51
|
Steiner KK, Parthasarathy A, Wong NH, Cavanaugh NT, Chu J, Hudson AO. Isolation and whole-genome sequencing of Pseudomonas sp. RIT 623, a slow-growing bacterium endowed with antibiotic properties. BMC Res Notes 2020; 13:370. [PMID: 32746897 PMCID: PMC7398229 DOI: 10.1186/s13104-020-05216-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE There is an urgent need for the discovery and/or development of novel antibiotics. We report an exploration of "slow"-growing bacteria, which can be difficult to isolate using rich media as they are usually outcompeted by "fast"-growing bacteria, as potential sources of novel antimicrobials. RESULTS Pseudomonas sp. RIT 623 was isolated using pond water agar from a pond located on the campus of the Rochester Institute of Technology (RIT). The genome was sequenced and analyzed for potential secondary metabolite gene clusters. Bioinformatics analysis revealed 14 putative gene clusters predicted to encode pathways for the anabolism of secondary metabolites. Ethyl acetate extracts from spent growth medium of Pseudomonas sp. RIT 623 were tested against two Gram-negative (E. coli ATCC 25922 and P. aeruginosa ATCC 27853) and two Gram-positive (B. subtilis BGSC 168 and S. aureus ATCC 25923) type strains to assess antibiotic activity. The antibiotic assays demonstrated that extracts of Pseudomonas sp. RIT 623 were able to inhibit the growth of the four strains. The active compound was separated using diethyl ether in a multi-solvent extraction and reverse phase chromatography. The bioactive compound/s were subsequently eluted in two consecutive fractions corresponding to approximately 16-22% acetonitrile, indicative of polar compound/s.
Collapse
Affiliation(s)
- KayLee K. Steiner
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Anutthaman Parthasarathy
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Narayan H. Wong
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Nicole T. Cavanaugh
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - Jonathan Chu
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 USA
| |
Collapse
|
52
|
Vlasiou MC, Pafiti KS. Chromium Coordination Compounds with Antimicrobial Activity: Synthetic Routes, Structural Characteristics, and Antibacterial Activity. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major threat to public health worldwide is that the antimicrobial activity of the established drugs is constantly reduced due to the resistance that bacteria develop throughout the years. Some transition metal complexes show higher antibacterial activity against several bacteria compared to those of clinically used antibiotics. Novel classes of molecules provide new challenges and seem promising to solve the crisis that the overuse of antibiotics has led over the last years. This review discusses the challenges of chromium-based metallodrugs as antimicrobial agents. In particular, the synthetic routes, the structural characteristics, as well as the antimicrobial activity of 32 chromium (III) complexes have been presented.
Collapse
|
53
|
Bhattarai K, Bastola R, Baral B. Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. ADVANCES IN GENETICS 2020; 105:229-292. [PMID: 32560788 DOI: 10.1016/bs.adgen.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amid a rising threat of antimicrobial resistance in a global scenario, our huge investments and high-throughput technologies injected for rejuvenating the key therapeutic scaffolds to suppress these rising superbugs has been diminishing severely. This has grasped world-wide attention, with increased consideration being given to the discovery of new chemical entities. Research has now proven that the relatively tiny and simpler microbes possess enhanced capability of generating novel and diverse chemical constituents with huge therapeutic leads. The usage of these beneficial organisms could help in producing new chemical scaffolds that govern the power to suppress the spread of obnoxious superbugs. Here in this review, we have explicitly focused on several appealing strategies employed for the generation of new chemical scaffolds. Also, efforts on providing novel insights on some of the unresolved questions in the production of metabolites, metabolic profiling and also the serendipity of getting "hit molecules" have been rigorously discussed. However, we are highly aware that biosynthetic pathway of different classes of secondary metabolites and their biosynthetic route is a vast topic, thus we have avoided discussion on this topic.
Collapse
Affiliation(s)
- Keshab Bhattarai
- University of Tübingen, Tübingen, Germany; Center for Natural and Applied Sciences (CENAS), Kathmandu, Nepal
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal.
| |
Collapse
|
54
|
Vandera KKA, Picconi P, Valero M, González-Gaitano G, Woods A, Zain NMM, Bruce KD, Clifton LA, Skoda MWA, Rahman KM, Harvey RD, Dreiss CA. Antibiotic-in-Cyclodextrin-in-Liposomes: Formulation Development and Interactions with Model Bacterial Membranes. Mol Pharm 2020; 17:2354-2369. [DOI: 10.1021/acs.molpharmaceut.0c00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kalliopi-Kelli A. Vandera
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Pietro Picconi
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Margarita Valero
- Department of Physical Chemistry, University of Salamanca, ES E-37007 Salamanca, Spain
| | | | - Arcadia Woods
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Nur Masirah M. Zain
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Kenneth D. Bruce
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Luke A. Clifton
- Rutherford Appleton Laboratory, ISIS, 1-27, R3, Harwell Campus, Didcot OX11 0QX, U.K
| | | | - Khondaker Miraz Rahman
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Richard D. Harvey
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Cécile A. Dreiss
- School of Cancer & Pharmaceutical Science, Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| |
Collapse
|
55
|
Gilbert-Girard S, Savijoki K, Yli-Kauhaluoma J, Fallarero A. Optimization of a High-Throughput 384-Well Plate-Based Screening Platform with Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 15442 Biofilms. Int J Mol Sci 2020; 21:ijms21093034. [PMID: 32344836 PMCID: PMC7246797 DOI: 10.3390/ijms21093034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
In recent years, bacterial infections have become a main concern following the spread of antimicrobial resistance. In addition, bacterial biofilms are known for their high tolerance to antimicrobials and they are regarded as a main cause of recalcitrant infections in humans. Many efforts have been deployed in order to find new antibacterial therapeutic options and the high-throughput screening (HTS) of large libraries of compounds is one of the utilized strategies. However, HTS efforts for anti-biofilm discovery remain uncommon. Here, we miniaturized a 96-well plate (96WP) screening platform, into a 384-well plate (384WP) format, based on a sequential viability and biomass measurements for the assessment of anti-biofilm activity. During the assay optimization process, different parameters were evaluated while using Staphylococcus aureus and Pseudomonas aeruginosa as the bacterial models. We compared the performance of the optimized 384WP platform to our previously established 96WP-based platform by carrying out a pilot screening of 100 compounds, followed by the screening of a library of 2000 compounds to identify new repurposed anti-biofilm agents. Our results show that the optimized 384WP platform is well-suited for screening purposes, allowing for the rapid screening of a higher number of compounds in a run in a reliable manner.
Collapse
Affiliation(s)
- Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
- Correspondence:
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; (K.S.); (A.F.)
| |
Collapse
|
56
|
Cattoir V, Felden B. Future Antibacterial Strategies: From Basic Concepts to Clinical Challenges. J Infect Dis 2020; 220:350-360. [PMID: 30893436 DOI: 10.1093/infdis/jiz134] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/19/2019] [Indexed: 11/12/2022] Open
Abstract
This review presents potential benefits and limitations of innovative strategies that are currently investigated for the discovery of novel antibacterial agents to prevent or treat infections caused by multidrug-resistant organisms.
Collapse
Affiliation(s)
- Vincent Cattoir
- Bacterial Regulatory RNAs and Medicine, Inserm UMR_S 1230, University of Rennes 1, France.,Department of Clinical Microbiology, Rennes University Hospital, France.,National Reference Center for Antimicrobial Resistance, Rennes, France
| | - Brice Felden
- Bacterial Regulatory RNAs and Medicine, Inserm UMR_S 1230, University of Rennes 1, France
| |
Collapse
|
57
|
Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int J Mol Sci 2019; 20:E5889. [PMID: 31771245 PMCID: PMC6928789 DOI: 10.3390/ijms20235889] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applications of chitosan as a wound-dressing material are discussed along with the current status of chitosan-based wound dressings existing on the market.
Collapse
Affiliation(s)
- Mariana Adina Matica
- Advanced Environmental Research Laboratories, Department of Biology—Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| | - Finn Lillelund Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Sciences, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway;
| | - Anne Tøndervik
- SINTEF Industry, Department of Biotechnology and Nanomedicine, Richard Birkelands veg 3 B, 7034 Trondheim, Norway; (A.T.); (H.S.)
| | - Håvard Sletta
- SINTEF Industry, Department of Biotechnology and Nanomedicine, Richard Birkelands veg 3 B, 7034 Trondheim, Norway; (A.T.); (H.S.)
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology—Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| |
Collapse
|
58
|
Seethaler M, Hertlein T, Wecklein B, Ymeraj A, Ohlsen K, Lalk M, Hilgeroth A. Novel Small-molecule Antibacterials against Gram-positive Pathogens of Staphylococcus and Enterococcus Species. Antibiotics (Basel) 2019; 8:antibiotics8040210. [PMID: 31684039 PMCID: PMC6963286 DOI: 10.3390/antibiotics8040210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Defeat of the antibiotic resistance of pathogenic bacteria is one great challenge today and for the future. In the last century many classes of effective antibacterials have been developed, so that upcoming resistances could be met with novel drugs of various compound classes. Meanwhile, there is a certain lack of research of the pharmaceutical companies, and thus there are missing developments of novel antibiotics. Gram-positive bacteria are the most important cause of clinical infections. The number of novel antibacterials in clinical trials is strongly restricted. There is an urgent need to find novel antibacterials. We used synthetic chemistry to build completely novel hybrid molecules of substituted indoles and benzothiophene. In a simple one-pot reaction, two novel types of thienocarbazoles were yielded. Both indole substituted compound classes have been evaluated as completely novel antibacterials against the Staphylococcus and Enterococcus species. The evaluated partly promising activities depend on the indole substituent type. First lead compounds have been evaluated within in vivo studies. They confirmed the in vitro results for the new classes of small-molecule antibacterials.
Collapse
Affiliation(s)
- Marius Seethaler
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
| | - Tobias Hertlein
- Institute of Molecular Infection Biology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany.
| | - Björn Wecklein
- Institute of Molecular Infection Biology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany.
| | - Alba Ymeraj
- Institute of Molecular Infection Biology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany.
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, Julius Maximilians University Würzburg, 97080 Würzburg, Germany.
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, 17489 Greifswald, Germany.
| | - Andreas Hilgeroth
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
59
|
Lignin-Mediated Biosynthesis of ZnO and TiO2 Nanocomposites for Enhanced Antimicrobial Activity. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3030090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we report the synthesis of fragmented lignin (FL) assisted zinc oxide (ZnO) and titanium oxide (TiO2) nanocomposites. The fragmented lignin synthesized from biomass (sugarcane bagasse) was used as a template to generate the morphology and crystallite structure of metal oxide nanomaterial. The nanocomposites were synthesized by a simple precipitation method, wherein fragmented lignin is used in alkaline medium as a template. X-ray diffraction (XRD) analysis shows the phase formation of hexagonal wurtzite ZnO and mixed phase formation of TiO2 as rutile and anatase. The morphology was studied by using field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM). The FE-SEM of pristine ZnO nanocomposites showed a cluster of particles whereas FL–ZnO NPs showed self-aligned nanoparticles in the form of rod shaped having average size 30–70 nm. Pristine TiO2 nanoparticles showed clusters of particles and FL–TiO2 nanocomposites showed well crystalline 41nm size nanocomposites. The FL acts as a surfactant which restrict the cluster formations. The band gap determined by diffuse reflectance spectra is 3.10 eV and 3.20 eV for FL–ZnO and FL–TiO2 nanocomposites, respectively. Photoluminescence spectra of both nanocomposites showed structural defects in the visible region. Further, the antimicrobial activity of pristine ZnO and TiO2 nanoparticles, and FL–ZnO and FL–TiO2 nanocomposites against Escherichia coli (ATCC25922), Staphylococcus aureus (ATCC25923) were studied under UV-A (315-400 nm) (8W) for 30min.
Collapse
|