survival. In zebrafish and most vertebrates, these peripheral nervous system structures are composed of bundles of axons that naturally regenerate following injury. However, the cellular and molecular mechanisms that mediate this process are still only partially understood. Perineurial glia, which form a component of the blood-nerve barrier, are necessary for the earliest regenerative steps by establishing a glial bridge across the injury site as well as phagocytosing debris. Without perineurial glial bridging, regeneration is impaired. In addition to perineurial glia, Schwann cells, the cells that ensheath and myelinate axons within the nerve, are essential for debris clearance and axon guidance. In the absence of Schwann cells, perineurial glia exhibit perturbed bridging, demonstrating that these two cell types communicate during the injury response. While the presence and importance of perineurial glial bridging is known, the molecular mechanisms that underlie this process remain a mystery. Understanding the cellular and molecular interactions that drive perineurial glial bridging is crucial to unlocking the mechanisms underlying successful motor nerve regeneration. Using laser axotomy and in vivo imaging in zebrafish, we show that transforming growth factor-beta (TGFβ) signaling modulates perineurial glial bridging. Further, we identify connective tissue growth factor-a (ctgfa) as a downstream effector of TGF-β signaling that works in a positive feedback loop to mediate perineurial glial bridging. Together, these studies present a new signaling pathway involved in the perineurial glial injury response and further characterize the dynamics of the perineurial glial bridge.
Collapse
Affiliation(s)
- Kimberly A. Arena
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Program in Fundamental NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yunlu Zhu
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Sarah Kucenas
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Program in Fundamental NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
61
|
Pan S, Hada SS, Liu Y, Hu C, Zhou M, Zheng S, Xu M, Shi C, Yin S, Xie X. Human Placenta-Derived Mesenchymal Stem Cells Ameliorate Diabetic Neuropathy via Wnt Signaling Pathway. Stem Cells Int 2022; 2022:6897056. [PMID: 36440182 PMCID: PMC9683984 DOI: 10.1155/2022/6897056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVES To investigate the effect of placenta-derived mesenchymal stem cells (PMSCs) on diabetic peripheral neuropathy and explore the role of Wnt signaling pathway. METHOD Twenty-seven male db/db mice were randomly categorized into the control group, PMSC group, and PMSC treatment with Wnt inhibitor treatment group. Intervention was initiated in week 22. Thermal stimulation response was determined with a plantar analgesia tester. The mice were sacrificed on 7, 14, and 28 days. The morphology of sciatic nerves was observed by electron microscopy, and the expression of protein gene product (PGP) 9.5, S100β, and Ku80 was detected by immunofluorescence. Bax, β-catenin, and dishevelled1 (DVL1) were detected by western blot. RESULTS Thermal stimulation response was improved in the PMSC group on 14 and 28 days. Compared with the control group, PGP9.5 was increased in the PMSC group, accompanied by a significant increase in the expression of S100β. On the contrary, LGK974 inhibited the effect of PMSCs on thermal stimulation response and the expression of PGP9.5 and S100β. Both PGP9.5 and S100β were correlated with Ku80 in fluorescence colocalization. The myelin sheath of sciatic nerves in the PMSC group was uniform and dense compared with that in the control group. The effects of PMSCs promoting myelin repair were significantly inhibited in the PMSC+LGK974 group. Bax in the PMSC group expressed less than the control group. In contrast, the expressions of β-catenin and DVL1 were higher compared with that in the control group on the 14th and 28th days. The expression of DVL1 and β-catenin was lower in the PMSC+LGK974 group than in the PMSC group. CONCLUSIONS PMSCs improved the symptoms of diabetic peripheral neuropathy, along with the improvement of nerve myelin lesions, promotion of nerve regeneration, and activation of Schwann cells, which might be related to the regulation of Wnt signaling pathway and inhibition of apoptosis.
Collapse
Affiliation(s)
- Songsong Pan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sushant S. Hada
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Liu
- Division of Geriatrics, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Chao Hu
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengdie Zhou
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaoqiu Zheng
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Minjie Xu
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changsheng Shi
- Department of Interventional Therapy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shiwu Yin
- Department of Interventional & Vascular Surgery, Hefei Second People's Hospital, Hefei Hospital Affiliated to Anhui Medical University, 1 Guangde Road, Hefei, Anhui Province 230011, China
| | - Xiaoyun Xie
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
62
|
Kastriti ME, Faure L, Von Ahsen D, Bouderlique TG, Boström J, Solovieva T, Jackson C, Bronner M, Meijer D, Hadjab S, Lallemend F, Erickson A, Kaucka M, Dyachuk V, Perlmann T, Lahti L, Krivanek J, Brunet J, Fried K, Adameyko I. Schwann cell precursors represent a neural crest-like state with biased multipotency. EMBO J 2022; 41:e108780. [PMID: 35815410 PMCID: PMC9434083 DOI: 10.15252/embj.2021108780] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/29/2022] Open
Abstract
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain ResearchMedical University ViennaViennaAustria
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Dorothea Von Ahsen
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | | | - Johan Boström
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| | - Tatiana Solovieva
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Cameron Jackson
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Marianne Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Dies Meijer
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Saida Hadjab
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | | | - Alek Erickson
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Marketa Kaucka
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | | - Thomas Perlmann
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Laura Lahti
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
| | - Jean‐Francois Brunet
- Institut de Biologie de l'ENS (IBENS), INSERM, CNRS, École Normale SupérieurePSL Research UniversityParisFrance
| | - Kaj Fried
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Igor Adameyko
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Neuroimmunology, Center for Brain ResearchMedical University ViennaViennaAustria
| |
Collapse
|
63
|
Chernov AV, Shubayev VI. Sexually dimorphic transcriptional programs of early-phase response in regenerating peripheral nerves. Front Mol Neurosci 2022; 15:958568. [PMID: 35983069 PMCID: PMC9378824 DOI: 10.3389/fnmol.2022.958568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The convergence of transcriptional and epigenetic changes in the peripheral nervous system (PNS) reshapes the spatiotemporal gene expression landscape in response to nerve transection. The control of these molecular programs exhibits sexually dimorphic characteristics that remain not sufficiently characterized. In the present study, we recorded genome-wide and sex-dependent early-phase transcriptional changes in regenerating (proximal) sciatic nerve 24 h after axotomy. Male nerves exhibited more extensive transcriptional changes with male-dominant upregulation of cytoskeletal binding and structural protein genes. Regulation of mRNAs encoding ion and ionotropic neurotransmitter channels displayed prominent sexual dimorphism consistent with sex-specific mRNA axonal transport in an early-phase regenerative response. Protein kinases and axonal transport genes showed sexually dimorphic regulation. Genes encoding components of synaptic vesicles were at high baseline expression in females and showed post-injury induction selectively in males. Predictive bioinformatic analyses established patterns of sexually dimorphic regulation of neurotrophic and immune genes, including activation of glial cell line-derived neurotrophic factor Gfra1 receptor and immune checkpoint cyclin D1 (Ccnd1) potentially linked to X-chromosome encoded tissue inhibitor of matrix metallo proteinases 1 (Timp1). Regulatory networks involving Olig1, Pou3f3/Oct6, Myrf, and Myt1l transcription factors were linked to sex-dependent reprogramming in regenerating nerves. Differential expression patterns of non-coding RNAs motivate a model of sexually dimorphic nerve regenerative responses to injury determined by epigenetic factors. Combined with our findings in the corresponding dorsal root ganglia (DRG), unique early-phase sex-specific molecular triggers could enrich the mechanistic understanding of peripheral neuropathies.
Collapse
Affiliation(s)
- Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
- *Correspondence: Andrei V. Chernov,
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
- VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
64
|
Liu B, Kong Y, Shi W, Kuss M, Liao K, Hu G, Xiao P, Sankarasubramanian J, Guda C, Wang X, Lei Y, Duan B. Exosomes derived from differentiated human ADMSC with the Schwann cell phenotype modulate peripheral nerve-related cellular functions. Bioact Mater 2022; 14:61-75. [PMID: 35310346 PMCID: PMC8892082 DOI: 10.1016/j.bioactmat.2021.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerve regeneration remains a significant clinical challenge due to the unsatisfactory functional recovery and public health burden. Exosomes, especially those derived from mesenchymal stem cells (MSCs), are promising as potential cell-free therapeutics and gene therapy vehicles for promoting neural regeneration. In this study, we reported the differentiation of human adipose derived MSCs (hADMSCs) towards the Schwann cell (SC) phenotype (hADMSC-SCs) and then isolated exosomes from hADMSCs with and without differentiation (i.e., dExo vs uExo). We assessed and compared the effects of uExo and dExo on antioxidative, angiogenic, anti-inflammatory, and axon growth promoting properties by using various peripheral nerve-related cells. Our results demonstrated that hADMSC-SCs secreted more neurotrophic factors and other growth factors, compared to hADMSCs without differentiation. The dExo isolated from hADMSC-SCs protected rat SCs from oxidative stress and enhanced HUVEC migration and angiogenesis. Compared to uExo, dExo also had improved performances in downregulating pro-inflammatory gene expressions and cytokine secretions and promoting axonal growth of sensory neurons differentiated from human induced pluripotent stem cells. Furthermore, microRNA (miRNA) sequencing analysis revealed that exosomes and their parent cells shared some similarities in their miRNA profiles and exosomes displayed a distinct miRNA signature. Many more miRNAs were identified in dExo than in uExo. Several upregulated miRNAs, like miRNA-132-3p and miRNA-199b-5p, were highly related to neuroprotection, anti-inflammation, and angiogenesis. The dExo can effectively modulate various peripheral nerve-related cellular functions and is promising for cell-free biological therapeutics to enhance neural regeneration. Exosomes were isolated from hADMSCs with and without differentiation towards SC phenotype (i.e., dExo vs uExo). hADMSC-SCs secreted more growth factors compared to hADMSCs without differentiation. The dExo protected rat SCs from oxidative stress and enhanced endothelial cell migration and angiogenesis. dExo promoted axonal growth of sensory neurons differentiated from hiPSCs. miRNA sequencing analysis unveiled and compared the exosomal and cellular miRNA profiles.
Collapse
|
65
|
Cho G, Moon C, Maharajan N, Ang MJ, Kim M, Jang CH. Effect of Pre-Induced Mesenchymal Stem Cell-Coated Cellulose/Collagen Nanofibrous Nerve Conduit on Regeneration of Transected Facial Nerve. Int J Mol Sci 2022; 23:ijms23147638. [PMID: 35886987 PMCID: PMC9318960 DOI: 10.3390/ijms23147638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Objective: In order to evaluate the effect of a pre-induced mesenchymal stem cell (MSC)-coated cellulose/collagen nanofibrous nerve conduit on facial nerve regeneration in a rat model both in vitro and in vivo. (2) Methods: After fabrication of the cellulose/collagen nanofibrous conduit, its lumen was coated with either MSCs or pre-induced MSCs. The nerve conduit was then applied to the defective main trunk of the facial nerve. Rats were randomly divided into three treatment groups (n = 10 in each): cellulose/collagen nanofiber (control group), cellulose/collagen nanofiber/MSCs (group I), and cellulose/collagen nanofiber/pre-induced MSCs (group II). (3) Results Fibrillation of the vibrissae of each group was observed, and action potential threshold was compared 8 weeks post-surgery. Histopathological changes were also observed. Groups I and II showed better recovery of vibrissa fibrillation than the control group. (4) Conclusions: Group II, treated with the pre-induced MSC-coated cellulose/collagen nanofibrous nerve conduit, showed the highest degree of recovery based on functional and histological evaluations.
Collapse
Affiliation(s)
- GwangWon Cho
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea; (G.C.); (N.M.)
- Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Korea;
| | - Nagarajan Maharajan
- Department of Biology, College of Natural Science, Chosun University, Gwangju 61452, Korea; (G.C.); (N.M.)
- Department of Life Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Mary Jasmin Ang
- College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños 4031, Philippines;
| | - Minseong Kim
- Advanced Biomaterial Team, Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Dong-gu 41061, Korea;
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 61469, Korea
- Correspondence: ; Tel.: +82-62-2206774
| |
Collapse
|
66
|
Duman M, Jaggi S, Enz LS, Jacob C, Schaeren-Wiemers N. Theophylline Induces Remyelination and Functional Recovery in a Mouse Model of Peripheral Neuropathy. Biomedicines 2022; 10:biomedicines10061418. [PMID: 35740439 PMCID: PMC9219657 DOI: 10.3390/biomedicines10061418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a large group of inherited peripheral neuropathies that are primarily due to demyelination and/or axonal degeneration. CMT type 1A (CMT1A), which is caused by the duplication of the peripheral myelin protein 22 (PMP22) gene, is a demyelinating and the most frequent CMT subtype. Hypermyelination, demyelination, and secondary loss of large-caliber axons are hallmarks of CMT1A, and there is currently no cure and no efficient treatment to alleviate the symptoms of the disease. We previously showed that histone deacetylases 1 and 2 (HDAC1/2) are critical for Schwann cell developmental myelination and remyelination after a sciatic nerve crush lesion. We also demonstrated that a short-term treatment with Theophylline, which is a potent activator of HDAC2, enhances remyelination and functional recovery after a sciatic nerve crush lesion in mice. In the present study, we tested whether Theophylline treatment could also lead to (re)myelination in a PMP22-overexpressing mouse line (C22) modeling CMT1A. Indeed, we show here that a short-term treatment with Theophylline in C22 mice increases the percentage of myelinated large-caliber axons and the expression of the major peripheral myelin protein P0 and induces functional recovery. This pilot study suggests that Theophylline treatment could be beneficial to promote myelination and thereby prevent axonal degeneration and enhance functional recovery in CMT1A patients.
Collapse
Affiliation(s)
- Mert Duman
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland;
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Stephanie Jaggi
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland; (S.J.); (L.S.E.); (N.S.-W.)
| | - Lukas Simon Enz
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland; (S.J.); (L.S.E.); (N.S.-W.)
| | - Claire Jacob
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland;
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Correspondence:
| | - Nicole Schaeren-Wiemers
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland; (S.J.); (L.S.E.); (N.S.-W.)
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
67
|
Perioperative Suppression of Schwann Cell Dedifferentiation Reduces the Risk of Adenomyosis Resulting from Endometrial–Myometrial Interface Disruption in Mice. Biomedicines 2022; 10:biomedicines10061218. [PMID: 35740240 PMCID: PMC9219744 DOI: 10.3390/biomedicines10061218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
We have recently demonstrated that endometrial–myometrial interface (EMI) disruption (EMID) can cause adenomyosis in mice, providing experimental evidence for the well-documented epidemiological finding that iatrogenic uterine procedures increase the risk of adenomyosis. To further elucidate its underlying mechanisms, we designed this study to test the hypothesis that Schwann cells (SCs) dedifferentiating after EMID facilitate the genesis of adenomyosis, but the suppression of SC dedifferentiation perioperatively reduces the risk. We treated mice perioperatively with either mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated protein kinase (ERK) or c-Jun N-terminal kinase (JNK) inhibitors or a vehicle 4 h before and 24 h, 48 h and 72 h after the EMID procedure. We found that EMID resulted in progressive SCs dedifferentiation, concomitant with an increased abundance of epithelial cells in the myometrium and a subsequent epithelial–mesenchymal transition (EMT). This EMID-induced change was abrogated significantly with perioperative administration of JNK or MEK/ERK inhibitors. Consistently, perioperative administration of a JNK or a MEK/ERK inhibitor reduced the incidence by nearly 33.5% and 14.3%, respectively, in conjunction with reduced myometrial infiltration of adenomyosis and alleviation of adenomyosis-associated hyperalgesia. Both treatments significantly decelerated the establishment of adenomyosis and progression of EMT, fibroblast-to-myofibroblast trans-differentiation and fibrogenesis in adenomyotic lesions. Thus, we provide the first piece of evidence strongly implicating the involvement of SCs in the pathogenesis of adenomyosis induced by EMID.
Collapse
|
68
|
Zhang S, Huang M, Zhi J, Wu S, Wang Y, Pei F. Research Hotspots and Trends of Peripheral Nerve Injuries Based on Web of Science From 2017 to 2021: A Bibliometric Analysis. Front Neurol 2022; 13:872261. [PMID: 35669875 PMCID: PMC9163812 DOI: 10.3389/fneur.2022.872261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundPeripheral nerve injury (PNI) is very common in clinical practice, which often reduces the quality of life of patients and imposes a serious medical burden on society. However, to date, there have been no bibliometric analyses of the PNI field from 2017 to 2021. This study aimed to provide a comprehensive overview of the current state of research and frontier trends in the field of PNI research from a bibliometric perspective.MethodsArticles and reviews on PNI from 2017 to 2021 were extracted from the Web of Science database. An online bibliometric platform, CiteSpace, and VOSviewer software were used to generate viewable views and perform co-occurrence analysis, co-citation analysis, and burst analysis. The quantitative indicators such as the number of publications, citation frequency, h-index, and impact factor of journals were analyzed by using the functions of “Create Citation Report” and “Journal Citation Reports” in Web of Science Database and Excel software.ResultsA total of 4,993 papers was identified. The number of annual publications in the field remained high, with an average of more than 998 publications per year. The number of citations increased year by year, with a high number of 22,272 citations in 2021. The United States and China had significant influence in the field. Johns Hopkins University, USA had a leading position in this field. JESSEN KR and JOURNAL OF NEUROSCIENCE were the most influential authors and journals in the field, respectively. Meanwhile, we found that hot topics in the field of PNI focused on dorsal root ganglion (DRG) and satellite glial cells (SGCs) for neuropathic pain relief and on combining tissue engineering techniques and controlling the repair Schwann cell phenotype to promote nerve regeneration, which are not only the focus of research now but is also forecast to be of continued focus in the future.ConclusionThis is the first study to conduct a comprehensive bibliometric analysis of publications related to PNI from 2017 to 2021, whose bibliometric results can provide a reliable source for researchers to quickly understand key information in this field and identify potential research frontiers and hot directions.
Collapse
Affiliation(s)
- Shiwen Zhang
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Meiling Huang
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jincao Zhi
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shanhong Wu
- Department of Rehabilitation Medicine and Physical Therapy, Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- *Correspondence: Yan Wang
| | - Fei Pei
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- Fei Pei
| |
Collapse
|
69
|
Erythropoietin promotes M2 macrophage phagocytosis of Schwann cells in peripheral nerve injury. Cell Death Dis 2022; 13:245. [PMID: 35296651 PMCID: PMC8927417 DOI: 10.1038/s41419-022-04671-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Following acute sciatic nerve crush injury (SNCI), inflammation and the improper phagocytic clearance of dying Schwann cells (SCs) has effects on remodeling that lead to morbidity and incomplete functional recovery. Therapeutic strategies like the use of erythropoietin (EPO) for peripheral nerve trauma may serve to bring immune cell phagocytotic clearance under control to support debris clearance. We evaluated EPO’s effect on SNCI and found EPO treatment increased myelination and sciatic functional index (SFI) and bolstered anti-apoptosis and phagocytosis of myelin debris via CD206+ macrophages when compared to saline treatment. EPO enhanced M2 phenotype activity, both in bone marrow-derived macrophages (BMMØs) and peritoneal-derived macrophages (PMØs) in vitro, as well as in PMØs in vivo. EPO increased efferocytosis of apoptotic sciatic nerve derived Schwann cells (SNSCs) in both settings as demonstrated using immunofluorescence (IF) and flow cytometry. EPO treatment significantly attenuated pro-inflammatory genes (IL1β, iNOS, and CD68) and augmented anti-inflammatory genes (IL10 and CD163) and the cell-surface marker CD206. EPO also increased anti-apoptotic (Annexin V/7AAD) effects after lipopolysaccharide (LPS) induction in macrophages. Our data demonstrate EPO promotes the M2 phenotype macrophages to ameliorate apoptosis and efferocytosis of dying SCs and myelin debris and improves SN functional recovery following SNCI.
Collapse
|
70
|
Wang Q, Chen FY, Ling ZM, Su WF, Zhao YY, Chen G, Wei ZY. The Effect of Schwann Cells/Schwann Cell-Like Cells on Cell Therapy for Peripheral Neuropathy. Front Cell Neurosci 2022; 16:836931. [PMID: 35350167 PMCID: PMC8957843 DOI: 10.3389/fncel.2022.836931] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Peripheral neuropathy is a common neurological issue that leads to sensory and motor disorders. Over time, the treatment for peripheral neuropathy has primarily focused on medications for specific symptoms and surgical techniques. Despite the different advantages of these treatments, functional recovery remains less than ideal. Schwann cells, as the primary glial cells in the peripheral nervous system, play crucial roles in physiological and pathological conditions by maintaining nerve structure and functions and secreting various signaling molecules and neurotrophic factors to support both axonal growth and myelination. In addition, stem cells, including mesenchymal stromal cells, skin precursor cells and neural stem cells, have the potential to differentiate into Schwann-like cells to perform similar functions as Schwann cells. Therefore, accumulating evidence indicates that Schwann cell transplantation plays a crucial role in the resolution of peripheral neuropathy. In this review, we summarize the literature regarding the use of Schwann cell/Schwann cell-like cell transplantation for different peripheral neuropathies and the potential role of promoting nerve repair and functional recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann cell-like cell transplantation in future clinical applications. Together, these studies provide insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and uncover prospective therapeutic strategies for peripheral neuropathy.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Fang-Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhuo-Min Ling
- Medical School of Nantong University, Nantong, China
| | - Wen-Feng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ya-Yu Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Gang Chen,
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Zhong-Ya Wei,
| |
Collapse
|
71
|
Chen S, Ikemoto T, Tokunaga T, Okikawa S, Miyazaki K, Yamada S, Saito Y, Morine Y, Shimada M. Newly Generated 3D Schwann-Like Cell Spheroids From Human Adipose-Derived Stem Cells Using a Modified Protocol. Cell Transplant 2022; 31:9636897221093312. [PMID: 35469470 PMCID: PMC9087224 DOI: 10.1177/09636897221093312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Peripheral nerve injury (PNI) is a relatively frequent type of trauma that results in the suffering of many patients worldwide every year. Schwann cells (SCs) are expected to be applied in cell therapy because of their ability to promote peripheral nerve regeneration. However, the lack of clinically renewable sources of SCs hinders the application of SC-based therapies. Adipose-derived stem cells (ADSCs) have generated great interest in recent years because of their multipotency and ease of harvest, and they have already been verified to differentiate into Schwann-like cells (SLCs) in vitro. However, the efficiency of differentiation and the functions of SLCs remain unsatisfactory. We newly generated three-dimensional (3D) SLC spheroids from ADSCs using a modified protocol with human recombinant peptide (RCP) petaloid μ-piece. Morphological analysis, gene expression analysis by qRT-PCR, ELISA measurement of the secretion capabilities of neurotrophic factors, and neurite formation assay were performed to evaluate the functions of these 3D SLCs in vitro. Motor function recovery was measured in a sciatic nerve injury mouse model to analyze the nerve regeneration-promoting effect of 3D SLCs in vivo. The differentiation efficiency and the secretion of neurotrophic factors were enhanced in 3D SLCs compared with conventional SLCs. 3D SLCs could more effectively promote neurite growth and longer neurite extension in a neuron-like SH-SY5Y model. Additionally, 3D SLCs had a better therapeutic effect on nerve regeneration after transplantation into the sciatic nerve injury mouse model. These findings demonstrated that the potential of ADSC-derived SLCs to promote nerve regeneration could be significantly increased using our modified differentiation protocol and by assembling cells into a 3D sphere conformation. Therefore, these cells have great potential and can be used in the clinical treatment of PNI.
Collapse
Affiliation(s)
- Shuhai Chen
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Takuya Tokunaga
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Shouhei Okikawa
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Katsuki Miyazaki
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Digestive and
Transplant Surgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
72
|
Knock E, Julian LM. Building on a Solid Foundation: Adding Relevance and Reproducibility to Neurological Modeling Using Human Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:767457. [PMID: 34867204 PMCID: PMC8637745 DOI: 10.3389/fncel.2021.767457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
The brain is our most complex and least understood organ. Animal models have long been the most versatile tools available to dissect brain form and function; however, the human brain is highly distinct from that of standard model organisms. In addition to existing models, access to human brain cells and tissues is essential to reach new frontiers in our understanding of the human brain and how to intervene therapeutically in the face of disease or injury. In this review, we discuss current and developing culture models of human neural tissue, outlining advantages over animal models and key challenges that remain to be overcome. Our principal focus is on advances in engineering neural cells and tissue constructs from human pluripotent stem cells (PSCs), though primary human cell and slice culture are also discussed. By highlighting studies that combine animal models and human neural cell culture techniques, we endeavor to demonstrate that clever use of these orthogonal model systems produces more reproducible, physiological, and clinically relevant data than either approach alone. We provide examples across a range of topics in neuroscience research including brain development, injury, and cancer, neurodegenerative diseases, and psychiatric conditions. Finally, as testing of PSC-derived neurons for cell replacement therapy progresses, we touch on the advancements that are needed to make this a clinical mainstay.
Collapse
Affiliation(s)
- Erin Knock
- Research and Development, STEMCELL Technologies Inc., Vancouver, BC, Canada.,Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M Julian
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
73
|
Pompili E, De Franchis V, Giampietri C, Leone S, De Santis E, Fornai F, Fumagalli L, Fabrizi C. Protease Activated Receptor 1 and Its Ligands as Main Regulators of the Regeneration of Peripheral Nerves. Biomolecules 2021; 11:1668. [PMID: 34827666 PMCID: PMC8615415 DOI: 10.3390/biom11111668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
In contrast with the brain and spinal cord, peripheral nerves possess a striking ability to regenerate after damage. This characteristic of the peripheral nervous system is mainly due to a specific population of glial cells, the Schwann cells. Schwann cells promptly activate after nerve injury, dedifferentiate assuming a repair phenotype, and assist axon regrowth. In general, tissue injury determines the release of a variety of proteases which, in parallel with the degradation of their specific targets, also activate plasma membrane receptors known as protease-activated receptors (PARs). PAR1, the prototypical member of the PAR family, is also known as thrombin receptor and is present at the Schwann cell plasma membrane. This receptor is emerging as a possible regulator of the pro-regenerative capacity of Schwann cells. Here, we summarize the most recent literature data describing the possible contribution of PAR1 and PAR1-activating proteases in regulating the regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Elena Pompili
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Valerio De Franchis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Stefano Leone
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146 Rome, Italy;
| | - Elena De Santis
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Lorenzo Fumagalli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| | - Cinzia Fabrizi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Via A. Borelli 50, 00161 Rome, Italy; (V.D.F.); (C.G.); (E.D.S.); (L.F.); (C.F.)
| |
Collapse
|
74
|
Modified Hyaluronic Acid-Laminin-Hydrogel as Luminal Filler for Clinically Approved Hollow Nerve Guides in a Rat Critical Defect Size Model. Int J Mol Sci 2021; 22:ijms22126554. [PMID: 34207389 PMCID: PMC8235360 DOI: 10.3390/ijms22126554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Hollow nerve guidance conduits are approved for clinical use for defect lengths of up to 3 cm. This is because also in pre-clinical evaluation they are less effective in the support of nerve regeneration over critical defect lengths. Hydrogel luminal fillers are thought to improve the regeneration outcome by providing an optimized matrix inside bioartificial nerve grafts. We evaluated here a modified hyaluronic acid-laminin-hydrogel (M-HAL) as luminal filler for two clinically approved hollow nerve guides. Collagen-based and chitosan-based nerve guides were filled with M-HAL in two different concentrations and the regeneration outcome comprehensively studied in the acute repair rat sciatic nerve 15 mm critical defect size model. Autologous nerve graft (ANG) repair served as gold-standard control. At 120 days post-surgery, all ANG rats demonstrated electrodiagnostically detectable motor recovery. Both concentrations of the hydrogel luminal filler induced improved regeneration outcome over empty nerve guides. However, neither combination with collagen- nor chitosan-based nerve guides resulted in functional recovery comparable to the ANG repair. In contrast to our previous studies, we demonstrate here that M-HAL slightly improved the overall performance of either empty nerve guide type in the critical defect size model.
Collapse
|
75
|
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021; 9:660259. [PMID: 33898462 PMCID: PMC8060502 DOI: 10.3389/fcell.2021.660259] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
The central nervous system (CNS) has very limited capacity to regenerate after traumatic injury or disease. In contrast, the peripheral nervous system (PNS) has far greater capacity for regeneration. This difference can be partly attributed to variances in glial-mediated functions, such as axon guidance, structural support, secretion of growth factors and phagocytic activity. Due to their growth-promoting characteristic, transplantation of PNS glia has been trialed for neural repair. After peripheral nerve injuries, Schwann cells (SCs, the main PNS glia) phagocytose myelin debris and attract macrophages to the injury site to aid in debris clearance. One peripheral nerve, the olfactory nerve, is unique in that it continuously regenerates throughout life. The olfactory nerve glia, olfactory ensheathing cells (OECs), are the primary phagocytes within this nerve, continuously clearing axonal debris arising from the normal regeneration of the nerve and after injury. In contrast to SCs, OECs do not appear to attract macrophages. SCs and OECs also respond to and phagocytose bacteria, a function likely critical for tackling microbial invasion of the CNS via peripheral nerves. However, phagocytosis is not always effective; inflammation, aging and/or genetic factors may contribute to compromised phagocytic activity. Here, we highlight the diverse roles of SCs and OECs with the focus on their phagocytic activity under physiological and pathological conditions. We also explore why understanding the contribution of peripheral glia phagocytosis may provide us with translational strategies for achieving axonal regeneration of the injured nervous system and potentially for the treatment of certain neurological diseases.
Collapse
Affiliation(s)
- Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mariyam Murtaza
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|