Yanez M, Blanchette J, Jabbarzadeh E. Modulation of Inflammatory Response to Implanted Biomaterials Using Natural Compounds.
Curr Pharm Des 2017;
23:6347-6357. [PMID:
28521709 PMCID:
PMC5681444 DOI:
10.2174/1381612823666170510124348]
[Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 02/06/2023]
Abstract
Tissue engineering offers a promising strategy to restore injuries resulting from trauma, infection, tumor resection, or other diseases. In spite of significant progress, the field faces a significant bottleneck; the critical need to understand and exploit the interdependencies of tissue healing, angiogenesis, and inflammation. Inherently, the balance of these interacting processes is affected by a number of injury site conditions that represent a departure from physiological environment, including reduced pH, increased concentration of free radicals, hypoglycemia, and hypoxia. Efforts to harness the potential of immune response as a therapeutic strategy to promote tissue repair have led to identification of natural compounds with significant anti-inflammatory properties. This article provides a concise review of the body's inflammatory response to biomaterials and describes the role of oxygen as a physiological cue in this process. We proceed to highlight the potential of natural compounds to mediate inflammatory response and improve host-graft integration. Herein, we discuss the use of natural compounds to map signaling molecules and checkpoints that regulate the cross-linkage of immune response and skeletal repair.
Collapse