51
|
Warthi G, Fournier PE, Seligmann H. Identification of Noncanonical Transcripts Produced by Systematic Nucleotide Exchanges in HIV-Associated Centroblastic Lymphoma. DNA Cell Biol 2019; 39:1444-1448. [PMID: 31750730 DOI: 10.1089/dna.2019.5066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Noncanonical transcriptions include transcriptions that systematically exchange nucleotides, also called bijective transformations or swinger transformations. Swinger transformation A↔T+C↔G recovers identities of 8 among 9 unknown RNAs differentially expressed in centroblastic lymphoma, a human immunodeficiency virus (HIV)-associated non-Hodgkin's lymphoma. The identified RNAs align with human genes with known anti-HIV1 or oncogenic activities. Function disruption through swinger-transformed transcription potentially enables avoiding antiviral responses and contributes to cancer induction.
Collapse
Affiliation(s)
- Ganesh Warthi
- IRD, APHM, Aix Marseille Univ, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- IRD, APHM, Aix Marseille Univ, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hervé Seligmann
- The National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
52
|
Abstract
Apart from reliable management of the "powerhouse" of the cell, mitochondria faithfully orchestrate a diverse array of important and critical functions in governing cellular signaling, apoptosis, autophagy, mitophagy and innate and adaptive immune system. Introduction of instability and imbalance in the mitochondrial own genome or the nuclear encoded mitochondrial proteome would result in the manifestation of various diseases through alterations in the oxidative phosphorylation system (OXPHOS) and nuclear-mitochondria retrograde signaling. Understanding mitochondrial biology and dynamism are thus of paramount importance to develop strategies to prevent or treat various diseases caused due to mitochondrial alterations.
Collapse
Affiliation(s)
- Santanu Dasgupta
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
53
|
Olusola P, Banerjee HN, Philley JV, Dasgupta S. Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells 2019; 8:E622. [PMID: 31234354 PMCID: PMC6628030 DOI: 10.3390/cells8060622] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022] Open
Abstract
Cervical cancer develops through persistent infection with high-risk human papilloma virus (hrHPV) and is a leading cause of death among women worldwide and in the United States. Periodic surveillance through hrHPV and Pap smear-based testing has remarkably reduced cervical cancer incidence worldwide and in the USA. However, considerable discordance in the occurrence and outcome of cervical cancer in various populations exists. Lack of adequate health insurance appears to act as a major socioeconomic burden for obtaining cervical cancer preventive screening in a timely manner, which results in disparate cervical cancer incidence. On the other hand, cervical cancer is aggressive and often detected in advanced stages, including African American and Hispanic/Latina women. In this context, our knowledge of the underlying molecular mechanism and genetic basis behind the disparate cervical cancer outcome is limited. In this review, we shed light on our current understanding and knowledge of racially disparate outcomes in cervical cancer.
Collapse
Affiliation(s)
- Patti Olusola
- Departments of Family Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| | - Hirendra Nath Banerjee
- Natural, Pharmacy and Health Sciences, Elizabeth City State University, North Carolina, Elizabeth City, NC 27909, USA.
| | - Julie V Philley
- Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| | - Santanu Dasgupta
- Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| |
Collapse
|
54
|
Kwon S, Kim SS, Nebeck HE, Ahn EH. Immortalization of Different Breast Epithelial Cell Types Results in Distinct Mitochondrial Mutagenesis. Int J Mol Sci 2019; 20:E2813. [PMID: 31181796 PMCID: PMC6600575 DOI: 10.3390/ijms20112813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 11/16/2022] Open
Abstract
Different phenotypes of normal cells might influence genetic profiles, epigenetic profiles, and tumorigenicities of their transformed derivatives. In this study, we investigate whether the whole mitochondrial genome of immortalized cells can be attributed to the different phenotypes (stem vs. non-stem) of their normal epithelial cell originators. To accurately determine mutations, we employed Duplex Sequencing, which exhibits the lowest error rates among currently-available DNA sequencing methods. Our results indicate that the vast majority of the observed mutations of the whole mitochondrial DNA occur at low-frequency (rare mutations). The most prevalent rare mutation types are C→T/G→A and A→G/T→C transitions. Frequencies and spectra of homoplasmic point mutations are virtually identical between stem cell-derived immortalized (SV1) cells and non-stem cell-derived immortalized (SV22) cells, verifying that both cell types were derived from the same woman. However, frequencies of rare point mutations are significantly lower in SV1 cells (5.79 × 10-5) than in SV22 cells (1.16 × 10-4). The significantly lower frequencies of rare mutations are aligned with a finding of longer average distances to adjacent mutations in SV1 cells than in SV22 cells. Additionally, the predicted pathogenicity for rare mutations in the mitochondrial tRNA genes tends to be lower (by 2.5-fold) in SV1 cells than in SV22 cells. While four known/confirmed pathogenic mt-tRNA mutations (m.5650 G>A, m.5521 G>A, m.5690 A>G, m.1630 A>G) were identified in SV22 cells, no such mutations were observed in SV1 cells. Our findings suggest that the immortalization of normal cells with stem cell features leads to decreased mitochondrial mutagenesis, particularly in RNA gene regions. The mutation spectra and mutations specific to stem cell-derived immortalized cells (vs. non-stem cell derived) have implications in characterizing the heterogeneity of tumors and understanding the role of mitochondrial mutations in the immortalization and transformation of human cells.
Collapse
Affiliation(s)
- Sujin Kwon
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Susan S Kim
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Howard E Nebeck
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Eun Hyun Ahn
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
55
|
Vander Linden C, Corbet C. Reconciling environment-mediated metabolic heterogeneity with the oncogene-driven cancer paradigm in precision oncology. Semin Cell Dev Biol 2019; 98:202-210. [PMID: 31103464 DOI: 10.1016/j.semcdb.2019.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022]
Abstract
Precision oncology is the practice of matching one therapy to one specific patient, based on particular genetic tumor alterations, in order to achieve the best clinical response. Despite an expanding arsenal of targeted therapies, many patients still have a poor outcome because tumor cells show a remarkable capacity to develop drug resistance, thereby leading to tumor relapse. Besides genotype-driven resistance mechanisms, tumor microenvironment (TME) peculiarities strongly contribute to generate an intratumoral phenotypic heterogeneity that affects disease progression and treatment outcome. In this Review, we describe how TME-mediated metabolic heterogeneities actively participate to therapeutic failure. We report how a lactate-based metabolic symbiosis acts as a mechanism of adaptive resistance to targeted therapies and we describe the role of mitochondrial metabolism, in particular oxidative phosphorylation (OXPHOS), to support the growth and survival of therapy-resistant tumor cells in a variety of cancers. Finally, we detail potential metabolism-interfering therapeutic strategies aiming to eradicate OXPHOS-dependent relapse-sustaining malignant cells and we discuss relevant (pre)clinical models that may help integrate TME-driven metabolic heterogeneity in precision oncology.
Collapse
Affiliation(s)
- Catherine Vander Linden
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate, B1.57.04, B-1200 Brussels, Belgium
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, 57 Avenue Hippocrate, B1.57.04, B-1200 Brussels, Belgium.
| |
Collapse
|
56
|
Yusoff AAM, Abdullah WSW, Khair SZNM, Radzak SMA. A comprehensive overview of mitochondrial DNA 4977-bp deletion in cancer studies. Oncol Rev 2019; 13:409. [PMID: 31044027 PMCID: PMC6478002 DOI: 10.4081/oncol.2019.409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/19/2019] [Indexed: 01/04/2023] Open
Abstract
Mitochondria are cellular machines essential for energy production. The biogenesis of mitochondria is a highly complex and it depends on the coordination of the nuclear and mitochondrial genome. Mitochondrial DNA (mtDNA) mutations and deletions are suspected to be associated with carcinogenesis. The most described mtDNA deletion in various human cancers is called the 4977-bp common deletion (mDNA4977) and it has been explored since two decades. In spite of that, its implication in carcinogenesis still unknown and its predictive and prognostic impact remains controversial. This review article provides an overview of some of the cellular and molecular mechanisms underlying mDNA4977 formation and a detailed summary about mDNA4977 reported in various types of cancers. The current knowledges of mDNA4977 as a prognostic and predictive marker are also discussed.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Wan Salihah Wan Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
57
|
Beadnell TC, Scheid AD, Vivian CJ, Welch DR. Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer. Cancer Metastasis Rev 2018; 37:615-632. [PMID: 30542781 PMCID: PMC6358502 DOI: 10.1007/s10555-018-9772-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes for only a fraction of the proteins that are encoded within the nucleus, and therefore has typically been regarded as a lesser player in cancer biology and metastasis. Accumulating evidence, however, supports an increased role for mtDNA impacting tumor progression and metastatic susceptibility. Unfortunately, due to this delay, there is a dearth of data defining the relative contributions of specific mtDNA polymorphisms (SNP), which leads to an inability to effectively use these polymorphisms to guide and enhance therapeutic strategies and diagnosis. In addition, evidence also suggests that differences in mtDNA impact not only the cancer cells but also the cells within the surrounding tumor microenvironment, suggesting a broad encompassing role for mtDNA polymorphisms in regulating the disease progression. mtDNA may have profound implications in the regulation of cancer biology and metastasis. However, there are still great lengths to go to understand fully its contributions. Thus, herein, we discuss the recent advances in our understanding of mtDNA in cancer and metastasis, providing a framework for future functional validation and discovery.
Collapse
Affiliation(s)
- Thomas C Beadnell
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Adam D Scheid
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Carolyn J Vivian
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|