51
|
Morovat P, Morovat S, Ashrafi AM, Teimourian S. Identification of potentially functional circular RNAs hsa_circ_0070934 and hsa_circ_0004315 as prognostic factors of hepatocellular carcinoma by integrated bioinformatics analysis. Sci Rep 2022; 12:4933. [PMID: 35322101 PMCID: PMC8943026 DOI: 10.1038/s41598-022-08867-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide, which has a high mortality rate and poor treatment outcomes with yet unknown molecular basis. It seems that gene expression plays a pivotal role in the pathogenesis of the disease. Circular RNAs (circRNAs) can interact with microRNAs (miRNAs) to regulate gene expression in various malignancies by acting as competitive endogenous RNAs (ceRNAs). However, the potential pathogenesis roles of the ceRNA network among circRNA/miRNA/mRNA in HCC are unclear. In this study, first, the HCC circRNA expression data were obtained from three Gene Expression Omnibus microarray datasets (GSE164803, GSE94508, GSE97332), and the differentially expressed circRNAs (DECs) were identified using R limma package. Also, the liver hepatocellular carcinoma (LIHC) miRNA and mRNA sequence data were retrieved from TCGA and differentially expressed miRNAs (DEMIs) and mRNAs (DEGs) were determined using the R DESeq2 package. Second, CSCD website was used to uncover the binding sites of miRNAs on DECs. The DECs' potential target miRNAs were revealed by conducting an intersection between predicted miRNAs from CSCD and downregulated DEMIs. Third, candidate genes were uncovered by intersecting targeted genes predicted by miRWalk and targetscan online tools with upregulated DEGs. The ceRNA network was then built using the Cytoscape software. The functional enrichment and the overall survival time of these potential targeted genes were analyzed, and a PPI network was constructed in the STRING database. Network visualization was performed by Cytoscape, and ten hub genes were detected using the CytoHubba plugin tool. Four DECs (hsa_circ_0000520, hsa_circ_0008616, hsa_circ_0070934, hsa_circ_0004315) were obtained and six miRNAs (hsa-miR-542-5p, hsa-miR-326, hsa-miR-511-5p, hsa-miR-195-5p, hsa-miR-214-3p, and hsa-miR-424-5p) which are regulated by the above DECs were identified. Then 543 overlapped genes regulated by six miRNAs mentioned above were predicted. Functional enrichment analysis showed that these genes are mostly associated with regulatory pathways in cancer. Ten hub genes (TTK, AURKB, KIF20A, KIF23, CEP55, CDC6, DTL, NCAPG, CENPF, PLK4) have been screened from the PPI network of the 204 survival-related genes. KIF20A, NCAPG, TTK, PLK4, and CDC6 were selected for the highest significance p-values. At the end, a circRNA-miRNA-mRNA regulatory axis was established for five final selected hub genes. This study implies the potential pathogenesis of the obtained network and proposes that the two DECs (has_circ_0070934 and has_circ_0004315) may be important prognostic markers for HCC.
Collapse
Affiliation(s)
- Pejman Morovat
- Department of Medical Biotechnology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Science, Babol, Iran
| | - Saman Morovat
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Arash M Ashrafi
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shahram Teimourian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
52
|
Differential Expression and Bioinformatics Analysis of tRF/tiRNA in Endometriosis Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9911472. [PMID: 35281615 PMCID: PMC8913131 DOI: 10.1155/2022/9911472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/22/2021] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
Background. Endometriosis (EMs) is a benign chronic condition that tends to recur in women of childbearing age, with an incidence of approximately 10%. It is a multifactorial disease for which the pathogenesis is currently unclear. This study is aimed at investigating the expression and clinical significance of tRNA-derived small RNA (tsRNA), a novel noncoding small RNA with potential regulatory functions, in endometriosis. Methods. The tRF/tiRNA expression profiles in endometrial tissues from three pairs of endometriosis patients and controls were detected by tRF&tiRNA PCR microarray technology and then verified by quantitative real-time polymerase chain reaction (qPCR). The target genes and target sites of TRF396, tiRNA-5030-GlnTTG-3, TRF308, and TRF320 were predicted by miRanda, and the network diagram of their interaction with miRNA was drawn. The impact of tRNA-derived fragments on the pathogenesis of endometriosis was analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Results. Two upregulated and 19 downregulated tRNA-derived fragments were identified. The qRT-PCR results of 2 upregulated and 2 downregulated RNA-derived fragments were consistent with the RNA Seq data. The OR2B4 gene related to TRF396, the DGAT1 gene related to tiRNA-5030-GlnTTG-3, the KLF16 gene of TRF308, and the RNF213 gene of TRF320 had significant correlations. Gene Ontology and pathway analysis showed that the target genes of TRF396 and tiRNA-5030-GlnTTG-3 were mainly involved in the intrinsic components of the membrane and the overall composition of the membrane in cell components; molecular functions mainly involve olfactory conduction and G protein-coupled receptor activity. In the biological process, it was mainly involved in the detection of sensory stimuli. The target genes of TRF308 and TRF320 were mainly involved in the intracellular part; molecular functions are mainly related to DNA binding transcription factor activity and protein binding and mainly related to biological regulation of biological processes. Pathway analysis showed that the RAP1 signaling pathway and the AXON GUIDANCE signaling pathway may participate in the progression of endometriosis. Conclusion. The differential expression of tRF/tiRNA in endometriosis may be related to the pathogenesis of endometriosis. Furthermore, tRF/tiRNA may be a biomarker for the diagnosis and treatment of EMs in the future.
Collapse
|
53
|
Xin Z, Li J, Zhang H, Zhou Y, Song J, Chen P, Bai L, Chen H, Zhou J, Chen J, Ying B. Cancer Genomic Alterations Can Be Potential Biomarkers Predicting Microvascular Invasion and Early Recurrence of Hepatocellular Carcinoma. Front Oncol 2022; 12:783109. [PMID: 35155229 PMCID: PMC8828586 DOI: 10.3389/fonc.2022.783109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 02/05/2023] Open
Abstract
Background High recurrence incidence and poor survival after hepatectomy are enormous threats to hepatocellular carcinoma (HCC) patients, which can be caused by microvascular invasion (MVI). However, it is difficult to predict preoperative MVI status. In this study, we focus on cancer genomic alterations to comprehensively explore potential MVI and early recurrence biomarkers and provide clues to the mechanisms of HCC invasion and metastasis. Methods Forty-one patients with initially suspected HCC who were undergoing hepatectomy were finally enrolled. High-throughput targeted sequencing was performed on genomic alterations in their preoperative plasma and surgical fresh tumor tissues utilizing the 1,021-gene panel. Results HCC patients without MVI had longer RFS than MVI ones (p < 0.0001). The mutant incidence of genes like KEAP1, TP53, HIST1H3D, NFKBIA, PIK3CB, and WRN was higher in both MVI and early-recurrence patients than their counterparts. Besides, the alteration rates of Rap1 and Ras signaling pathways were significantly higher in MVI patients than NMVI ones (p < 0.05), and a similar trend of differences was also found in early-recurrence/non-recurrence comparison. The maximal variant allele frequency (VAF) of circulating tumor DNA (ctDNA) was statistically higher in MVI patients than NMVI ones (0.038 vs. 0.012, p = 0.0048). With the cutoff value of 0.018, ctDNA maximal VAF could potentially predict the presence of MVI with an AUC of 0.85 (95% CI 0.693–0.998, p = 0.0062). Conclusion The integration of a panel containing specific mutated genes and ctDNA maximal VAF for predicting MVI and early recurrence of HCC may achieve better performance.
Collapse
Affiliation(s)
- Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Haili Zhang
- West China School of Medicine, Sichuan University, Chengdu, China.,Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Med+ Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| |
Collapse
|
54
|
Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep 2021; 11:13295. [PMID: 34168237 PMCID: PMC8225821 DOI: 10.1038/s41598-021-92675-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Desmosomes have a central role in mediating extracellular adhesion between cells, but they also coordinate other biological processes such as proliferation, differentiation, apoptosis and migration. In particular, several lines of evidence have implicated desmosomal proteins in regulating the actin cytoskeleton and attachment to the extracellular matrix, indicating signaling crosstalk between cell–cell junctions and cell–matrix adhesions. In our study, we found that cells lacking the desmosomal cadherin Desmoglein-2 (Dsg2) displayed a significant increase in spreading area on both fibronectin and collagen, compared to control A431 cells. Intriguingly, this effect was observed in single spreading cells, indicating that Dsg2 can exert its effects on cell spreading independent of cell–cell adhesion. We hypothesized that Dsg2 may mediate cell–matrix adhesion via control of Rap1 GTPase, which is well known as a central regulator of cell spreading dynamics. We show that Rap1 activity is elevated in Dsg2 knockout cells, and that Dsg2 harnesses Rap1 and downstream TGFβ signaling to influence both cell spreading and focal adhesion protein phosphorylation. Further analysis implicated the Rap GEF PDZ-GEF2 in mediating Dsg2-dependent cell spreading. These data have identified a novel role for Dsg2 in controlling cell spreading, providing insight into the mechanisms via which cadherins exert non-canonical junction-independent effects.
Collapse
|
55
|
Liu M, Chen H, Chen X, Xiong J, Song Z. Silencing UCHL3 enhances radio-sensitivity of non-small cell lung cancer cells by inhibiting DNA repair. Aging (Albany NY) 2021; 13:14277-14288. [PMID: 34016790 PMCID: PMC8202860 DOI: 10.18632/aging.203043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
UCHL3 belongs to the UCH family and is involved in multiple biological processes. However, the biological functions and underlying mechanisms of action of UCHL3 in radio-sensitivity of non-small cell lung cancer (NSCLC) remain unknown. Here, we reported that the expression of UCHL3 was significantly up-regulated in NSCLC tissues and cell lines, and associated with poor prognosis of NSCLC patients. The expression of UCHL3 of NSCLC cells was increased after exposure to ionizing radiation (IR). Moreover, we found that knockdown of UCHL3 enhanced the radio-sensitivity of NSCLC cells both in vitro and in vivo. Furthermore, γH2AX foci staining and Western blot analysis showed that knockdown of UCHL3 increased IR-induced DNA damage. Knockdown of UCHL3 in NSCLC cells decreased homologous recombination (HR) repair efficiency and RAD51 foci formation. Collectively, our study revealed that knockdown of UCHL3 enhanced the radio-sensitivity of NSCLC cells and increased IR-induced DNA damage via impairing HR repair.
Collapse
Affiliation(s)
- Miaowen Liu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Huimin Chen
- Department of Hemodialysis, Nanchang First Hospital, Nanchang, Jiangxi, People’s Republic of China
| | - Xinyue Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Zhiwang Song
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|