51
|
Abstract
Pleiotrophin (PTN) is a potent mitogenic cytokine with a high affinity for the polysaccharide glycosaminoglycan (GAG). Although it is most strongly associated with neural development during embryogenesis and the neonatal period, its expression has also been linked to a plethora of other physiological events including cancer metastasis, angiogenesis, bone development, and inflammation. A considerable amount of research has been carried out to understand the mechanisms by which PTN regulates these events. In particular, PTN has now been shown to bind a diverse collection of receptors including many GAG-containing proteoglycans. These interactions lead to the activation of many intracellular kinases and, ultimately, activation and transformation of cells. Structural studies of PTN in complex with both GAG and domains from its non-proteoglycan receptors reveal a binding mechanism that relies on electrostatic interactions and points to PTN-induced receptor oligomerization as one of the possible ways PTN uses to control cellular functions.
Collapse
|
52
|
Takada S, Sakakima H, Matsuyama T, Otsuka S, Nakanishi K, Norimatsu K, Itashiki Y, Tani A, Kikuchi K. Disruption of Midkine gene reduces traumatic brain injury through the modulation of neuroinflammation. J Neuroinflammation 2020; 17:40. [PMID: 31996236 PMCID: PMC6990546 DOI: 10.1186/s12974-020-1709-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/12/2020] [Indexed: 01/29/2023] Open
Abstract
Background Midkine (MK) is a multifunctional cytokine found upregulated in the brain in the presence of different disorders characterized by neuroinflammation, including neurodegenerative disorders and ischemia. The neuroinflammatory response to traumatic brain injury (TBI) represents a key secondary injury factor that can result in further neuronal injury. In the present study, we investigated the role of endogenous MK in secondary injury, including neuroinflammation, immune response, and neuronal apoptosis activity, after TBI. Methods Wild type (Mdk+/+) and MK gene deficient (Mdk−/−) mice were subjected to fluid percussion injury for TBI models and compared at 3, 7, and 14 days after TBI, in terms of the following: brain tissue loss, neurological deficits, microglia response, astrocytosis, expression of proinflammatory M1 and anti-inflammatory M2 microglia/macrophage phenotype markers, and apoptotic activity. Results As opposed to Mdk+/+ mice, Mdk−/− mice reported a significantly reduced area of brain tissue loss and an improvement in their neurological deficits. The ratios of the Iba1-immunoreactive microglia/macrophages in the perilesional site were significantly decreased in Mdk−/− than in the Mdk+/+ mice at 3 days after TBI. However, the ratios of the glial fibrillary acidic protein immunoreactive area were similar between the two groups. The M1 phenotype marker (CD16/32) immunoreactive areas were significantly reduced in Mdk−/− than in the Mdk+/+ mice. Likewise, the mRNA levels of the M1 phenotype markers (TNF-α, CD11b) were significantly decreased in Mdk−/− mice than in Mdk+/+ mice. Furthermore, flow cytometry analysis identified the M2 markers, i.e., CD163+ macrophages cells and arginase-1+ microglia cells, to be significantly higher in Mdk−/− than in Mdk+/+ mice. Finally, the ratios of apoptotic neurons were significantly decreased in the area surrounding the lesion in Mdk−/− than in Mdk+/+ mice following TBI. Conclusion Our findings suggest that MK-deficiency reduced tissue infiltration of microglia/macrophages and altered their polarization status thereby reducing neuroinflammation, neuronal apoptosis, and tissue loss and improving neurological outcomes after TBI. Therefore, targeting MK to modulate neuroinflammation may represent a potential therapeutic strategy for TBI management.
Collapse
Affiliation(s)
- Seiya Takada
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shotaro Otsuka
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuki Nakanishi
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kosuke Norimatsu
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yuki Itashiki
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Akira Tani
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
53
|
The Role of Macrophage Migration Inhibitory Factor in Alzheimer's Disease: Conventionally Pathogenetic or Unconventionally Protective? Molecules 2020; 25:molecules25020291. [PMID: 31936865 PMCID: PMC7024279 DOI: 10.3390/molecules25020291] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recent preclinical and clinical observations have offered relevant insights on the etiopathogenesis of late onset Alzheimer′s disease (AD) and upregulated immunoinflammatory events have been described as underlying mechanisms involved in the development of AD. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine produced by several cells of the innate and adaptive immune system, as well as non-immune cells. In the present review, we highlight experimental, genetic, and clinical studies on MIF in rodent models of AD and AD patients, and we discuss emerging therapeutic opportunities for tailored modulation of the activity of MIF, that may potentially be applied to AD patients. Dismantling the exact role of MIF and its receptors in AD may offer novel diagnostic and therapeutic opportunities in AD.
Collapse
|
54
|
Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. J Neurosci 2019; 40:1232-1247. [PMID: 31882403 PMCID: PMC7002140 DOI: 10.1523/jneurosci.1675-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In midkine-a loss-of-function mutants of both sexes, Müller glia initiate the appropriate reprogramming response to photoreceptor death by increasing expression of stem cell-associated genes, and entering the G1 phase of the cell cycle. However, transition from G1 to S phase is blocked in the absence of Midkine-a, resulting in significantly reduced proliferation and selective failure to regenerate cone photoreceptors. Failing to progress through the cell cycle, Müller glia undergo reactive gliosis, a pathological hallmark in the injured CNS of mammals. Finally, we determined that the Midkine-a receptor, anaplastic lymphoma kinase, is upstream of the HLH regulatory protein, Id2a, and of the retinoblastoma gene, p130, which regulates progression through the cell cycle. These results demonstrate that Midkine-a functions as a core component of the mechanisms that regulate proliferation of stem cells in the injured CNS. SIGNIFICANCE STATEMENT The death of retinal neurons and photoreceptors is a leading cause of vision loss. Regenerating retinal neurons is a therapeutic goal. Zebrafish can regenerate retinal neurons from intrinsic stem cells, Müller glia, and are a powerful model to understand how stem cells might be used therapeutically. Midkine-a, an injury-induced growth factor/cytokine that is expressed by Müller glia following neuronal death, is required for Müller glia to progress through the cell cycle. The absence of Midkine-a suspends proliferation and neuronal regeneration. With cell cycle progression stalled, Müller glia undergo reactive gliosis, a pathological hallmark of the mammalian retina. This work provides a unique insight into mechanisms that control the cell cycle during neuronal regeneration.
Collapse
|