51
|
Nik S, Bowman TV. Splicing and neurodegeneration: Insights and mechanisms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1532. [PMID: 30895702 DOI: 10.1002/wrna.1532] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
Splicing is the global cellular process whereby intervening sequences (introns) in precursor messenger RNA (pre-mRNA) are removed and expressed regions (exons) are ligated together, resulting in a mature mRNA transcript that is exported and translated in the cytoplasm. The tightly regulated splicing cycle is also flexible allowing for the inclusion or exclusion of some sequences depending on the specific cellular context. Alternative splicing allows for the generation of many transcripts from a single gene, thereby expanding the proteome. Although all cells require the function of the spliceosome, neurons are highly sensitive to splicing perturbations with numerous neurological diseases linked to splicing defects. The sensitivity of neurons to splicing alterations is largely due to the complex neuronal cell types and functions in the nervous system that require specific splice isoforms to maintain cellular homeostasis. In the past several years, the relationship between RNA splicing and the nervous system has been the source of significant investigation. Here, we review the current knowledge on RNA splicing in neurobiology and discuss its potential role and impact in neurodegenerative diseases. We will examine the impact of alternative splicing and the role of splicing regulatory proteins on neurodegeneration, highlighting novel animal models including mouse and zebrafish. We will also examine emerging technologies and therapeutic interventions that aim to "drug" the spliceosome. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Sara Nik
- Department of Developmental and Molecular Biology and Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Department of Medicine (Oncology), and Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
52
|
Hinkle ER, Wiedner HJ, Black AJ, Giudice J. RNA processing in skeletal muscle biology and disease. Transcription 2019; 10:1-20. [PMID: 30556762 DOI: 10.1080/21541264.2018.1558677] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA processing encompasses the capping, cleavage, polyadenylation and alternative splicing of pre-mRNA. Proper muscle development relies on precise RNA processing, driven by the coordination between RNA-binding proteins. Recently, skeletal muscle biology has been intensely investigated in terms of RNA processing. High throughput studies paired with deletion of RNA-binding proteins have provided a high-level understanding of the molecular mechanisms controlling the regulation of RNA-processing in skeletal muscle. Furthermore, misregulation of RNA processing is implicated in muscle diseases. In this review, we comprehensively summarize recent studies in skeletal muscle that demonstrated: (i) the importance of RNA processing, (ii) the RNA-binding proteins that are involved, and (iii) diseases associated with defects in RNA processing.
Collapse
Affiliation(s)
- Emma R Hinkle
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Hannah J Wiedner
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Adam J Black
- b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA
| | - Jimena Giudice
- a Curriculum in Genetics and Molecular Biology (GMB) , University of North Carolina , Chapel Hill , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , USA.,c McAllister Heart Institute , University of North Carolina , Chapel Hill , USA
| |
Collapse
|
53
|
Ge Y, Schuster MB, Pundhir S, Rapin N, Bagger FO, Sidiropoulos N, Hashem N, Porse BT. The splicing factor RBM25 controls MYC activity in acute myeloid leukemia. Nat Commun 2019; 10:172. [PMID: 30635567 PMCID: PMC6329799 DOI: 10.1038/s41467-018-08076-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
Cancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in acute myeloid leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that "non-mutated" splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This has led to the identification of the splicing regulator RBM25 as a novel tumor suppressor. In multiple human leukemic cell lines, knockdown of RBM25 promotes proliferation and decreases apoptosis. Mechanistically, we show that RBM25 controls the splicing of key genes, including those encoding the apoptotic regulator BCL-X and the MYC inhibitor BIN1. This mechanism is also operative in human AML patients where low RBM25 levels are associated with high MYC activity and poor outcome. Thus, we demonstrate that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels.
Collapse
Affiliation(s)
- Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Frederik Otzen Bagger
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nikos Sidiropoulos
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Nadia Hashem
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
54
|
Huang ZG, He RQ, Mo ZN. Prognostic value and potential function of splicing events in prostate adenocarcinoma. Int J Oncol 2018; 53:2473-2487. [PMID: 30221674 PMCID: PMC6203144 DOI: 10.3892/ijo.2018.4563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022] Open
Abstract
Prostate adenocarcinoma (PRAD) is one of the most common types of malignancy in males and at present, effective prognostic indicators are limited. The development of PRAD has been associated with abnormalities in alternative splicing (AS), a requisite biological process of gene expression in eukaryotic cells; however, the prognostic value of AS products and splicing events remains to be elucidated. In the present study, the data of splicing events and the clinical information of PRAD patients were obtained from The Cancer Genome Atlas (TCGA)SpliceSeq and TCGA databases, respectively. A prognostic index (PI) was generated from disease-free survival-associated splicing events (DFS-SEs), which were identified by univariate/multivariate Cox regression analysis. A total of 6,909 DFS-SEs were identified in PRAD. The corresponding genes for the DFS-SEs were significantly enriched in mitochondria and their associated pathways according to Gene Ontology annotation and in the pathways of fatty acid metabolism, oxidative phosphorylation and Huntington's disease according to a Kyoto Encyclopedia of Genes and Genomes pathway analysis. The PI for mutually exclusive exons had the greatest ability to predict the probability of five-year disease-free survival of patients with PRAD, with an area under the time-dependent receiver-operating characteristic curve of 0.7606. Patients with PRAD, when divided into a 'low' and a 'high' group based on their median PI for exon skip values, exhibited a marked difference in disease-free survival (low vs. high, 3,588.45±250.51 vs. 1,531.08±136.50 days; P=7.43×10−9). A correlation network between DFS-SEs of splicing factors and non-splicing factors was constructed to determine the potential mechanisms in PRAD, which included the potential regulatory interaction between the splicing event of splicing factor RNA binding motif protein 5-alternate terminator (AT)-64957 and the splicing event of non-splicing factor heterochromatin protein 1 binding protein 3-AT-939. In conclusion, the PIs derived from DFS-SEs are valuable prognostic factors for patients with PRAD, and the function of splicing events in PRAD deserves further exploration.
Collapse
Affiliation(s)
- Zhi-Guang Huang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zeng-Nan Mo
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
55
|
Jain DS, Gupte SR, Aduri R. A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine. Sci Rep 2018; 8:9552. [PMID: 29934510 PMCID: PMC6015049 DOI: 10.1038/s41598-018-27814-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
RNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA. Here, we present a data-driven model for RPI prediction using a gradient boosting classifier. Amino acids and nucleotides are classified based on the high-resolution structural data of RNA protein complexes. The minimum structural unit consisting of five residues is used as the descriptor. Comparative analysis of existing methods shows the consistently higher performance of our method irrespective of the length of RNA present in the RPI. The method has been successfully applied to map RPI networks involving both long noncoding RNA as well as TERRA RNA. The method is also shown to successfully predict RNA and protein hubs present in RPI networks of four different organisms. The robustness of this method will provide a way for predicting RPI networks of yet unknown interactions for both long noncoding RNA and microRNA.
Collapse
Affiliation(s)
- Dharm Skandh Jain
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, Goa, India.,Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Sanket Rajan Gupte
- Department of Computer Science and Information Systems, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, Goa, India
| | - Raviprasad Aduri
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa campus, Zuarinagar, South Goa, Goa, 403726, India.
| |
Collapse
|
56
|
Anna A, Monika G. Splicing mutations in human genetic disorders: examples, detection, and confirmation. J Appl Genet 2018; 59:253-268. [PMID: 29680930 PMCID: PMC6060985 DOI: 10.1007/s13353-018-0444-7] [Citation(s) in RCA: 420] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/02/2023]
Abstract
Precise pre-mRNA splicing, essential for appropriate protein translation, depends on the presence of consensus "cis" sequences that define exon-intron boundaries and regulatory sequences recognized by splicing machinery. Point mutations at these consensus sequences can cause improper exon and intron recognition and may result in the formation of an aberrant transcript of the mutated gene. The splicing mutation may occur in both introns and exons and disrupt existing splice sites or splicing regulatory sequences (intronic and exonic splicing silencers and enhancers), create new ones, or activate the cryptic ones. Usually such mutations result in errors during the splicing process and may lead to improper intron removal and thus cause alterations of the open reading frame. Recent research has underlined the abundance and importance of splicing mutations in the etiology of inherited diseases. The application of modern techniques allowed to identify synonymous and nonsynonymous variants as well as deep intronic mutations that affected pre-mRNA splicing. The bioinformatic algorithms can be applied as a tool to assess the possible effect of the identified changes. However, it should be underlined that the results of such tests are only predictive, and the exact effect of the specific mutation should be verified in functional studies. This article summarizes the current knowledge about the "splicing mutations" and methods that help to identify such changes in clinical diagnosis.
Collapse
Affiliation(s)
- Abramowicz Anna
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland
| | - Gos Monika
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211, Warsaw, Poland.
| |
Collapse
|
57
|
Rhine CL, Cygan KJ, Soemedi R, Maguire S, Murray MF, Monaghan SF, Fairbrother WG. Hereditary cancer genes are highly susceptible to splicing mutations. PLoS Genet 2018; 14:e1007231. [PMID: 29505604 PMCID: PMC5854443 DOI: 10.1371/journal.pgen.1007231] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/15/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.
Collapse
Affiliation(s)
- Christy L. Rhine
- Molecular and Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
| | - Kamil J. Cygan
- Molecular and Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Rachel Soemedi
- Molecular and Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Samantha Maguire
- College Hill Research, Barrington, Rhode Island, United States of America
| | - Michael F. Murray
- Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Sean F. Monaghan
- Division of Surgical Research, Department of Surgery, Alpert School of Medicine at Brown University and Rhode Island Hospital, Providence, Rhode Island, United States of America
| | - William G. Fairbrother
- Molecular and Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Hassenfeld Child Health Innovation Institute of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
58
|
Wang P, Gu J, Li X, Wang Q, Ding Y. RNA-binding protein RBM38 acts as a tumor suppressor in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11130-11136. [PMID: 31966462 PMCID: PMC6965830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/24/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the expression of RBM38 protein in gastric cancer patients and to explore its association with clinical pathological characteristics and prognosis. MATERIALS AND METHODS A total of 120 pairs of gastric cancer tissues and non-cancerous gastric mucosa from 120 patients who underwent gastrectomy for gastric cancer were included in the current study. RBM38 protein expression levels were detected in all tissue specimens by immunohistochemistry staining. The positive rate of RBM38 was compared between cancer tissue and normal tissue, and its association with the clinical pathological characteristics and prognosis was elucidated. RESULTS RBM38 protein was predominantly expressed in the cytoplasm of epithelial cells. The percentage of tissues with high RBM38 protein expression level was significantly lower (χ2=28.972, P<0.001) in gastric cancer tissues compared with adjacent non-cancerous gastric mucosal tissues. The expression level of RBM38 protein was associated with tumor size (P=0.028), depth of invasion (P<0.001), lymph node metastasis (P<0.001), TNM stage (P<0.001) and Lauren classification of the tumor (P=0.001), whereas it was not associated with gender (P=0.066) and age (P=0.6) of patients. Moreover, we noticed that the low expression level of RBM38 protein was also associated with poor prognosis in gastric cancer patients (log rank =5.325; P=0.021). CONCLUSION Overall, our findings indicated that RBM38 may play a vital role as a tumor suppressor, which may be a potential marker in the diagnosis and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Peng Wang
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| | - Jianchun Gu
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| | - Xiaowei Li
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| | - Yongbin Ding
- Department of General Surgery, Jiangsu Shengze Hospital Suzhou, Jiangsu, China
| |
Collapse
|
59
|
Cornella N, Tebaldi T, Gasperini L, Singh J, Padgett RA, Rossi A, Macchi P. The hnRNP RALY regulates transcription and cell proliferation by modulating the expression of specific factors including the proliferation marker E2F1. J Biol Chem 2017; 292:19674-19692. [PMID: 28972179 DOI: 10.1074/jbc.m117.795591] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNP) form a large family of RNA-binding proteins that exert numerous functions in RNA metabolism. RALY is a member of the hnRNP family that binds poly-U-rich elements within several RNAs and regulates the expression of specific transcripts. RALY is up-regulated in different types of cancer, and its down-regulation impairs cell cycle progression. However, the RALY's role in regulating RNA levels remains elusive. Here, we show that numerous genes coding for factors involved in transcription and cell cycle regulation exhibit an altered expression in RALY-down-regulated HeLa cells, consequently causing impairments in transcription, cell proliferation, and cell cycle progression. Interestingly, by comparing the list of RALY targets with the list of genes affected by RALY down-regulation, we found an enrichment of RALY mRNA targets in the down-regulated genes upon RALY silencing. The affected genes include the E2F transcription factor family. Given its role as proliferation-promoting transcription factor, we focused on E2F1. We demonstrate that E2F1 mRNA stability and E2F1 protein levels are reduced in cells lacking RALY expression. Finally, we also show that RALY interacts with transcriptionally active chromatin in both an RNA-dependent and -independent manner and that this association is abolished in the absence of active transcription. Taken together, our results highlight the importance of RALY as an indirect regulator of transcription and cell cycle progression through the regulation of specific mRNA targets, thus strengthening the possibility of a direct gene expression regulation exerted by RALY.
Collapse
Affiliation(s)
- Nicola Cornella
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Toma Tebaldi
- the Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Lisa Gasperini
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | | | | | - Annalisa Rossi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| | - Paolo Macchi
- From the Laboratory of Molecular and Cellular Neurobiology, Centre for Integrative Biology, University of Trento, via Sommarive 9, 38123 Trento, Italy,
| |
Collapse
|
60
|
Gaytan-Cervantes J, Gonzalez-Torres C, Maldonado V, Zampedri C, Ceballos-Cancino G, Melendez-Zajgla J. Protein Sam68 regulates the alternative splicing of survivin DEx3. J Biol Chem 2017; 292:13745-13757. [PMID: 28655776 DOI: 10.1074/jbc.m117.800318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 01/31/2023] Open
Abstract
Messenger RNA alternative splicing (AS) regulates the expression of a variety of genes involved in both physiological and pathological processes. AS of the anti-apoptotic and proliferation-associated survivin (BIRC5) gene generates six isoforms, which regulate key aspects of cancer initiation and progression. One of the isoforms is survivin DEx3, in which the exclusion of exon 3 generates a unique carboxyl terminus with specific anti-apoptotic functions. This isoform is highly expressed in advanced stages of breast and cervical tumors. Therefore, understanding the mechanisms that regulate survivin DEx3 mRNA AS is clearly important. To this end, we designed a minigene (M), and in combination with a series of deletions and site-directed mutations, we determined that the first 22 bp of exon 3 contain cis-acting elements that enhance the exclusion of exon 3 to generate the survivin DEx3 mRNA isoform. Furthermore, using pulldown assays, we discovered that Sam68 is a possible trans-acting factor that binds to this region and regulates exon 3 splicing. This result was corroborated using a cell line in which the Sam68 binding site in the survivin gene was mutated with the CRISPR/Cas system. This work provides the first clues regarding the regulation of survivin DEx3 mRNA splicing.
Collapse
Affiliation(s)
| | | | - Vilma Maldonado
- Epigenetics, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | | | | | | |
Collapse
|
61
|
RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9596152. [PMID: 28191469 PMCID: PMC5278209 DOI: 10.1155/2017/9596152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023]
Abstract
RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated (p = 0.04). Patients with higher Dnd1 expression level had longer overall survival (p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3′UTR, the stability of Bim-5′UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3′UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3′UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.
Collapse
|
62
|
Kwon SK, Kim EH, Baek KH. RNPS1 is modulated by ubiquitin-specific protease 4. FEBS Lett 2017; 591:369-381. [DOI: 10.1002/1873-3468.12531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Seul-Ki Kwon
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Eun-Hea Kim
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| |
Collapse
|
63
|
Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database. J Proteomics 2016; 150:281-289. [PMID: 27705816 DOI: 10.1016/j.jprot.2016.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/10/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022]
Abstract
Insecticide resistance is an increasingly global problem that hampers pest control. We sought the mechanism responsible for survival following pyrethroid treatment and the factors connected to paralysis/death of the pollen beetle Meligethes aeneus through a proteome-level analysis using nanoLC coupled with Orbitrap Fusion™ Tribrid™ mass spectrometry. A tolerant field population of beetles was treated with deltamethrin, and the ensuing proteome changes were observed in the survivors (resistant), dead (paralyzed) and control-treated beetles. The protein database consisted of the translated transcriptome, and the resulting changes were manually annotated via BLASTP. We identified a number of high-abundance changes in which there were several dominant proteins, e.g., the electron carrier cytochrome b5, ribosomal proteins 60S RPL28, 40S RPS23 and RPS26, eIF4E-transporter, anoxia up-regulated protein, 2 isoforms of vitellogenin and pathogenesis-related protein 5. Deltamethrin detoxification was influenced by different cytochromes P450, which were likely boosted by increased cytochrome b5, but glutathione-S-transferase ε and UDP-glucuronosyltransferases also contributed. Moreover, we observed changes in proteins related to RNA interference, RNA binding and epigenetic modifications. The high changes in ribosomal proteins and associated factors suggest specific control of translation. Overall, we showed modulation of expression processes by epigenetic markers, alternative splicing and translation. Future functional studies will benefit. BIOLOGICAL SIGNIFICANCE Insects develop pesticide resistance, which has become one of the key issues in plant protection. This growing resistance increases the demand for pesticide applications and the development of new substances. Knowledge in the field regarding the resistance mechanism and its responses to pesticide treatment provides us the opportunity to propose a solution for this issue. Although the pollen beetle Meligethes aeneus was effectively controlled with pyrethroids for many years, there have been reports of increasing resistance. We show protein changes including production of isoforms in response to deltamethrin at the protein level. These results illustrate the insect's survival state as a resistant beetle and in its paralyzed state (evaluated as dead) relative to resistant individuals.
Collapse
|
64
|
Daguenet E, Dujardin G, Valcárcel J. The pathogenicity of splicing defects: mechanistic insights into pre-mRNA processing inform novel therapeutic approaches. EMBO Rep 2015; 16:1640-55. [PMID: 26566663 DOI: 10.15252/embr.201541116] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Removal of introns from pre-mRNA precursors (pre-mRNA splicing) is a necessary step for the expression of most genes in multicellular organisms, and alternative patterns of intron removal diversify and regulate the output of genomic information. Mutation or natural variation in pre-mRNA sequences, as well as in spliceosomal components and regulatory factors, has been implicated in the etiology and progression of numerous pathologies. These range from monogenic to multifactorial genetic diseases, including metabolic syndromes, muscular dystrophies, neurodegenerative and cardiovascular diseases, and cancer. Understanding the molecular mechanisms associated with splicing-related pathologies can provide key insights into the normal function and physiological context of the complex splicing machinery and establish sound basis for novel therapeutic approaches.
Collapse
Affiliation(s)
- Elisabeth Daguenet
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu-Fabra, Barcelona, Spain
| | - Gwendal Dujardin
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu-Fabra, Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain Universitat Pompeu-Fabra, Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
65
|
Reagent and Data Resources for Investigation of RNA Binding Protein Functions in Drosophila melanogaster Cultured Cells. G3-GENES GENOMES GENETICS 2015. [PMID: 26199285 PMCID: PMC4555228 DOI: 10.1534/g3.115.019364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA binding proteins (RBPs) are involved in many cellular functions. To facilitate functional characterization of RBPs, we generated an RNA interference (RNAi) library for Drosophila cell-based screens comprising reagents targeting known or putative RBPs. To test the quality of the library and provide a baseline analysis of the effects of the RNAi reagents on viability, we screened the library using a total ATP assay and high-throughput imaging in Drosophila S2R+ cultured cells. The results are consistent with production of a high-quality library that will be useful for functional genomics studies using other assays. Altogether, we provide resources in the form of an initial curated list of Drosophila RBPs; an RNAi screening library we expect to be used with additional assays that address more specific biological questions; and total ATP and image data useful for comparison of those additional assay results with fundamental information such as effects of a given reagent in the library on cell viability. Importantly, we make the baseline data, including more than 200,000 images, easily accessible online.
Collapse
|