51
|
Yoshida T, Okumura T, Matsuo Y, Okuyama T, Michiura T, Kaibori M, Umezaki N, Bono H, Hirota K, Sekimoto M. Activation of transcription factor HIF inhibits IL-1β-induced NO production in primary cultured rat hepatocytes. Nitric Oxide 2022; 124:1-14. [PMID: 35460897 DOI: 10.1016/j.niox.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Roxadustat and other hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have recently been approved for the treatment of chronic renal anemia. In macrophages and monocytes, the activation of HIF-1 by pro-inflammatory cytokines induces iNOS expression and activity through the NF-κB pathway to produce nitric oxide (NO), which causes liver injury when excessively produced. Few studies have reported a relationship between HIF activity and iNOS induction in hepatocytes. We investigated the effect of drug- and hypoxia-induced HIF activations on NO production in primary cultured rat hepatocytes. Roxadustat treatment and hypoxic conditions activated HIF. Contrary to expectations, HIF-PHI treatment and hypoxia inhibited IL-1β-induced NO production. RNA-Seq analysis of mRNA expression in rat hepatocytes showed that roxadustat treatment decreased the expression of genes related to inflammation, and genes in the NF-κB signaling pathway were induced by IL-1β. Moreover, roxadustat suppressed IL-1β-activated signaling pathways in an HIF-dependent manner. GalN/LPS-treated rats were used as in vivo models of hepatic injury, and roxadustat treatment showed a tendency to suppress the death of rats. Therefore, exogenous HIF-1 activation, including HIF-PHI and hypoxia exposures, suppressed IL-1β-induced iNOS mRNA expression and subsequent NO production in hepatocytes, by suppressing the NF-κB signaling pathway. Roxadustat treatment suppresses the expression of pro-inflammatory genes by activating HIF, and thus may exhibit hepatoprotective effects.
Collapse
Affiliation(s)
- Terufumi Yoshida
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Tadayoshi Okumura
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan; Research Organization of Science and Technology, Ritsumeikan University, 1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan; Research Organization of Science and Technology, Ritsumeikan University, 1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Taku Michiura
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Nodoka Umezaki
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Hidemasa Bono
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
52
|
Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 2022; 30:737-748. [PMID: 35364736 DOI: 10.1007/s10787-022-00974-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic multifactorial disease, provocative, and degenerative autoimmune condition that impacts millions of individuals around the globe. As a result of this understanding, anti-inflammatory drugs have been created, perhaps widely effective (like steroids) and highly specialized methods (including anti-TNF antibody) using biological therapies (including TNF inhibitors). Despite this, the connections between inflammatory response, articular development, and intracellular responsiveness to changes in oxygen concentration are undervalued in rheumatoid arthritis. Hypoxia, or a lack of oxygen, is thought to cause enhanced synovial angiogenesis in RA, which is mediated by some of the hypoxia-inducible factors like vascular endothelial growth factor (VEGF). Substantial genetic alterations occur when the HIF regulatory factors signaling cycle is activated, allowing organelles, tissues, and species to acclimatize to decreasing oxygen saturation. The most well-characterized hypoxia-responsive transcripts are the angiogenic stimulant VEGF, whose production is greatly elevated by hypoxia in several types of cells, especially RA synovium fibroblasts. Blocking vascular endothelial growth factors has been demonstrated to be helpful in murine models of rheumatism, indicating how hypoxia could trigger the angiogenesis process, resulting in the progression of RA. These mechanisms highlight the intimate affiliation amongst hypoxia, angiogenesis, and inflammation in rheumatoid arthritis. This review will look at how hypoxia activates molecular pathways and how other pathways involving inflammatory signals develop and sustain synovitis in rheumatoid arthritis.
Collapse
|
53
|
Okazaki Y. The Role of Ferric Nitrilotriacetate in Renal Carcinogenesis and Cell Death: From Animal Models to Clinical Implications. Cancers (Basel) 2022; 14:cancers14061495. [PMID: 35326646 PMCID: PMC8946552 DOI: 10.3390/cancers14061495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022] Open
Abstract
Iron is essential for cellular growth, and various ferroproteins and heme-containing proteins are involved in a myriad of cellular functions, such as DNA synthesis, oxygen transport, and catalytic reactions. As a consequence, iron deficiency causes pleiotropic effects, such as hypochromic microcytic anemia and growth disturbance, while iron overload is also deleterious by oxidative injury. To prevent the generation of iron-mediated reactive oxygen species (ROS), ferritin is synthesized to store excess iron in cells that are consistent with the clinical utility of the serum ferritin concentration to monitor the therapeutic effect of iron-chelation. Among the animal models exploring iron-induced oxidative stress, ferric nitrilotriacetate (Fe-NTA) was shown to initiate hepatic and renal lipid peroxidation and the development of renal cell carcinoma (RCC) after repeated intraperitoneal injections of Fe-NTA. Here, current understanding of Fe-NTA-induced oxidative stress mediated by glutathione-cycle-dependent iron reduction and the molecular mechanisms of renal carcinogenesis are summarized in combination with a summary of the relationship between the pathogenesis of human RCC and iron metabolism. In addition to iron-mediated carcinogenesis, the ferroptosis that is triggered by the iron-dependent accumulation of lipid peroxidation and is implicated in the carcinogenesis is discussed.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550, Japan
| |
Collapse
|
54
|
Tonelli M, Thadhani R. Anaemia in chronic kidney disease: what do new generation agents offer? Lancet 2022; 399:702-703. [PMID: 35090603 DOI: 10.1016/s0140-6736(22)00120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary T2N 4Z6, AB, Canada.
| | | |
Collapse
|
55
|
Wu YC, Lu MT, Lin TH, Chu PC, Chang CS. Synthesis and Evaluation of Biarylquinoline Derivatives as Novel HIF-1α Inhibitors. Bioorg Chem 2022; 121:105681. [DOI: 10.1016/j.bioorg.2022.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/02/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
|
56
|
Nakai T, Saigusa D, Iwamura Y, Matsumoto Y, Umeda K, Kato K, Yamaki H, Tomioka Y, Hirano I, Koshiba S, Yamamoto M, Suzuki N. Esterification promotes the intracellular accumulation of roxadustat, an activator of hypoxia-inducible factors, to extend its effective duration. Biochem Pharmacol 2022; 197:114939. [PMID: 35114188 DOI: 10.1016/j.bcp.2022.114939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
Abstract
Kidney injury often causes anemia due to a lack of production of the erythroid growth factor erythropoietin (EPO) in the kidneys. Roxadustat is one of the first oral medicines inducing EPO production in patients with renal anemia by activating hypoxia-inducible factors (HIFs), which are activators of EPO gene expression. In this study, to develop prodrugs of roxadustat with improved permeability through cell membrane, we investigated the effects of 8 types of esterification on the pharmacokinetics and bioactivity of roxadustat using Hep3B hepatoma cells that HIF-dependently produce EPO. Mass spectrometry of cells incubated with the esterified roxadustat derivatives revealed that the designed compounds were deesterified after being taken up by cells and showed low cytotoxicity compared to the original compound. Esterification prolonged the effective duration of roxadustat with respect to EPO gene induction and HIF activation in cells transiently exposed to the compounds. In the kidneys and livers of mice, both of which are unique sites of EPO production, a majority of the methyl-esterified roxadustat was deesterified within 6 h after drug administration. The deesterified roxadustat derivative was continuously detectable in plasma and urine for at least 48 h after administration, while the administered compound became undetectable 24 h after administration. Additionally, we confirmed that methyl-esterified roxadustat activated erythropoiesis in mice by inducing Epo mRNA expression exclusively in renal interstitial cells, which have intrinsic EPO-producing potential. These data suggest that esterification could lead to the development of roxadustat prodrugs with improvements in cell membrane permeability, effective duration and cytotoxicity.
Collapse
Affiliation(s)
- Taku Nakai
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yuma Iwamura
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Keiko Umeda
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Koichiro Kato
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hayato Yamaki
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Ikuo Hirano
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Seizo Koshiba
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan; Applied Oxygen Physiology Project, New Industry Creation Hatchery Center, Tohoku University, Seiryo-machi 2-1, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
57
|
Poloznikov AA, Nikulin SV, Hushpulian DM, Khristichenko AY, Osipyants AI, Asachenko AF, Shurupova OV, Savin SS, Lee SH, Gaisina IN, Thatcher GRJ, Narciso A, Chang EP, Kazakov SV, Krucher N, Tishkov VI, Thomas B, Gazaryan IG. Structure-Activity Relationships and Transcriptomic Analysis of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors. Antioxidants (Basel) 2022; 11:220. [PMID: 35204103 PMCID: PMC8868400 DOI: 10.3390/antiox11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
To evaluate the differences in action of commercially available 2-oxoglutarate mimetics and "branched-tail" oxyquinoline inhibitors of hypoxia-inducible factor prolyl hydroxylase (HIF PHD), the inhibitors' IC50 values in the activation of HIF1 ODD-luciferase reporter were selected for comparative transcriptomics. Structure-activity relationship and computer modeling for the oxyquinoline series of inhibitors led to the identification of novel inhibitors, which were an order of magnitude more active in the reporter assay than roxadustat and vadadustat. Unexpectedly, 2-methyl-substitution in the oxyquinoline core of the best HIF PHD inhibitor was found to be active in the reporter assay and almost equally effective in the pretreatment paradigm of the oxygen-glucose deprivation in vitro model. Comparative transcriptomic analysis of the signaling pathways induced by HIF PHD inhibitors showed high potency of the two novel oxyquinoline inhibitors (#4896-3249 and #5704-0720) at 2 μM concentrations matching the effect of 30 μM roxadustat and 500 μM dimethyl oxalyl glycine in inducing HIF1 and HIF2-linked pathways. The two oxyquinoline inhibitors exerted the same activation of HIF-triggered glycolytic pathways but opposite effects on signaling pathways linked to alternative substrates of HIF PHD 1 and 3, such as p53, NF-κB, and ATF4. This finding can be interpreted as the specificity of the 2-methyl-substitute variant for HIF PHD2.
Collapse
Affiliation(s)
- Andrey A. Poloznikov
- Faculty of Biology and Biotechnologies, Higher School of Economics, 101000 Moscow, Russia; (A.A.P.); (S.V.N.)
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, 101000 Moscow, Russia; (A.A.P.); (S.V.N.)
| | - Dmitry M. Hushpulian
- School of Biomedicine, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Anna Yu. Khristichenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (A.Y.K.); (A.I.O.)
| | - Andrey I. Osipyants
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia; (A.Y.K.); (A.I.O.)
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia; (A.F.A.); (O.V.S.)
| | - Olga V. Shurupova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia; (A.F.A.); (O.V.S.)
| | - Svyatoslav S. Savin
- Department of Chemical Enzymology, Chemistry Faculty, M. V. Lomonosov Moscow State University, 119192 Moscow, Russia; (S.S.S.); (V.I.T.)
| | - Sue H. Lee
- Department of Pharmaceutical Sciences and UICentre, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA; (S.H.L.); (I.N.G.)
| | - Irina N. Gaisina
- Department of Pharmaceutical Sciences and UICentre, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA; (S.H.L.); (I.N.G.)
| | - Gregory R. J. Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA;
| | - Anthony Narciso
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Eric P. Chang
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Sergey V. Kazakov
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Nancy Krucher
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| | - Vladimir I. Tishkov
- Department of Chemical Enzymology, Chemistry Faculty, M. V. Lomonosov Moscow State University, 119192 Moscow, Russia; (S.S.S.); (V.I.T.)
- A.N. Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Departments of Pediatrics, Neuroscience and Drug Discovery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Irina G. Gazaryan
- Dyson College of Arts and Sciences, Pace University, New York, NY 10038, USA; (A.N.); (E.P.C.); (S.V.K.); (N.K.)
| |
Collapse
|
58
|
Filippi L, Cammalleri M, Amato R, Ciantelli M, Pini A, Bagnoli P, Dal Monte M. Decoupling Oxygen Tension From Retinal Vascularization as a New Perspective for Management of Retinopathy of Prematurity. New Opportunities From β-adrenoceptors. Front Pharmacol 2022; 13:835771. [PMID: 35126166 PMCID: PMC8814365 DOI: 10.3389/fphar.2022.835771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Retinopathy of prematurity (ROP) is an evolutive and potentially blinding eye disease that affects preterm newborns. Unfortunately, until now no conservative therapy of active ROP with proven efficacy is available. Although ROP is a multifactorial disease, premature exposition to oxygen concentrations higher than those intrauterine, represents the initial pathogenetic trigger. The increase of oxygenation in a retina still incompletely vascularized promotes the downregulation of proangiogenic factors and finally the interruption of vascularization (ischemic phase). However, the increasing metabolic requirement of the ischemic retina induces, over the following weeks, a progressive hypoxia that specularly increases the levels of proangiogenic factors finally leading to proliferative retinopathy (proliferative phase). Considering non-modifiable the coupling between oxygen levels and vascularization, so far, neonatologists and ophthalmologists have "played defense", meticulously searching the minimum necessary concentration of oxygen for individual newborns, refining their diagnostic ability, adopting a careful monitoring policy, ready to decisively intervene only in a very advanced stage of disease progression. However, recent advances have demonstrated the possibility to pharmacologically modulate the relationship between oxygen and vascularization, opening thus the perspective for new therapeutic or preventive opportunities. The perspective of a shift from a defensive towards an attack strategy is now at hand.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
59
|
Liu R, Wang SM, Guo SJ, Ma MM, Fu YL. Histone deacetylase inhibitor attenuates intestinal mucosal injury in fatally scalded rats. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:54. [PMID: 35282042 PMCID: PMC8848362 DOI: 10.21037/atm-21-5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 11/06/2022]
Abstract
Background Severe burns, trauma and shock can cause intestinal epithelial barrier dysfunction, which can lead to intestinal endotoxemia and even sepsis and multi-organ dysfunction. Many studies have shown that histone deacetylase inhibitors (HDACIs) can improve cell tolerance to hypoxia and inflammation, thus protecting the functions of important organs in the body, and at the same time, inhibiting the degradation of tight junction (TJ) proteins, protecting the intercellular barrier, and reducing tissue edema and organ damage. However, the mechanism is unclear. Methods Eighty male Sprague-Dawley rats (weighing 280-300 g) with a 50% total body surface area full-thickness dermal burn were randomly assigned to 4 groups (20 rats/group): sham control (SC group), scald + normal saline (SN group), scald + 2-methyl-2pentenoic acid (2M2P group), and scald + valproic acid (VPA group). After scalding, we measured the following parameters at various time intervals postburn injury: intestinal mucosal injury score, diamine oxidase (DAO) activity, intestinal protein expression of acetyl histone H3 at K9 (Ac-H3K9), hypoxia inducible factor 1α (HIF-1α), erythropoietin (EPO), zonula occludens-1 (ZO-1), endothelial nitric oxide synthase (eNOS) content, nitric oxide (NO) content, and intestinal mucosal blood flow (IMBF). Results Intestinal mucosa showed significant morphologic injury at 4 and 8 hours after scalding that was attenuated by VPA. DAO activity in the VPA group was significantly decreased compared with the other scald groups. At 4 and 8 hours after scalding, VPA enhanced Ac-H3K9 and ZO-1 expression and decreased HIF-1α and EPO expression in the intestine compared with the other scald groups. At 4 and 8 hours after scalding, eNOS and NO protein content and IMBF in the VPA group were markedly increased compared with the other scald groups. Conclusions HDACIs attenuated intestinal mucosal injury in fatally scalded rats. This may have involved VPA enhancing Ac-H3K9 and ZO-1 expression, inhibiting HIF-1α and EPO expression and inducing eNOS and NO increments.
Collapse
Affiliation(s)
- Rui Liu
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Department of Burns, Heilongjiang Provincial Hospital, Harbin, China
| | - Shu-Ming Wang
- Department of Emergency Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Si-Jia Guo
- Department of Burns, Heilongjiang Provincial Hospital, Harbin, China
| | - Ming-Ming Ma
- Department of Burns, Heilongjiang Provincial Hospital, Harbin, China
| | - Yi-Li Fu
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
60
|
Analysis of the Single-Cell Heterogeneity of Adenocarcinoma Cell Lines and the Investigation of Intratumor Heterogeneity Reveals the Expression of Transmembrane Protein 45A (TMEM45A) in Lung Adenocarcinoma Cancer Patients. Cancers (Basel) 2021; 14:cancers14010144. [PMID: 35008313 PMCID: PMC8750076 DOI: 10.3390/cancers14010144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related deaths worldwide. Intratumoral heterogeneity (ITH) is responsible for the majority of difficulties encountered in the treatment of lung-cancer patients. Therefore, the heterogeneity of NSCLC cell lines and primary lung adenocarcinoma was investigated by single-cell mass cytometry (CyTOF). Human NSCLC adenocarcinoma cells A549, H1975, and H1650 were studied at single-cell resolution for the expression pattern of 13 markers: GLUT1, MCT4, CA9, TMEM45A, CD66, CD274, CD24, CD326, pan-keratin, TRA-1-60, galectin-3, galectin-1, and EGFR. The intra- and inter-cell-line heterogeneity of A549, H1975, and H1650 cells were demonstrated through hypoxic modeling. Additionally, human primary lung adenocarcinoma, and non-involved healthy lung tissue were homogenized to prepare a single-cell suspension for CyTOF analysis. The single-cell heterogeneity was confirmed using unsupervised viSNE and FlowSOM analysis. Our results also show, for the first time, that TMEM45A is expressed in lung adenocarcinoma. Abstract Intratumoral heterogeneity (ITH) is responsible for the majority of difficulties encountered in the treatment of lung-cancer patients. Therefore, the heterogeneity of NSCLC cell lines and primary lung adenocarcinoma was investigated by single-cell mass cytometry (CyTOF). First, we studied the single-cell heterogeneity of frequent NSCLC adenocarcinoma models, such as A549, H1975, and H1650. The intra- and inter-cell-line single-cell heterogeneity is represented in the expression patterns of 13 markers—namely GLUT1, MCT4, CA9, TMEM45A, CD66, CD274 (PD-L1), CD24, CD326 (EpCAM), pan-keratin, TRA-1-60, galectin-3, galectin-1, and EGFR. The qRT-PCR and CyTOF analyses revealed that a hypoxic microenvironment and altered metabolism may influence cell-line heterogeneity. Additionally, human primary lung adenocarcinoma and non-involved healthy lung tissue biopsies were homogenized to prepare a single-cell suspension for CyTOF analysis. The CyTOF showed the ITH of human primary lung adenocarcinoma for 14 markers; particularly, the higher expressions of GLUT1, MCT4, CA9, TMEM45A, and CD66 were associated with the lung-tumor tissue. Our single-cell results are the first to demonstrate TMEM45A expression in human lung adenocarcinoma, which was verified by immunohistochemistry.
Collapse
|
61
|
Yu Y, Yang F, Yu Q, Liu S, Wu C, Su K, Yang L, Bao X, Li Z, Li X, Zhang X. Discovery of a Potent and Orally Bioavailable Hypoxia-Inducible Factor 2α (HIF-2α) Agonist and Its Synergistic Therapy with Prolyl Hydroxylase Inhibitors for the Treatment of Renal Anemia. J Med Chem 2021; 64:17384-17402. [PMID: 34709043 DOI: 10.1021/acs.jmedchem.1c01479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of hypoxia-inducible factor 2 (HIF-2) has emerged as a potent renal anemia treatment strategy. Here, the benzisothiazole derivative 26 was discovered as a novel HIF-2α agonist, which first demonstrated nanomolar activity (EC50 = 490 nM, Emax = 349.2%) in the luciferase reporter gene assay. Molecular dynamics simulations indicated that 26 could allosterically enhance HIF-2 dimerization. Furthermore, compound 26 had a good pharmacokinetic profile (the oral bioavailability in rats was 41.38%) and an in vivo safety profile (the LD50 in mice was greater than 708 mg·kg-1). In the in vivo efficacy assays, the combination of 26 and the prolyl hydroxylase inhibitor, AKB-6548, was confirmed for the first time to synergistically increase the plasma erythropoietin level in mice (from 260 to 2296 pg·mL-1) and alleviate zebrafish anemia induced by doxorubicin. These results provide new insights for HIF-2α agonists and the treatment of renal anemia.
Collapse
Affiliation(s)
- Yancheng Yu
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fulai Yang
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Quanwei Yu
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Simeng Liu
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Chenyang Wu
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Kaijun Su
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Le Yang
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoqian Bao
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
62
|
Hirota K. Special Issue: Hypoxia-Inducible Factors: Regulation and Therapeutic Potential. Biomedicines 2021; 9:biomedicines9121768. [PMID: 34944583 PMCID: PMC8698262 DOI: 10.3390/biomedicines9121768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
63
|
Fukushima K, Kitamura S, Tsuji K, Wada J. Sodium-Glucose Cotransporter 2 Inhibitors Work as a "Regulator" of Autophagic Activity in Overnutrition Diseases. Front Pharmacol 2021; 12:761842. [PMID: 34744742 PMCID: PMC8566701 DOI: 10.3389/fphar.2021.761842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Several large clinical trials have shown renal and cardioprotective effects of sodium–glucose cotransporter 2 (SGLT2) inhibitors in diabetes patients, and the protective mechanisms need to be elucidated. There have been accumulating studies which report that SGLT2 inhibitors ameliorate autophagy deficiency of multiple organs. In overnutrition diseases, SGLT2 inhibitors affect the autophagy via various signaling pathways, including mammalian target of rapamycin (mTOR), sirtuin 1 (SIRT1), and hypoxia-inducible factor (HIF) pathways. Recently, it turned out that not only stagnation but also overactivation of autophagy causes cellular damages, indicating that therapeutic interventions which simply enhance or stagnate autophagy activity might be a “double-edged sword” in some situations. A small number of studies suggest that SGLT2 inhibitors not only activate but also suppress the autophagy flux depending on the situation, indicating that SGLT2 inhibitors can “regulate” autophagic activity and help achieve the appropriate autophagy flux in each organ. Considering the complicated control and bilateral characteristics of autophagy, the potential of SGLT2 inhibitors as the regulator of autophagic activity would be beneficial in the treatment of autophagy deficiency.
Collapse
Affiliation(s)
- Kazuhiko Fukushima
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kitamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kenji Tsuji
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Academic Field of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
64
|
Guzman NA, Guzman DE. Immunoaffinity Capillary Electrophoresis in the Era of Proteoforms, Liquid Biopsy and Preventive Medicine: A Potential Impact in the Diagnosis and Monitoring of Disease Progression. Biomolecules 2021; 11:1443. [PMID: 34680076 PMCID: PMC8533156 DOI: 10.3390/biom11101443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Over the years, multiple biomarkers have been used to aid in disease screening, diagnosis, prognosis, and response to therapy. As of late, protein biomarkers are gaining strength in their role for early disease diagnosis and prognosis in part due to the advancements in identification and characterization of a distinct functional pool of proteins known as proteoforms. Proteoforms are defined as all of the different molecular forms of a protein derived from a single gene caused by genetic variations, alternative spliced RNA transcripts and post-translational modifications. Monitoring the structural changes of each proteoform of a particular protein is essential to elucidate the complex molecular mechanisms that guide the course of disease. Clinical proteomics therefore holds the potential to offer further insight into disease pathology, progression, and prevention. Nevertheless, more technologically advanced diagnostic methods are needed to improve the reliability and clinical applicability of proteomics in preventive medicine. In this manuscript, we review the use of immunoaffinity capillary electrophoresis (IACE) as an emerging powerful diagnostic tool to isolate, separate, detect and characterize proteoform biomarkers obtained from liquid biopsy. IACE is an affinity capture-separation technology capable of isolating, concentrating and analyzing a wide range of biomarkers present in biological fluids. Isolation and concentration of target analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. IACE has the potential to generate rapid results with significant accuracy, leading to reliability and reproducibility in diagnosing and monitoring disease. Additionally, IACE has the capability of monitoring the efficacy of therapeutic agents by quantifying companion and complementary protein biomarkers. With advancements in telemedicine and artificial intelligence, the implementation of proteoform biomarker detection and analysis may significantly improve our capacity to identify medical conditions early and intervene in ways that improve health outcomes for individuals and populations.
Collapse
Affiliation(s)
| | - Daniel E. Guzman
- Princeton Biochemicals, Inc., Princeton, NJ 08543, USA;
- Division of Hospital Medicine, Department of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
65
|
Hydroxyproline in animal metabolism, nutrition, and cell signaling. Amino Acids 2021; 54:513-528. [PMID: 34342708 DOI: 10.1007/s00726-021-03056-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
trans-4-Hydroxy-L-proline is highly abundant in collagen (accounting for about one-third of body proteins in humans and other animals). This imino acid (loosely called amino acid) and its minor analogue trans-3-hydroxy-L-proline in their ratio of approximately 100:1 are formed from the post-translational hydroxylation of proteins (primarily collagen and, to a much lesser extent, non-collagen proteins). Besides their structural and physiological significance in the connective tissue, both trans-4-hydroxy-L-proline and trans-3-hydroxy-L-proline can scavenge reactive oxygen species and have both structural and physiological significance in animals. The formation of trans-4-hydroxy-L-proline residues in protein kinases B and DYRK1A, eukaryotic elongation factor 2 activity, and hypoxia-inducible transcription factor plays an important role in regulating their phosphorylation and catalytic activation as well as cell signaling in animal cells. These biochemical events contribute to the modulation of cell metabolism, growth, development, responses to nutritional and physiological changes (e.g., dietary protein intake and hypoxia), and survival. Milk, meat, skin hydrolysates, and blood, as well as whole-body collagen degradation provide a large amount of trans-4-hydroxy-L-proline. In animals, most (nearly 90%) of the collagen-derived trans-4-hydroxy-L-proline is catabolized to glycine via the trans-4-hydroxy-L-proline oxidase pathway, and trans-3-hydroxy-L-proline is degraded via the trans-3-hydroxy-L-proline dehydratase pathway to ornithine and glutamate, thereby conserving dietary and endogenously synthesized proline and arginine. Supplementing trans-4-hydroxy-L-proline or its small peptides to plant-based diets can alleviate oxidative stress, while increasing collagen synthesis and accretion in the body. New knowledge of hydroxyproline biochemistry and nutrition aids in improving the growth, health and well-being of humans and other animals.
Collapse
|
66
|
Gene Expression Profile of Human Mesenchymal Stromal Cells Exposed to Hypoxic and Pseudohypoxic Preconditioning-An Analysis by RNA Sequencing. Int J Mol Sci 2021; 22:ijms22158160. [PMID: 34360925 PMCID: PMC8348678 DOI: 10.3390/ijms22158160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy is making its way into clinical practice, accompanied by research into strategies improving their therapeutic potential. Preconditioning MSCs with hypoxia-inducible factors-α (HIFα) stabilizers is an alternative to hypoxic priming, but there remains insufficient data evaluating its transcriptomic effect. Herein, we determined the gene expression profile of 6 human bone marrow-derived MSCs preconditioned for 6 h in 2% O2 (hypoxia) or with 40 μM Vadadustat, compared to control cells and each other. RNA-Sequencing was performed using the Illumina platform, quality control with FastQC and adapter-trimming with BBDUK2. Transcripts were mapped to the Homo_sapiens. GRCh37 genome and converted to relative expression using Salmon. Differentially expressed genes (DEGs) were generated using DESeq2 while functional enrichment was performed in GSEA and g:Profiler. Comparison of hypoxia versus control resulted in 250 DEGs, Vadadustat versus control 1071, and Vadadustat versus hypoxia 1770. The terms enriched in both phenotypes referred mainly to metabolism, in Vadadustat additionally to vesicular transport, chromatin modifications and interaction with extracellular matrix. Compared with hypoxia, Vadadustat upregulated autophagic, phospholipid metabolism, and TLR cascade genes, downregulated those of cytoskeleton and GG-NER pathway and regulated 74 secretory factor genes. Our results provide valuable insight into the transcriptomic effects of these two methods of MSCs preconditioning.
Collapse
|