51
|
Duan S, Du X, Chen S, Liang J, Huang S, Hou S, Gao J, Ding P. Effect of vitexin on alleviating liver inflammation in a dextran sulfate sodium (DSS)-induced colitis model. Biomed Pharmacother 2020; 121:109683. [DOI: 10.1016/j.biopha.2019.109683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/28/2019] [Accepted: 11/16/2019] [Indexed: 12/12/2022] Open
|
52
|
Zhang N, Su Y, Gao Y, Bao T, Wang S. Facile synthesis and immobilization of boroxine polymers containing carbon chains and their application as adsorbents. Polym Chem 2020. [DOI: 10.1039/d0py00797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel boroxine-linked covalent organic polymers was synthesized and immobilized by one pot reaction for extraction of anthraquinones.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| | - Ying Su
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| | - Yan Gao
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| | - Tao Bao
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| | - Sicen Wang
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| |
Collapse
|
53
|
Aloin Preconditioning Attenuates Hepatic Ischemia/Reperfusion Injury via Inhibiting TLR4/MyD88/NF- κB Signal Pathway In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3765898. [PMID: 31827674 PMCID: PMC6886335 DOI: 10.1155/2019/3765898] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 12/11/2022]
Abstract
Background Aloin exerts considerable protective effects in various disease models, and its effect on hepatic ischemia-reperfusion (HIR) injury remains unknown. This research is aimed at conducting an in-depth investigation of the antioxidant, anti-inflammatory, and antiapoptosis effects of aloin in HIR injury and explain the underlying molecular mechanisms. Methods In vivo, different concentrations of aloin were intraperitoneally injected 1 h before the establishment of the HIR model in male mice. The hepatic function, pathological status, oxidative stress, and inflammatory and apoptosis markers were measured. In vitro, aloin (AL, C21H22O9) or lipopolysaccharide (LPS) was added to a culture of mouse primary hepatocytes before it underwent hypoxia/reoxygenation (H/R), and the apoptosis in the mouse primary hepatocytes was analyzed. Results We found that 20 mg/kg was the optimum concentration of aloin for mitigating I/R-induced liver tissue damage, characterized by decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Aloin pretreatment substantially suppressed the generation of hepatic malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), and IL-6 and enhanced the hepatic superoxide dismutase (SOD) activities as well as glutathione (GSH) and IL-10 levels in the liver tissue of I/R mice; this indicated that aloin ameliorated I/R-induced liver damage by reducing the oxidative stress and inflammatory response. Moreover, aloin inhibited hepatocyte apoptosis and inflammatory response that was caused by the upregulated expression of Bcl-2, the downregulated expression of cleaved caspase3(C-caspase3), Bax, Toll-like receptor 4 (TLR4), FADD, MyD88, TRAF6, phosphorylated IKKα/β (p-IKKα/β), and phosphorylated nuclear factor κB p65 (p-NF-κB p65).
Collapse
|
54
|
Wang G, Zhang N, Wang Y, Liu J, Wang G, Zhou Z, Lu C, Yang J. The hepatoprotective activities of Kalimeris indica ethanol extract against liver injury in vivo. Food Sci Nutr 2019; 7:3797-3807. [PMID: 31763029 PMCID: PMC6848823 DOI: 10.1002/fsn3.1241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022] Open
Abstract
Kalimeris indica (L.) Sch. Bip. is a traditional Chinese medicine (TCM) and a portion of food used for cooking in China. It has been demonstrated that an ethanol extract of K. indica has an anti-inflammatory effect by inhibition of nitric oxide (NO) production on murine macrophage RAW264.7 cells after lipopolysaccharide (LPS) induction. In this study, the hepatoprotective effects of the total phenolics of K. indica (TPK), the total triterpenes of K. indica (TTK), and the total flavones of K. indica (TFK) from ethanol extracts of K. indica were evaluated in Bacille Calmette-Guerin (BCG)/LPS-induced liver injury in vivo. The treatments of TPK, TTK, and TFK improved liver injury in mice. Additionally, all treatments significantly not only reduced the hepatic malondialdehyde (MDA) content and hepatic total nitric oxide synthase (tNOS) but also induced the hepatic superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. The treatments of TPK and TTK significantly reduced the hepatic inducible nitric oxide synthase (iNOS). The treatments of TPK, TTK, and TFK reduced the serum total bilirubin (T-Bil), and only TFK treatment reduced the serum alanine aminotransferase (ALT). Our results suggest that TPK, TTK, and TFK from ethanol extracts of K. indica might play an essential protective role against BCG/LPS-induced liver injury in vivo.
Collapse
Affiliation(s)
- Guo‐Kai Wang
- School of PharmacyAnhui Key Laboratory of Modern Chinese Materia MedicaAnhui University of Chinese MedicineHefeiChina
| | - Nan Zhang
- School of PharmacyAnhui Key Laboratory of Modern Chinese Materia MedicaAnhui University of Chinese MedicineHefeiChina
| | - Yi Wang
- Bristol‐Myers SquibbLawrenceNJUSA
| | - Jin‐Song Liu
- School of PharmacyAnhui Key Laboratory of Modern Chinese Materia MedicaAnhui University of Chinese MedicineHefeiChina
| | - Gang Wang
- School of PharmacyAnhui Key Laboratory of Modern Chinese Materia MedicaAnhui University of Chinese MedicineHefeiChina
| | - Zhong‐Yu Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Chi‐Cheng Lu
- Department of Sport PerformanceNational Taiwan University of SportTaichungTaiwan
| | - Jai‑Sing Yang
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityTaichungTaiwan
| |
Collapse
|
55
|
Hepatoprotective Effect of the Ethanol Extract of Illicium henryi against Acute Liver Injury in Mice Induced by Lipopolysaccharide. Antioxidants (Basel) 2019; 8:antiox8100446. [PMID: 31581526 PMCID: PMC6826918 DOI: 10.3390/antiox8100446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
The root bark of Illicium henryi has been used in traditional Chinese medicine to treat lumbar muscle strain and rheumatic pain. Its ethanol extract (EEIH) has been previously reported to attenuate lipopolysaccharide (LPS)-induced acute kidney injury in mice. The present study aimed to evaluate the in vitro antioxidant activities and in vivo protective effects of EEIH against LPS-induced acute liver injury (ALI) in mice as well as explore its molecular mechanisms. The mice were injected intraperitoneally (i.p.) with EEIH at the doses of 1.25, 2.5, and 5.0 mg/kg every day for 5 days. One hour after the last administration, the mice were administered i.p. with LPS (8 mg/kg). After fasting for 12 h, blood and liver tissues were collected to histopathological observation, biochemical assay, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot analyses. EEIH possessed 2,2-diphenyl-1-picrylhydrazil (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiozoline-6-sulfonic acid) disodium salt (ABTS) radical scavenging activities and ferric-reducing antioxidant capacity in vitro. The histopathological examination, serum biochemical analysis, and liver myeloperoxidase (MPO) activity showed that EEIH pretreatment alleviated LPS-induced liver injury in mice. EEIH significantly dose-dependently decreased the mRNA and protein expression levels of inflammatory factors TNF-α, IL-1β, IL-6, and COX-2 in liver tissue of LPS-induced ALI mice via downregulating the mRNA and protein expressions of toll-like receptor 4 (TLR4) and inhibiting the phosphorylation of nuclear factor-κB (NF-κB) p65. Furthermore, EEIH markedly ameliorated liver oxidative and nitrosative stress burden in LPS-treated mice through reducing the content of thiobarbituric acid reactive substances (TBARS), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) levels, restoring the decreased superoxide dismutase (SOD) and reduced glutathione (GSH) levels, and up-regulating nuclear factor erythroid 2 related factor 2 (Nrf2). These results demonstrate that EEIH has protective effects against ALI in mice via alleviating inflammatory response, oxidative and nitrosative stress burden through activating the Nrf2 and suppressing the TLR4/NF-κB signaling pathways. The hepatoprotective activity of EEIH might be attributed to the flavonoid compounds such as catechin (1), 3',4',7-trihydroxyflavone (2), and taxifolin (7) that most possibly act synergistically.
Collapse
|
56
|
Li X, Yao Q, Huang J, Jin Q, Xu B, Chen F, Tu C. Morin Hydrate Inhibits TREM-1/TLR4-Mediated Inflammatory Response in Macrophages and Protects Against Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Front Pharmacol 2019; 10:1089. [PMID: 31616301 PMCID: PMC6763683 DOI: 10.3389/fphar.2019.01089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/26/2019] [Indexed: 12/29/2022] Open
Abstract
This study aims to investigate the protective effects of morin hydrate (MH) against acute liver injury induced by carbon tetrachloride (CCl4) in mice and to elucidate the possible molecular mechanism of action. Mice were pretreated with MH (50 mg/kg body weight) or vehicle by oral gavage once daily for 5 days, followed by intraperitoneal injection of a single dose of CCl4 (1 ml/kg in olive oil). Mice were sacrificed 24 h later; the blood and liver samples were harvested for analysis. We also used the model of lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in vitro and examined the effects of MH and its mechanism of action on the inflammatory response. Our results revealed that MH remarkably attenuated liver histopathological alterations, serum transaminases, hepatocytes death, and inflammatory response induced by CCl4. Importantly, MH reduced expression of the triggering receptor expressed on myeloid cells-1 (TREM-1) and toll-like receptor 4 (TLR4) both in vivo and in vitro experiments. This inhibitory effect MH on expression of the TREM-1 and TLR4 in cell culture was further heightened after TREM-1 knockdown with small interfering RNA (siRNA). Moreover, MH dramatically suppressed the inhibitor of kappa B α (IκBα) degradation and subsequent nuclear factor-kappa B (NF-κB) p65 translocation into the nucleus and NF-κB-mediated cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6. Additionally, MH also ameliorated CCl4-induced oxidative stress by enhancing the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in the injured livers. Taken together, MH has hepatoprotective activity, and this effect may be elicited by attenuating macrophage-mediated inflammatory responses via inhibition TREM-1/TLR4/NF-κB signaling and by regulating hepatic oxidative stress via enhancement Nrf2/HO-1 antioxidant pathway.
Collapse
Affiliation(s)
- Xi Li
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiying Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Qianwen Jin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangyuan Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuantao Tu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Savio M, Ibrahim MF, Scarlata C, Orgiu M, Accardo G, Sardar AS, Moccia F, Stivala LA, Brusotti G. Anti-Inflammatory Properties of Bellevalia saviczii Root Extract and Its Isolated Homoisoflavonoid ( Dracol) Are Mediated by Modification on Calcium Signaling. Molecules 2019; 24:molecules24183376. [PMID: 31533249 PMCID: PMC6766996 DOI: 10.3390/molecules24183376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/31/2022] Open
Abstract
Bellevalia saviczii is a medicinal plant used as anti-rheumatic and anti-inflammatory herbal remedy in Iraqi-Kurdistan. The aim of this study was to evaluate the anti-inflammatory activity of its extract and the isolated homoisoflavonoid (Dracol) by studying the Ca2+-dependent NF-kB pathway. Nuclear translocation of p65 NF-kB subunit, as parameter of NF-kB activation, was visualized in human leukemic monocytes by immunofluorescence and Western blot analyses, after cell treatment with B. saviczii root extract or Dracol followed by Lipopolysaccharide stimulation. In parallel, Ca2+ signals responsible for NF-kB activation and levels of inflammatory cytokines were investigated. LPS-induced p65 translocation was evident in monocytes and both treatments, in particular that with Dracol, were able to counteract this activation. Intracellular Ca2+ oscillations were halted and the cytokine release reduced. These results confirm the traditional anti-inflammatory efficacy of B. saviczii and identify one of the molecules in the extract which appears to be responsible of this action.
Collapse
Affiliation(s)
- Monica Savio
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Mohammed Farhad Ibrahim
- Department of Drug Sciences, viale Taramelli 12, University of Pavia, 27100 Pavia, Italy.
- Department of Environmental Science, College of Science, University of Salahaddin-Erbil, Erbil 44001, Iraq.
| | - Chiara Scarlata
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Matteo Orgiu
- Department of Biology and Biotechnology "L. Spallanzani" via Forlanini 6, University of Pavia, 27100 Pavia, Italy.
| | - Giuseppe Accardo
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Abdullah Shakur Sardar
- Department of Biology, College of Education, University of Salahaddin-Erbil, Erbil 44001, Iraq.
| | - Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani" via Forlanini 6, University of Pavia, 27100 Pavia, Italy.
| | - Lucia Anna Stivala
- Department of Molecular Medicine, Immunology and General Pathology Unit, via Ferrata 9, University of Pavia, 27100 Pavia, Italy.
| | - Gloria Brusotti
- Department of Drug Sciences, viale Taramelli 12, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
58
|
Wang M, Niu J, Ou L, Deng B, Wang Y, Li S. Zerumbone Protects against Carbon Tetrachloride (CCl 4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway. Molecules 2019; 24:molecules24101964. [PMID: 31121820 PMCID: PMC6571963 DOI: 10.3390/molecules24101964] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
The natural compound Zerumbone (hereinafter referred to as ZER), a monocyclic sesquiterpenoid, has been reported to possess many pharmacological properties, including antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanism of ZER against acute liver injury (ALI) in CCl4-induced mice models. ICR mice were pretreated intraperitoneally with ZER for five days, then received a CCl4 injection two hours after the last ZER administration and were sacrificed 24 h later. Examination of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and the histopathological analysis confirmed the hepatoprotective effect of ZER. Biochemical assays revealed that ZER pretreatment recovered the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), restored the glutathione (GSH) reservoir, and reduced the production of malondialdehyde (MDA), all in a dose-dependent manner. Furthermore, administration of ZER in vivo reduced the release amounts of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and inhibited the increased protein levels of Toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB) p-p65, and cyclooxygenase (COX-2). Further studies in lipopolysaccharide (LPS)-induced Raw264.7 inflammatory cellular models verified that ZER could inhibit inflammation via inactivating the TLR4/NF-κB/COX-2 pathway. Thus, our study indicated that ZER exhibited a hepatoprotective effect against ALI through its antioxidant and anti-inflammatory activities and the possible mechanism might be mediated by the TLR4/NF-κB/COX-2 pathway. Collectively, our studies indicate ZER could be a potential candidate for chemical liver injury treatment.
Collapse
Affiliation(s)
- Meilin Wang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Jingling Niu
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Lina Ou
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Bo Deng
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yingyi Wang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Sanqiang Li
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
59
|
Ye B, Chen X, Dai S, Han J, Liang X, Lin S, Cai X, Huang Z, Huang W. Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin D-mediated pyroptosis in cardiomyocytes. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:975-990. [PMID: 30988600 PMCID: PMC6438141 DOI: 10.2147/dddt.s195412] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Emodin has recently been reported to have a powerful antiinflammatory effect, protecting the myocardium against ischemia/reperfusion (I/R) injury. Pyroptosis is a proinflammatory programmed cell death that is related to many diseases. The present study investigated the effect of emodin on pyroptosis in cardiomyocytes. Materials and methods Sprague Dawley rats were randomly divided into sham, I/R, and I/R+Emodin groups. I/R model was subjected to 30 minutes' ligation of left anterior descending coronary artery, followed by 2 hours of reperfusion. Cardiomyocytes were exposed to hypoxic conditions for 1 hour and normoxic conditions for 2 hours. The level of the pyroptosis was detected by Western blot, real-time PCR analysis, and ELISA. Results The level of gasdermin D-N domains was upregulated in cardiomyocytes during I/R or hypoxia/reoxygenation (H/R) treatment. Moreover, emodin increased the rate of cell survival in vitro and decreased the myocardial infarct size in vivo via suppressing the levels of I/R-induced pyroptosis. Additionally, the expression of TLR4, MyD88, phospho-IκBα, phospho-NF-κB, and the NLRP3 inflammasome was significantly upregulated in cardiomyocytes subjected to H/R treatment, while emodin suppressed the expression of these proteins. Conclusion This study confirms that emodin treatment was able to alleviate myocardial I/R injury and inhibit pyroptosis in vivo and in vitro. The inhibitory effect of emodin on pyroptosis was mediated by suppressing the TLR4/MyD88/NF-κB/NLRP3 inflammasome pathway. Therefore, emodin may provide an alternative treatment for myocardial I/R injury.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, People's Republic of China, ;
| | - Xudong Chen
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, People's Republic of China, ;
| | - Shanshan Dai
- Department of Emergency, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, People's Republic of China
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, ZheJiang, People's Republic of China
| | - Xiaohe Liang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, People's Republic of China, ;
| | - Shuang Lin
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, People's Republic of China, ;
| | - Xueli Cai
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, People's Republic of China, ;
| | - Zhouqing Huang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, People's Republic of China, ;
| | - Weijian Huang
- Department of Cardiology, The Key Lab of Cardiovascular Disease of Wenzhou, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, People's Republic of China, ;
| |
Collapse
|
60
|
Duan J, Yang Z, Huang J, Zhu Y, Zhao H, Unwith S, Gao X, Lu K, Ning J. Inhibition of tyrosine kinases protects against lipopolysaccharide‐induced acute lung injury by preventing nuclear export of Nrf2. J Cell Biochem 2019; 120:12331-12339. [PMID: 30861161 DOI: 10.1002/jcb.28497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Jiaxiang Duan
- Department of Anesthesia Southwest Hospital, Third Military Medical University Chongqing China
| | - Zhen Yang
- Department of Anesthesia Southwest Hospital, Third Military Medical University Chongqing China
| | - Jian Huang
- Department of Anesthesia Southwest Hospital, Third Military Medical University Chongqing China
| | - Yuan Zhu
- Department of Anesthesia Southwest Hospital, Third Military Medical University Chongqing China
| | - Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine Chelsea & Westminster Hospital, Imperial College London London UK
| | - Sandeep Unwith
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine Chelsea & Westminster Hospital, Imperial College London London UK
| | - Xian Gao
- Department of Anesthesia Southwest Hospital, Third Military Medical University Chongqing China
| | - Kaizhi Lu
- Department of Anesthesia Southwest Hospital, Third Military Medical University Chongqing China
| | - Jiaolin Ning
- Department of Anesthesia Southwest Hospital, Third Military Medical University Chongqing China
| |
Collapse
|