51
|
Nweke EE, Naicker P, Aron S, Stoychev S, Devar J, Tabb DL, Omoshoro-Jones J, Smith M, Candy G. SWATH-MS based proteomic profiling of pancreatic ductal adenocarcinoma tumours reveals the interplay between the extracellular matrix and related intracellular pathways. PLoS One 2020; 15:e0240453. [PMID: 33048956 PMCID: PMC7553299 DOI: 10.1371/journal.pone.0240453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer accounts for 2.8% of new cancer cases worldwide and is projected to become the second leading cause of cancer-related deaths by 2030. Patients of African ancestry appear to be at an increased risk for pancreatic ductal adenocarcinoma (PDAC), with more severe disease and outcomes. The purpose of this study was to map the proteomic and genomic landscape of a cohort of PDAC patients of African ancestry. Thirty tissues (15 tumours and 15 normal adjacent tissues) were obtained from consenting South African PDAC patients. Optimisation of the sample preparation method allowed for the simultaneous extraction of high-purity protein and DNA for SWATH-MS and OncoArray SNV analyses. We quantified 3402 proteins with 49 upregulated and 35 downregulated proteins at a minimum 2.1 fold change and FDR adjusted p-value (q-value) ≤ 0.01 when comparing tumour to normal adjacent tissue. Many of the upregulated proteins in the tumour samples are involved in extracellular matrix formation (ECM) and related intracellular pathways. In addition, proteins such as EMIL1, KBTB2, and ZCCHV involved in the regulation of ECM proteins were observed to be dysregulated in pancreatic tumours. Downregulation of pathways involved in oxygen and carbon dioxide transport were observed. Genotype data showed missense mutations in some upregulated proteins, such as MYPN, ESTY2 and SERPINB8. Approximately 11% of the dysregulated proteins, including ISLR, BP1, PTK7 and OLFL3, were predicted to be secretory proteins. These findings help in further elucidating the biology of PDAC and may aid in identifying future plausible markers for the disease.
Collapse
Affiliation(s)
- Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Previn Naicker
- Department of Biosciences, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Shaun Aron
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Stoyan Stoychev
- Department of Biosciences, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - John Devar
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David L. Tabb
- Bioinformatics Unit, South African Tuberculosis Bioinformatics Initiative, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
52
|
Petruzzelli R, Polishchuk RS. Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs. Cells 2019; 8:E1080. [PMID: 31540259 PMCID: PMC6769697 DOI: 10.3390/cells8091080] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Membrane trafficking pathways emanating from the Golgi regulate a wide range of cellular processes. One of these is the maintenance of copper (Cu) homeostasis operated by the Golgi-localized Cu-transporting ATPases ATP7A and ATP7B. At the Golgi, these proteins supply Cu to newly synthesized enzymes which use this metal as a cofactor to catalyze a number of vitally important biochemical reactions. However, in response to elevated Cu, the Golgi exports ATP7A/B to post-Golgi sites where they promote sequestration and efflux of excess Cu to limit its potential toxicity. Growing tumors actively consume Cu and employ ATP7A/B to regulate the availability of this metal for oncogenic enzymes such as LOX and LOX-like proteins, which confer higher invasiveness to malignant cells. Furthermore, ATP7A/B activity and trafficking allow tumor cells to detoxify platinum (Pt)-based drugs (like cisplatin), which are used for the chemotherapy of different solid tumors. Despite these noted activities of ATP7A/B that favor oncogenic processes, the mechanisms that regulate the expression and trafficking of Cu ATPases in malignant cells are far from being completely understood. This review summarizes current data on the role of ATP7A/B in the regulation of Cu and Pt metabolism in malignant cells and outlines questions and challenges that should be addressed to understand how ATP7A and ATP7B trafficking mechanisms might be targeted to counteract tumor development.
Collapse
Affiliation(s)
- Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy.
| |
Collapse
|
53
|
Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem 2019; 63:349-364. [DOI: 10.1042/ebc20180050] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
AbstractThe lysyl oxidase family comprises five members in mammals, lysyl oxidase (LOX) and four lysyl oxidase like proteins (LOXL1-4). They are copper amine oxidases with a highly conserved catalytic domain, a lysine tyrosylquinone cofactor, and a conserved copper-binding site. They catalyze the first step of the covalent cross-linking of the extracellular matrix (ECM) proteins collagens and elastin, which contribute to ECM stiffness and mechanical properties. The role of LOX and LOXL2 in fibrosis, tumorigenesis, and metastasis, including changes in their expression level and their regulation of cell signaling pathways, have been extensively reviewed, and both enzymes have been identified as therapeutic targets. We review here the molecular features and three-dimensional structure/models of LOX and LOXLs, their role in ECM cross-linking, and the regulation of their cross-linking activity by ECM proteins, proteoglycans, and by inhibitors. We also make an overview of the major ECM cross-links, because they are the ultimate molecular readouts of LOX/LOXL activity in tissues. The recent 3D model of LOX, which recapitulates its known structural and biochemical features, will be useful to decipher the molecular mechanisms of LOX interaction with its various substrates, and to design substrate-specific inhibitors, which are potential antifibrotic and antitumor drugs.
Collapse
|