51
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
52
|
Li Z, Zhao T, Shi M, Wei Y, Huang X, Shen J, Zhang X, Xie Z, Huang P, Yuan K, Li Z, Li N, Qin D. Polyphenols: Natural food grade biomolecules for treating neurodegenerative diseases from a multi-target perspective. Front Nutr 2023; 10:1139558. [PMID: 36925964 PMCID: PMC10011110 DOI: 10.3389/fnut.2023.1139558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
As natural functional bioactive ingredients found in foods and plants, polyphenols play various antioxidant and anti-inflammatory roles to prevent the development of disease and restore human health. The multi-target modulation of polyphenols provides a novel practical therapeutic strategy for neurodegenerative diseases that are difficult to treat with traditional drugs like glutathione and cholinesterase inhibitors. This review mainly focuses on the efficacy of polyphenols on ischemic stroke, Parkinson's disease and Alzheimer's disease, including in vivo and in vitro experimental studies. It is further emphasized that polyphenols exert neuroprotective effects primarily through inhibiting production of oxidative stress and inflammatory cytokines, which may be the underlying mechanism. However, polyphenols are still rarely used as medicines to treat neurodegenerative diseases. Due to the lack of clinical trials, the mechanism of polyphenols is still in the stage of insufficient exploration. Future large-scale multi-center randomized controlled trials and in-depth mechanism studies are still needed to fully assess the safety, efficacy and side effects of polyphenols.
Collapse
Affiliation(s)
- Zhenmin Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ting Zhao
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Jiayan Shen
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiaoyu Zhang
- The First Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Peidong Huang
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Kai Yuan
- The Second Clinical Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Ning Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
53
|
Guo S, Xing N, Xiang G, Zhang Y, Wang S. Eriodictyol: a review of its pharmacological activities and molecular mechanisms related to ischemic stroke. Food Funct 2023; 14:1851-1868. [PMID: 36757280 DOI: 10.1039/d2fo03417d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ischemic stroke (IS) is characterized by a prominent mortality and disability rate, which has increased the burden on the global economy to a certain extent. Meanwhile, patients benefit little from the limited clinical strategies of intravenous alteplase and thrombectomy due to the limited therapeutic window. Given this, it is urgent to study new therapeutic methods to intervene in these patients. Eriodyctiol (ERD) is a major natural flavonoid, which widely exists in fruits, vegetables, and medicinal herbs, and has various pharmacological properties. It has been reported that ERD can maintain homeostasis in organisms by exerting neuroprotective and vascular protective effects. Therefore, more and more studies have focused on the pharmacological activity and mechanism of ERD in IS. This paper provides an overview of the plant sources, phytochemical properties, pharmacokinetics, and pathogenesis, as well as the pharmacological effects and mechanisms of ERD in IS. To date, preclinical studies on ERD in diverse cell lines and animal models have established the idea of ERD as a feasible agent capable of specifically ameliorating IS. The molecular mechanisms of ERD to prevent or reduce IS are mainly based on the inhibition of inflammation, oxidative stress, autophagy and apoptosis. Nevertheless, the mechanism of ERD against IS is flawed and needs more exploration by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of the beneficial effects of ERD against IS.
Collapse
Affiliation(s)
- Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
54
|
Wan Y, Tian H, Wang H, Wang D, Jiang H, Fang Q. Selective intraarterial hypothermia combined with mechanical thrombectomy for acute cerebral infarction based on microcatheter technology: A single-center, randomized, single-blind controlled study. Front Neurol 2023; 14:1039816. [PMID: 36873429 PMCID: PMC9978520 DOI: 10.3389/fneur.2023.1039816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Objective To investigate the safety and efficacy of selective intraarterial hypothermia combined with mechanical thrombectomy in the treatment of acute cerebral infarction based on microcatheter technology. Methods A total of 142 patients with anterior circulation large vessel occlusion were randomly assigned to the hypothermic treatment group (test group) and the conventional treatment group (control group). National Institutes of Health Stroke Scale (NIHSS) scores, postoperative infarct volume, the 90-day good prognosis rate (modified Rankin Scale (mRS) score ≤ 2 points), and the mortality rate of the two groups were compared and analyzed. Blood specimens were collected from patients before and after treatment. Serum levels of superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-6 (IL-6), IL-10, and RNA-binding motif protein 3 (RBM3) were measured. Results The 7-day postoperative cerebral infarct volume [(63.7 ± 22.1) ml vs. (88.5 ± 20.8) ml] and NIHSS scores at postoperative Days 1, 7, and 14 [(6.8 ± 3.8) points vs. (8.2 ± 3.5) points; (2.6 ± 1.6) points vs. (4.0 ± 1.8) points; (2.0 ± 1.2) points vs. (3.5 ± 2.1) points] in the test group were significantly lower than those in the control group. The good prognosis rate at 90 days postoperatively (54.9 vs. 35.2%, P = 0.018) was significantly higher in the test group than in the control group. The 90-day mortality rate was not statistically significant (7.0 vs. 8.5%, P = 0.754). Immediately after surgery and 1 day after surgery, SOD, IL-10, and RBM3 levels in the test group were relatively higher than those in the control group, and the differences were statistically significant. Immediately after surgery and 1 day after surgery, MDA and IL-6 levels in the test group were relatively reduced compared with those in the control group, and the differences were statistically significant (P < 0.05). In the test group, RBM3 was positively correlated with SOD and IL-10. Conclusion Mechanical thrombectomy combined with intraarterial cold saline perfusion is a safe and effective measure for the treatment of acute cerebral infarction. Postoperative NIHSS scores and infarct volumes were significantly improved with this strategy compared with simple mechanical thrombectomy, and the 90-day good prognosis rate was improved. The mechanism by which this treatment exerts its cerebral protective effect may be by inhibiting the transformation of the ischaemic penumbra of the infarct core area, scavenging some oxygen free radicals, reducing inflammatory injury to cells after acute infarction and ischaemia-reperfusion, and promoting RBM3 production in cells.
Collapse
Affiliation(s)
- Yue Wan
- Department of Neurology, The First Affiliated Hospital of Suzhou University, Suzhou, Liaoning, China
- Department of Neurology, Hubei Provincial Third People's Hospital, Zhongshan Hospital, Wuhan, Hubei, China
| | - Hao Tian
- Department of Neurology, Hubei Provincial Third People's Hospital, Zhongshan Hospital, Wuhan, Hubei, China
| | - Hui Wang
- Department of Neurology, The First Affiliated Hospital of Suzhou University, Suzhou, Liaoning, China
| | - DaPeng Wang
- Department of Neurology, The First Affiliated Hospital of Suzhou University, Suzhou, Liaoning, China
| | - HaiWei Jiang
- Department of Neurology, Hubei Provincial Third People's Hospital, Zhongshan Hospital, Wuhan, Hubei, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Suzhou University, Suzhou, Liaoning, China
| |
Collapse
|
55
|
Huang P. Research progress on the protective mechanism of a novel soluble epoxide hydrolase inhibitor TPPU on ischemic stroke. Front Neurol 2023; 14:1083972. [PMID: 36846137 PMCID: PMC9945277 DOI: 10.3389/fneur.2023.1083972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Arachidonic Acid (AA) is the precursor of cerebrovascular active substances in the human body, and its metabolites are closely associated with the pathogenesis of cerebrovascular diseases. In recent years, the cytochrome P450 (CYP) metabolic pathway of AA has become a research hotspot. Furthermore, the CYP metabolic pathway of AA is regulated by soluble epoxide hydrolase (sEH). 1-trifluoromethoxyphenyl-3(1-propionylpiperidin-4-yl) urea (TPPU) is a novel sEH inhibitor that exerts cerebrovascular protective activity. This article reviews the mechanism of TPPU's protective effect on ischemic stroke disease.
Collapse
|
56
|
Shen M, Zheng Y, Li G, Chen Y, Huang L, Wu J, Hong C. Dual Antioxidant DH-217 Mitigated Cerebral Ischemia-Reperfusion Injury by Targeting IKKβ/Nrf2/HO-1 Signal Axis. Neurochem Res 2023; 48:579-590. [PMID: 36243818 DOI: 10.1007/s11064-022-03783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 02/04/2023]
Abstract
Antioxidants represent a potential therapy for cerebral ischemia-reperfusion injury (CIRI). Compounds which exhibit both direct and indirect antioxidative activity may potentially exert improved effects. Hence, we aimed to assess whether the dual antioxidant DH-217, a derivative of DHAP clinically used to treat coronary heart disease, can reduce oxidative stress damage and elucidate the underlying mechanism. Hydrogen peroxide (H2O2)-induced and Middle Cerebral Artery Occlusion (MCAO)-induced damages were used to imitate oxidative stress. The antioxidation of DH-217 was determined by MTT, ROS, colony and DPPH assay. Besides, immunofluorescence, Real-Time PCR Analyses, western blotting and si-RNA/Plasmid-induced protein expression were used for mechanism validation. DPPH scavenging assay evidenced DH-217 was a well free radical scavenger. Cell survival assay also showed that DH-217 had a significant cytoprotection through direct and indirect clearance mechanisms. Further, it clearly inhibited oxidative stress-induced IkappaB kinase beta (IKKβ) phosphorylation and increased heme oxygenase-1 (HO-1) expression. Significantly, these antioxidant beneficial effects were reversed by HO-1 inhibitor, si-nuclear erythroid 2-related factor 2 (Nrf2) and IKKβ plasmid. Meanwhile, DH-217 had a good neuroprotective effect on CIRI rats. The dual antioxidant DH-217 has potential reference value for drug development of CIRI. Furthermore, inhibition of IKKβ phosphorylation and activation of Nrf2/HO-1 could be a promising antioxidant pathway. Dual antioxidant DH-217 not only has the ability of directly scavenging ROS, but also can clear it by targeting IKKβ/Nrf2/HO-1 signal axis. Inhibition of IKKβ phosphorylation and activation of Nrf2/HO-1 may be a promising antioxidant pathway for CIRI.
Collapse
Affiliation(s)
- Mengya Shen
- The Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuantie Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,The Second Affiliated Hospital, Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ge Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yinqi Chen
- The Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315100, Zhejiang, China.
| | - Jianzhang Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China. .,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Chenglv Hong
- Department of Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
57
|
Salyha N, Oliynyk I. Hypoxia modeling techniques: A review. Heliyon 2023; 9:e13238. [PMID: 36718422 PMCID: PMC9877323 DOI: 10.1016/j.heliyon.2023.e13238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/08/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Hypoxia is the main cause and effect of a large number of diseases, including the most recent one facing the world, the coronavirus disease (COVID-19). Hypoxia is divided into short-term, long-term, and periodic, it can be the result of diseases, climate change, or living and traveling in the high mountain regions of the world. Since each type of hypoxia can be a cause and a consequence of various physiological changes, the methods for modeling these hypoxias are also different. There are many techniques for modeling hypoxia under experimental conditions. The most common animal for modeling hypoxia is a rat. Hypoxia models (hypoxia simulations) in rats are a tool to study the effect of various conditions on the oxygen supply of the body. These models can provide a necessary information to understand hypoxia and also provide effective treatment, highlighting the importance of various reactions of the body to hypoxia. The main parameters when choosing a model should be reproducibility and the goal that the scientist wants to achieve. Hypoxia in rats can be reproduced both ways exogenously and endogenously. The reason for writing this review was the aim to systematize the models of rats available in the literature in order to facilitate their selection by scientists. The relative strengths and limitations of each model need to be identified and understood in order to evaluate the information obtained from these models and extrapolate these results to humans to develop the necessary generalizations. Despite these problems, animal models have been and remain vital to understanding the mechanisms involved in the development and progression of hypoxia. The eligibility criteria for the selected studies was a comprehensive review of the methods and results obtained from the studies. This made it possible to make generalizations and give recommendations on the application of these methods. The review will assist scientists in choosing an appropriate hypoxia simulation method, as well as assist in interpreting the results obtained with these methods.
Collapse
Affiliation(s)
- Nataliya Salyha
- Institute of Animal Biology NAAS, Lviv, Ukraine,Corresponding author
| | | |
Collapse
|
58
|
Tang L, Fu C, Zhang A, Li X, Cao Y, Feng J, Liu H, Dong H, Wang W. Harnessing nanobiotechnology for cerebral ischemic stroke management. Biomater Sci 2023; 11:791-812. [PMID: 36545758 DOI: 10.1039/d2bm01790c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral ischemic stroke remains one of the most serious neurological disorders that pose threats to human health, causing a large amount of long-term disability or even death throughout the world. Based on its physiologic and pathological features, there are limited available therapeutic options for effective ischemic stroke management. Encouragingly, a rapid advancement of nanobiotechnology is bringing new insights into exploring more alternative strategies against cerebral ischemic stroke, which can cleverly overcome the limitations related to conventional treatment methods. Therefore, this review focuses on the recent achievements of nanobiotechnology for ischemic stroke management, which emphasizes diverse targeted delivery strategies using various nanoplatforms including liposomes, micelles, polymeric nanoparticles, nanogels, inorganic nanomaterials, and cell-derived nano-vectors based on the pathophysiological features of ischemic stroke. Moreover, different therapeutic approaches against ischemic stroke such as neuroprotection, anti-inflammation, thrombolysis, increased blood-brain barrier penetration and reactive oxygen species scavenging are highlighted. Meanwhile, this review discusses how these versatile nanoplatforms were designed to assist in the treatment of ischemic stroke. Based on this, challenges, opportunities, and future perspectives using nanobiotechnology through rational design for effective ischemic stroke management are revealed.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Aining Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Xiyue Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, 210009 Nanjing, China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
59
|
Andronie-Cioara FL, Ardelean AI, Nistor-Cseppento CD, Jurcau A, Jurcau MC, Pascalau N, Marcu F. Molecular Mechanisms of Neuroinflammation in Aging and Alzheimer's Disease Progression. Int J Mol Sci 2023; 24:ijms24031869. [PMID: 36768235 PMCID: PMC9915182 DOI: 10.3390/ijms24031869] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Aging is the most prominent risk factor for late-onset Alzheimer's disease. Aging associates with a chronic inflammatory state both in the periphery and in the central nervous system, the evidence thereof and the mechanisms leading to chronic neuroinflammation being discussed. Nonetheless, neuroinflammation is significantly enhanced by the accumulation of amyloid beta and accelerates the progression of Alzheimer's disease through various pathways discussed in the present review. Decades of clinical trials targeting the 2 abnormal proteins in Alzheimer's disease, amyloid beta and tau, led to many failures. As such, targeting neuroinflammation via different strategies could prove a valuable therapeutic strategy, although much research is still needed to identify the appropriate time window. Active research focusing on identifying early biomarkers could help translating these novel strategies from bench to bedside.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioara
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adriana Ioana Ardelean
- Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Carmen Delia Nistor-Cseppento
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | | | - Nicoleta Pascalau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (C.D.N.-C.); (N.P.)
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
60
|
Mitochondria in Cell-Based Therapy for Stroke. Antioxidants (Basel) 2023; 12:antiox12010178. [PMID: 36671040 PMCID: PMC9854436 DOI: 10.3390/antiox12010178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Despite a relatively developed understanding of the pathophysiology underlying primary and secondary mechanisms of cell death after ischemic injury, there are few established treatments to improve stroke prognoses. A major contributor to secondary cell death is mitochondrial dysfunction. Recent advancements in cell-based therapies suggest that stem cells may be revolutionary for treating stroke, and the reestablishment of mitochondrial integrity may underlie these therapeutic benefits. In fact, functioning mitochondria are imperative for reducing oxidative damage and neuroinflammation following stroke and reperfusion injury. In this review, we will discuss the role of mitochondria in establishing the anti-oxidative effects of stem cell therapies for stroke.
Collapse
|
61
|
Filippenkov IB, Remizova JA, Denisova AE, Stavchansky VV, Golovina KD, Gubsky LV, Limborska SA, Dergunova LV. Differential gene expression in the contralateral hemisphere of the rat brain after focal ischemia. Sci Rep 2023; 13:573. [PMID: 36631528 PMCID: PMC9834327 DOI: 10.1038/s41598-023-27663-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Ischemic stroke is one of the most severe polygenic brain diseases. Here, we performed further functional genetic analysis of the processes occurring in the contralateral hemisphere (CH) after ischemia-reperfusion injury in rat brain. Comparison of RNA sequencing data for subcortical samples from the ipsilateral hemisphere (IH) and CH after 90 min of transient middle cerebral artery occlusion (tMCAO) and corresponding sham-operated (SO) controls showed four groups of genes that were associated with ischemic processes in rat brain at 24 h after tMCAO. Among them, 2672 genes were differentially expressed genes (DEGs) for IH but non-DEGs for CH, 34 genes were DEGs for CH but non-DEGs for IH, and 114 genes had codirected changes in expression in both hemispheres. The remaining 16 genes exhibited opposite changes at the mRNA level in the two brain hemispheres after tMCAO. These findings suggest that the ischemic process caused by a focal ischemia induces complex bilateral reactions at the transcriptome level in the rat brain. We believe that specific genome responses in the CH and IH may provide a useful model for the study of the potential for brain repair after stroke.
Collapse
Affiliation(s)
- Ivan B. Filippenkov
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Julia A. Remizova
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Alina E. Denisova
- grid.78028.350000 0000 9559 0613Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia
| | - Vasily V. Stavchansky
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Ksenia D. Golovina
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Leonid V. Gubsky
- grid.78028.350000 0000 9559 0613Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, 117997 Moscow, Russia ,Federal Center for the Brain and Neurotechnologies, Federal Biomedical Agency, Ostrovitianov Str. 1, Building 10, 117997 Moscow, Russia
| | - Svetlana A. Limborska
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Lyudmila V. Dergunova
- grid.18919.380000000406204151Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
62
|
Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, Mahajan R, Shah ZA. Stroke: Molecular mechanisms and therapies: Update on recent developments. Neurochem Int 2023; 162:105458. [PMID: 36460240 PMCID: PMC9839659 DOI: 10.1016/j.neuint.2022.105458] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Stroke, a neurological disease, is one of the leading causes of death worldwide, resulting in long-term disability in most survivors. Annual stroke costs in the United States alone were estimated at $46 billion recently. Stroke pathophysiology is complex, involving multiple causal factors, among which atherosclerosis, thrombus, and embolus are prevalent. The molecular mechanisms involved in the pathophysiology are essential to understanding targeted drug development. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress, and neuroinflammation. In addition, various modifiable and non-modifiable risk factors increase the chances of stroke manifolds. Once a patient encounters a stroke, complete restoration of motor ability and cognitive skills is often rare. Therefore, shaping therapeutic strategies is paramount for finding a viable therapeutic agent. Apart from tPA, an FDA-approved therapy that is applied in most stroke cases, many other therapeutic strategies have been met with limited success. Stroke therapies often involve a combination of multiple strategies to restore the patient's normal function. Certain drugs like Gamma-aminobutyric receptor agonists (GABA), Glutamate Receptor inhibitors, Sodium, and Calcium channel blockers, and fibrinogen-depleting agents have shown promise in stroke treatment. Recently, a drug, DM199, a recombinant (synthetic) form of a naturally occurring protein called human tissue kallikrein-1 (KLK1), has shown great potential in treating stroke with fewer side effects. Furthermore, DM199 has been found to overcome the limitations presented when using tPA and/or mechanical thrombectomy. Cell-based therapies like Neural Stem Cells, Hematopoietic stem cells (HSCs), and Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) are also being explored as a treatment of choice for stroke. These therapeutic agents come with merits and demerits, but continuous research and efforts are being made to develop the best therapeutic strategies to minimize the damage post-stroke and restore complete neurological function in stroke patients.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Briana Maktabi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zainab A Rahman
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ahmed Naqvi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA.
| |
Collapse
|
63
|
Nistor-Cseppentö DC, Jurcău MC, Jurcău A, Andronie-Cioară FL, Marcu F. Stem Cell- and Cell-Based Therapies for Ischemic Stroke. Bioengineering (Basel) 2022; 9:717. [PMID: 36421118 PMCID: PMC9687728 DOI: 10.3390/bioengineering9110717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 09/12/2023] Open
Abstract
Stroke is the second cause of disability worldwide as it is expected to increase its incidence and prevalence. Despite efforts to increase the number of patients eligible for recanalization therapies, a significant proportion of stroke survivors remain permanently disabled. This outcome boosted the search for efficient neurorestorative methods. Stem cells act through multiple pathways: cell replacement, the secretion of growth factors, promoting endogenous reparative pathways, angiogenesis, and the modulation of neuroinflammation. Although neural stem cells are difficult to obtain, pose a series of ethical issues, and require intracerebral delivery, mesenchymal stem cells are less immunogenic, are easy to obtain, and can be transplanted via intravenous, intra-arterial, or intranasal routes. Extracellular vesicles and exosomes have similar actions and are easier to obtain, also allowing for engineering to deliver specific molecules or RNAs and to promote the desired effects. Appropriate timing, dosing, and delivery protocols must be established, and the possibility of tumorigenesis must be settled. Nonetheless, stem cell- and cell-based therapies for stroke have already entered clinical trials. Although safe, the evidence for efficacy is less impressive so far. Hopefully, the STEP guidelines and the SPAN program will improve the success rate. As such, stem cell- and cell-based therapy for ischemic stroke holds great promise.
Collapse
Affiliation(s)
- Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | | | - Anamaria Jurcău
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Felicia Liana Andronie-Cioară
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
64
|
Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţiț DM, Pașcalău N, Nistor-Cseppentö DC. The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants (Basel) 2022; 11:2167. [PMID: 36358538 PMCID: PMC9686795 DOI: 10.3390/antiox11112167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, has increasing incidence, increasing mortality rates, and poses a huge burden on healthcare. None of the currently approved drugs for the treatment of AD influence disease progression. Many clinical trials aiming at inhibiting amyloid plaque formation, increasing amyloid beta clearance, or inhibiting neurofibrillary tangle pathology yielded inconclusive results or failed. Meanwhile, research has identified many interlinked vicious cascades implicating oxidative stress, mitochondrial dysfunction, and chronic neuroinflammation, and has pointed to novel therapeutic targets such as improving mitochondrial bioenergetics and quality control, diminishing oxidative stress, or modulating the neuroinflammatory pathways. Many novel molecules tested in vitro or in animal models have proven efficient, but their translation into clinic needs further research regarding appropriate doses, delivery routes, and possible side effects. Cell-based therapies and extracellular vesicle-mediated delivery of messenger RNAs and microRNAs seem also promising strategies allowing to target specific signaling pathways, but need further research regarding the most appropriate harvesting and culture methods as well as control of the possible tumorigenic side effects. The rapidly developing area of nanotechnology could improve drug delivery and also be used in early diagnosis.
Collapse
Affiliation(s)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Ţiț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Nicoleta Pașcalău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
65
|
Chiang MC, Nicol CJB, Lo SS, Hung SW, Wang CJ, Lin CH. Resveratrol Mitigates Oxygen and Glucose Deprivation-Induced Inflammation, NLRP3 Inflammasome, and Oxidative Stress in 3D Neuronal Culture. Int J Mol Sci 2022; 23:ijms231911678. [PMID: 36232980 PMCID: PMC9570351 DOI: 10.3390/ijms231911678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Oxygen glucose deprivation (OGD) can produce hypoxia-induced neurotoxicity and is a mature in vitro model of hypoxic cell damage. Activated AMP-activated protein kinase (AMPK) regulates a downstream pathway that substantially increases bioenergy production, which may be a key player in physiological energy and has also been shown to play a role in regulating neuroprotective processes. Resveratrol is an effective activator of AMPK, indicating that it may have therapeutic potential as a neuroprotective agent. However, the mechanism by which resveratrol achieves these beneficial effects in SH-SY5Y cells exposed to OGD-induced inflammation and oxidative stress in a 3D gelatin scaffold remains unclear. Therefore, in the present study, we investigated the effect of resveratrol in 3D gelatin scaffold cells to understand its neuroprotective effects on NF-κB signaling, NLRP3 inflammasome, and oxidative stress under OGD conditions. Here, we show that resveratrol improves the expression levels of cell viability, inflammatory cytokines (TNF-α, IL-1β, and IL-18), NF-κB signaling, and NLRP3 inflammasome, that OGD increases. In addition, resveratrol rescued oxidative stress, nuclear factor-erythroid 2 related factor 2 (Nrf2), and Nrf2 downstream antioxidant target genes (e.g., SOD, Gpx GSH, catalase, and HO-1). Treatment with resveratrol can significantly normalize OGD-induced changes in SH-SY5Y cell inflammation, oxidative stress, and oxidative defense gene expression; however, these resveratrol protective effects are affected by AMPK antagonists (Compounds C) blocking. These findings improve our understanding of the mechanism of the AMPK-dependent protective effect of resveratrol under 3D OGD-induced inflammation and oxidative stress-mediated cerebral ischemic stroke conditions.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Christopher J. B. Nicol
- Departments of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
- Departments of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Shy-Shyong Lo
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Shiang-Wei Hung
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
| | - Chien-Hung Lin
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei 10341, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei 242304, Taiwan
- Correspondence:
| |
Collapse
|
66
|
Neuroprotective Effect of Polyphenol Extracts from Terminalia chebula Retz. against Cerebral Ischemia-Reperfusion Injury. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196449. [PMID: 36234986 PMCID: PMC9571999 DOI: 10.3390/molecules27196449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Current therapies for ischemic stroke are insufficient due to the lack of specific drugs. This study aimed to investigate the protective activity of polyphenol extracts from Terminalia chebula against cerebral ischemia-reperfusion induced damage. Polyphenols of ethyl acetate and n-butanol fractions were extracted from T. chebula. BV2 microglial cells exposed to oxygen-glucose deprivation/reoxygenation and mice subjected to middle cerebral artery occlusion/reperfusion were treated by TPE and TPB. Cell viability, cell morphology, apoptosis, mitochondrial membrane potential, enzyme activity and signaling pathway related to oxidative stress were observed. We found that TPE and TPB showed strong antioxidant activity in vitro. The protective effects of TPE and TPB on cerebral ischemia-reperfusion injury were demonstrated by enhanced antioxidant enzyme activities, elevated level of the nucleus transportation of nuclear factor erythroid 2-related factor 2 and expressions of antioxidant proteins, with a simultaneous reduction in cell apoptosis and reactive oxygen species level. In conclusion, TPE and TPB exert neuroprotective effects by stimulating the Nrf2 signaling pathway, thereby inhibiting apoptosis.
Collapse
|
67
|
Su J, Cheng J, Hu Y, Yu Q, Li Z, Li J, Zheng N, Zhang Z, Yang J, Li X, Zhang Z, Wang Y, Zhu K, Du W, Chen X. Transfer RNA-derived small RNAs and their potential roles in the therapeutic heterogeneity of sacubitril/valsartan in heart failure patients after acute myocardial infarction. Front Cardiovasc Med 2022; 9:961700. [PMID: 36247465 PMCID: PMC9558900 DOI: 10.3389/fcvm.2022.961700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
BackgroundIt has been reported that sacubitril/valsartan can improve cardiac function in acute myocardial infarction (AMI) patients complicated by heart failure (HF). However, a number of patients cannot be treated successfully; this phenomenon is called sacubitril/valsartan resistance (SVR), and the mechanisms remain unclear.MethodsIn our present research, the expression profiles of transfer RNA (tRNA)-derived small RNAs (tsRNAs) in SVR along with no sacubitril/valsartan resistance (NSVR) patients were determined by RNA sequencing. Through bioinformatics, quantitative real-time PCR (qRT-PCR), and cell-based experiments, we identified SVR-related tsRNAs and confirmed their diagnostic value, predicted their targeted genes, and explored the enriched signal pathways as well as regulatory roles of tsRNAs in SVR.ResultsOur research indicated that 36 tsRNAs were upregulated and that 21 tsRNAs were downregulated in SVR. Among these tsRNAs, the expression of tRF-59:76-Tyr-GTA-2-M3 and tRF-60:76-Val-AAC-1-M5 was upregulated, while the expression of tRF-1:29-Gly-GCC-1 was downregulated in the group of SVR. Receiver operating characteristic (ROC) curve analysis demonstrated that these three tsRNAs were potential biomarkers of the therapeutic heterogeneity of sacubitril/valsartan. Moreover, tRF-60:76-Val-AAC-1-M5 might target Tnfrsf10b and Bcl2l1 to influence the observed therapeutic heterogeneity through the lipid and atherosclerosis signaling pathways.ConclusionHence, tsRNA might play a vital role in SVR. These discoveries provide new insights for the mechanistic investigation of responsiveness to sacubitril/valsartan.
Collapse
Affiliation(s)
- Jia Su
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Ji Cheng
- Department of Emergency, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yingchu Hu
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zhenwei Li
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Jiyi Li
- Department of Cardiology, Yuyao People’s Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Nan Zheng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Zhaoxia Zhang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Jin Yang
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Xiaojing Li
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| | - Zeqin Zhang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Yong Wang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| | - Keqi Zhu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- *Correspondence: Keqi Zhu,
| | - Weiping Du
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
- Weiping Du,
| | - Xiaomin Chen
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
- Xiaomin Chen,
| |
Collapse
|
68
|
Therapeutic Potential and Mechanisms of Novel Simple O-Substituted Isoflavones against Cerebral Ischemia Reperfusion. Int J Mol Sci 2022; 23:ijms231810394. [PMID: 36142301 PMCID: PMC9498989 DOI: 10.3390/ijms231810394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Isoflavones have been widely studied and have attracted extensive attention in fields ranging from chemotaxonomy and plant physiology to human nutrition and medicine. Isoflavones are often divided into three subgroups: simple O-substituted derivatives, prenylated derivatives, and glycosides. Simple O-substituted isoflavones and their glycosides, such as daidzein (daidzin), genistein (genistin), glycitein (glycitin), biochanin A (astroside), and formononetin (ononin), are the most common ingredients in legumes and are considered as phytoestrogens for daily dietary hormone replacement therapy due to their structural similarity to 17-β-estradiol. On the basis of the known estrogen-like potency, these above isoflavones possess multiple pharmacological activities such as antioxidant, anti-inflammatory, anticancer, anti-angiogenetic, hepatoprotective, antidiabetic, antilipidemic, anti-osteoporotic, and neuroprotective activities. However, there are very few review studies on the protective effects of these novel isoflavones and their related compounds in cerebral ischemia reperfusion. This review primarily focuses on the biosynthesis, metabolism, and neuroprotective mechanism of these aforementioned novel isoflavones in cerebral ischemia reperfusion. From these published works in in vitro and in vivo studies, simple O-substituted isoflavones could serve as promising therapeutic compounds for the prevention and treatment of cerebral ischemia reperfusion via their estrogenic receptor properties and neuron-modulatory, antioxidant, anti-inflammatory, and anti-apoptotic effects. The detailed mechanism of the protective effects of simple O-substituted isoflavones against cerebral ischemia reperfusion might be related to the PI3K/AKT/ERK/mTOR or GSK-3β pathway, eNOS/Keap1/Nrf-2/HO-1 pathway, TLRs/TIRAP/MyD88/NFκ-B pathway, and Bcl-2-regulated anti-apoptotic pathway. However, clinical trials are needed to verify their potential on cerebral ischemia reperfusion because past studies were conducted with rodents and prophylactic administration.
Collapse
|
69
|
Protective Effect of Neferine in Permanent Cerebral Ischemic Rats via Anti-Oxidative and Anti-Apoptotic Mechanisms. Neurotox Res 2022; 40:1348-1359. [PMID: 36018507 DOI: 10.1007/s12640-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 11/27/2022]
Abstract
Permanent cerebral ischemia is a consequence of prolonged cerebral artery occlusion that results in severe brain damage. Neurotoxicity occurring after ischemia can induce brain tissue damage by destroying cell organelles and their function. Neferine is a natural compound isolated from the seed embryos of the lotus plant and has broad pharmacological effects, including blockading of the calcium channels, anti-oxidative stress, and anti-apoptosis. This study investigated the ability of neferine to reduce brain injury after permanent cerebral occlusion. Permanent cerebral ischemia in rats was induced by instigation of occlusion of the middle cerebral artery for 24 h. The rats were divided into 6 groups: sham, permanent middle cerebral artery occlusion (pMCAO), pMCAO with neferine and nimodipine treatment. To investigate the severity of the injury, the neurological deficit score and morphological alterations were investigated. After 24 h, the rats were evaluated to assess neurological deficit, infarct volume, morphological change, and the number of apoptotic cell deaths. In addition, the brain tissues were examined by western blot analysis to calculate the expression of proteins related to oxidative stress and apoptosis. The data showed that the neurological deficit scores and the infarct volume were significantly reduced in the neferine-treated rats compared to the vehicle group. Treatment with neferine significantly reduced oxidative stress with a measurable decrease in 4-hydroxynonenal (4-HNE), nitric oxide (NO), neuronal nitric oxide (nNOS), and calcium levels and an upregulation of Hsp70 expression. Neferine treatment also significantly decreased apoptosis, with a decrease in Bax and cleaved caspase-3 and an increase in Bcl-2. This study suggested that neferine had a neuroprotective effect on permanent cerebral ischemia in rats by diminishing oxidative stress and apoptosis.
Collapse
|
70
|
Le J, Xiao X, Zhang D, Feng Y, Wu Z, Mao Y, Mou C, Xie Y, Chen X, Liu H, Cui W. Neuroprotective Effects of an Edible Pigment Brilliant Blue FCF against Behavioral Abnormity in MCAO Rats. Pharmaceuticals (Basel) 2022; 15:ph15081018. [PMID: 36015166 PMCID: PMC9414705 DOI: 10.3390/ph15081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke leads to hypoxia-induced neuronal death and behavioral abnormity, and is a major cause of death in the modern society. However, the treatments of this disease are limited. Brilliant Blue FCF (BBF) is an edible pigment used in the food industry that with multiple aromatic rings and sulfonic acid groups in its structure. BBF and its derivatives were proved to cross the blood-brain barrier and have advantages on the therapy of neuropsychiatric diseases. In this study, BBF, but not its derivatives, significantly ameliorated chemical hypoxia-induced cell death in HT22 hippocampal neuronal cell line. Moreover, protective effects of BBF were attributed to the inhibition of the extracellular regulated protein kinase (ERK) and glycogen synthase kinase-3β (GSK3β) pathways as evidenced by Western blotting analysis and specific inhibitors. Furthermore, BBF significantly reduced neurological and behavioral abnormity, and decreased brain infarct volume and cerebral edema induced by middle cerebral artery occlusion/reperfusion (MCAO) in rats. MCAO-induced increase of p-ERK in ischemic penumbra was reduced by BBF in rats. These results suggested that BBF prevented chemical hypoxia-induced otoxicity and MCAO-induced behavioral abnormity via the inhibition of the ERK and GSK3β pathways, indicating the potential use of BBF for treating ischemic stroke
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wei Cui
- Correspondence: ; Tel./Fax: +86-574-8760-9589
| |
Collapse
|
71
|
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022; 10:biomedicines10081895. [PMID: 36009443 PMCID: PMC9405755 DOI: 10.3390/biomedicines10081895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients.
Collapse
|
72
|
Molecular Pathophysiological Mechanisms in Huntington's Disease. Biomedicines 2022; 10:biomedicines10061432. [PMID: 35740453 PMCID: PMC9219859 DOI: 10.3390/biomedicines10061432] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease is an inherited neurodegenerative disease described 150 years ago by George Huntington. The genetic defect was identified in 1993 to be an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 4. In the following almost 30 years, a considerable amount of research, using mainly animal models or in vitro experiments, has tried to unravel the complex molecular cascades through which the transcription of the mutant protein leads to neuronal loss, especially in the medium spiny neurons of the striatum, and identified excitotoxicity, transcriptional dysregulation, mitochondrial dysfunction, oxidative stress, impaired proteostasis, altered axonal trafficking and reduced availability of trophic factors to be crucial contributors. This review discusses the pathogenic cascades described in the literature through which mutant huntingtin leads to neuronal demise. However, due to the ubiquitous presence of huntingtin, astrocytes are also dysfunctional, and neuroinflammation may additionally contribute to Huntington’s disease pathology. The quest for therapies to delay the onset and reduce the rate of Huntington’s disease progression is ongoing, but is based on findings from basic research.
Collapse
|