51
|
Heusch G, Rassaf T. Protection from cardiotoxicity of cancer chemotherapy: a novel target for remote ischaemic conditioning? Cardiovasc Res 2021; 117:985-986. [PMID: 32637985 DOI: 10.1093/cvr/cvaa199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
52
|
Monastirioti A, Papadaki C, Rounis K, Kalapanida D, Mavroudis D, Agelaki S. A Prognostic Role for Circulating microRNAs Involved in Macrophage Polarization in Advanced Non-Small Cell Lung Cancer. Cells 2021; 10:cells10081988. [PMID: 34440757 PMCID: PMC8391493 DOI: 10.3390/cells10081988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Circulating microRNAs (miRNAs) are key regulators of the crosstalk between tumor cells and immune response. In the present study, miRNAs (let-7c, miR-26a, miR-30d, miR-98, miR-195, miR-202) reported to be involved in the polarization of macrophages were examined for associations with the outcomes of non-small cell lung cancer (NSCLC) patients (N = 125) treated with first-line platinum-based chemotherapy. RT-qPCR was used to analyze miRNA expression levels in the plasma of patients prior to treatment. In our results, disease progression was correlated with high miR-202 expression (HR: 2.335; p = 0.040). Additionally, high miR-202 expression was characterized as an independent prognostic factor for shorter progression-free survival (PFS, HR: 1.564; p = 0.021) and overall survival (OS, HR: 1.558; p = 0.024). Moreover, high miR-202 independently predicted shorter OS (HR: 1.989; p = 0.008) in the non-squamous (non-SqCC) subgroup, and high miR-26a was correlated with shorter OS in the squamous (SqCC) subgroup (10.07 vs. 13.53 months, p = 0.033). The results of the present study propose that the expression levels of circulating miRNAs involved in macrophage polarization are correlated with survival measures in NSCLC patients, and their role as potential biomarkers merits further investigation.
Collapse
Affiliation(s)
- Alexia Monastirioti
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
| | - Konstantinos Rounis
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Despoina Kalapanida
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Heraklion, Crete, Greece; (A.M.); (C.P.); (D.M.)
- Department of Medical Oncology, University General Hospital of Heraklion, Vassilika Vouton, 71110 Heraklion, Crete, Greece; (K.R.); (D.K.)
- Correspondence: ; Tel.: +30-281-0392438
| |
Collapse
|
53
|
Alkaloid Extract of Moringa oleifera Lam. Exerts Antitumor Activity in Human Non-Small-Cell Lung Cancer via Modulation of the JAK2/STAT3 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5591687. [PMID: 34211571 PMCID: PMC8208859 DOI: 10.1155/2021/5591687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer is one of the most common malignant tumors diagnosed worldwide. Moringa oleifera Lam. is a valuable medicinal plant native to India and Pakistan. However, the antilung cancer activity of M. oleifera alkaloid extract (MOAE) is unknown. The present study aimed to evaluate the regulatory effect of MOAE on A549 cells by examination of the proliferation, apoptosis, cell cycle, and migration of cells and to elucidate the possible mechanism of action of MOAE. We tested five types of cancer cells and four types of lung cancer cells and found MOAE exerted the strongest growth inhibitory effect against A549 cells but had low toxicity to GES-1 cells (human gastric mucosal epithelial cells). Simultaneously, MOAE induced apoptosis and increased the expression of the apoptosis-related proteins caspase-3 and caspase-9 in A549 cells. Furthermore, MOAE induced cell cycle arrest in the S phase through a decrease in the expression of the proteins cyclin D1 and cyclin E and an increase in the expression of the protein p21. MOAE also inhibited the migratory ability of A549 cells and decreased the expression of the migration-related proteins, matrix metalloproteinase (MMP) 2 and MMP9. In addition, the phosphorylation level of JAK2 and STAT3 proteins was decreased in MOAE-treated A549 cells. Furthermore, AZD1480 (a JAK inhibitor) and MOAE inhibited the proliferation and migration of A549 cells and induced cell apoptosis, and the effects of MOAE and AZD1480 were not additive. These results indicated that MOAE inhibits the proliferation and migration of A549 cells and induces apoptosis and cell cycle arrest through a mechanism that is related to the inhibition of JAK2/STAT3 pathway activation. Thus, this extract has potential for preventing and treating lung cancer.
Collapse
|
54
|
The Root Extract of Scutellaria baicalensis Induces Apoptosis in EGFR TKI-Resistant Human Lung Cancer Cells by Inactivation of STAT3. Int J Mol Sci 2021; 22:ijms22105181. [PMID: 34068421 PMCID: PMC8153615 DOI: 10.3390/ijms22105181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) is a major obstacle in managing lung cancer. The root of Scutellaria baicalensis (SB) traditionally used for fever clearance and detoxification possesses various bioactivities including anticancer effects. The purpose of this study was to investigate whether SB exhibited anticancer activity in EGFR TKI-resistant lung cancer cells and to explore the underlying mechanism. We used four types of human lung cancer cell lines, including H1299 (EGFR wildtype; EGFR TKI-resistant), H1975 (acquired TKI-resistant), PC9/ER (acquired erlotinib-resistant), and PC9/GR (acquired gefitinib-resistant) cells. The ethanol extract of SB (ESB) decreased cell viability and suppressed colony formation in the four cell lines. ESB stimulated nuclear fragmentation and the cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-3. Consistently, the proportion of sub-G1 phase cells and annexin V+ cells were significantly elevated by ESB, indicating that ESB induced apoptotic cell death in EGFR TKI-resistant cells. ESB dephosphorylated signal transducer and activator of transcription 3 (STAT3) and downregulated the target gene expression. The overexpression of constitutively active STAT3 reversed ESB-induced apoptosis, suggesting that ESB triggered apoptosis in EGFR TKI-resistant cells by inactivating STAT3. Taken together, we propose the potential use of SB as a novel therapeutic for lung cancer patients with EGFR TKI resistance.
Collapse
|
55
|
Santoni M, Miccini F, Cimadamore A, Piva F, Massari F, Cheng L, Lopez-Beltran A, Montironi R, Battelli N. An update on investigational therapies that target STAT3 for the treatment of cancer. Expert Opin Investig Drugs 2021; 30:245-251. [PMID: 33599169 DOI: 10.1080/13543784.2021.1891222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Signal transducer and activator of transcription 3 (STAT3) is involved in cancer initiation and resistance to chemo-radiation therapies and targeted agents. The role of STAT3 in inflammation and immunity together with its involvement in a variety of diseases including genitourinary, gastrointestinal, lung, ovarian and brain tumors makes STAT3 an ideal candidate for therapeutic strategies. AREAS COVERED The authors provided an overview on STAT3 inhibitors and examined the most recent results obtained by these agents in cancer patients. The authors discussed the results published since 2015 and the ongoing clinical trials on anti-STAT3 agents in cancer patients. The authors also provide our opinion on the future perspectives of this therapeutic approach in this context. The manuscript includes information from trial databases and scientific literature. EXPERT OPINION Future challenges include the development of non-peptide small-molecule inhibitors of STAT3 designed to directly inhibit STAT3 activity. In addition, inhibitors of STAT3/STAT3 nuclear translocation or DNA binding activity are also emerging as novel promising therapeutic approaches A better comprehension of the role of STAT3 in modulating immune response together with advances in understanding the mechanisms of STAT3-induced chemo and/or radio-resistance will also help the design of combined strategies in cancer patients.
Collapse
Affiliation(s)
- Matteo Santoni
- U.O.C Medical Oncology, Macerata Hospital, Macerata, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain.,Anatomic Pathology, Champalimaud Clinical Center, Lisbon, Portugal
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | |
Collapse
|
56
|
Vega-Mendoza D, Cañas-Linares A, Flores-Alcantar A, Espinosa-Neira R, Melchy-Perez E, Vera-Estrella R, Auvynet C, Rosenstein Y. CD43 (sialophorin) is involved in the induction of extracellular matrix remodeling and angiogenesis by lung cancer cells. J Cell Physiol 2021; 236:6643-6656. [PMID: 33533043 DOI: 10.1002/jcp.30308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Aberrant expression of CD43 in malignant tumors of nonhematopoietic origin such as those from lung, cervix, colon, and breast has been shown to correlate with poor prognosis, providing tumor cells with enhanced motility, anchorage-independent growth, and in vivo tumor size, while protecting the cells of NK lysis and apoptosis. To further characterize the role of CD43 in cell transformation, we tested whether interfering its expression modified the capacity of the A549 non-small cell lung cancer cells to secrete molecules contributing to malignancy. The proteomic analysis of the secretome of serum-starved A549 cells revealed that cells expressing normal levels of CD43 released significantly high levels of molecules involved in extracellular matrix organization, angiogenesis, platelet degranulation, collagen degradation, and inflammation, as compared to CD43 RNAi cells. This data reveals a novel and unexpected role for CD43 in lung cancer development, mainly in remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Vega-Mendoza
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alicia Cañas-Linares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Angel Flores-Alcantar
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Roberto Espinosa-Neira
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,División de Investigación Básica, Laboratorio de Epigenética del Cáncer, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Erika Melchy-Perez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Constance Auvynet
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
57
|
Xie X, Wang X, Shi X, Zhang Y, Laster KV, Liu K, Dong Z, Kim DJ. Anwulignan is a novel JAK1 inhibitor that suppresses non-small cell lung cancer growth. J Cell Mol Med 2021; 25:2645-2654. [PMID: 33523587 PMCID: PMC7933975 DOI: 10.1111/jcmm.16289] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Anwulignan is a monomer compound derived from Schisandra sphenanthera lignans. It has been reported to possess a spectrum of pharmacological activities, including anti-bacterial, anti-inflammatory, anticancer and hepatoprotective properties. However, its anticancer capacity and molecular mechanism(s) against non-small cell lung cancer (NSCLC) have not been fully elucidated. Anwulignan significantly inhibited cell growth and increased G1-phase cell cycle arrest in NSCLC cells. Anwulignan strongly attenuates the JAK1/STAT3 signalling pathway by directly targeting JAK1 protein kinase activity in vitro. The anticancer activity by Anwulignan is dependent upon the JAK1 protein expression. Remarkably, Anwulignan strongly inhibited tumour growth in vivo. In conclusion, Anwulignan is a novel JAK1 inhibitor that may have therapeutic implications for NSCLC management.
Collapse
Affiliation(s)
- Xiaomeng Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China
| | - Xiangyu Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China
| | - Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China
| | - Yuanyuan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, HA, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, HA, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, HA, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, HA, China.,International joint research center of cancer chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, HA, China
| |
Collapse
|
58
|
Zhang L, Chen WX, Li LL, Cao YZ, Geng YD, Feng XJ, Wang AY, Chen ZL, Lu Y, Shen AZ. Paeonol Suppresses Proliferation and Motility of Non-Small-Cell Lung Cancer Cells by Disrupting STAT3/NF-κB Signaling. Front Pharmacol 2020; 11:572616. [PMID: 33442382 PMCID: PMC7797776 DOI: 10.3389/fphar.2020.572616] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Targeting inflammatory microenvironment is a promising anti-tumor strategy. Paeonol is a phenolic compound with effective anti-inflammatory and anti-tumor properties. However, the effects of paeonol on non-small cell carcinoma (NSCLC) have not been fully investigated. Here, we evaluated the effects of paeonol on proliferation and metastasis of NSCLC and elucidated the underlying mechanisms. Methods: The effects of paeonol on inflammatory cytokines were determined by cell proliferation and ELISA assays. Assays of wound healing, single cell migration and perforation invasion were used to evaluate migration and invasion of NSCLC cells. Expression of marker proteins in epithelial-mesenchymal transition (EMT) and matrix metalloproteinase (MMP) family enzymes were detected by Western blot assays. Nude mouse A549 cells transplantation tumor model was used to study the anti-lung cancer effects of paeonol in vivo. TUNEL stanining were used to detect the apoptosis of tumor cells in A549 lung cancer mice, and Ki67 analysis was used to detect the proliferation of tumor cells in A549 lung cancer mice. Immunohistochemistry was used to detect the effects of paeonol on signaling molecules in tumor tissues. Results: Paeonol inhibited A549 cancer cell migration and invasion in vitro. Paeonol inhibited secreaion of inflammatory cytokines in A549 cells, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and transforming growth factor (TGF)-β. Paeonol altered the expression of marker proteins involved in EMT and MMP family enzymes. In addition, paeonol inhibited the transcriptional activity of nuclear factor-κB (NF-κB) and phosphorylation of signal transducers and activators of transcription 3 (STAT3). Paeonol inhibited the growth of A549 cells transplanted tumors in nude mice. Conclusion: Paeonol potently inhibited NSCLC cell growth, migration and invasion associated with disruption of STAT3 and NF-κB pathways, suggesting that it could be a promising anti-metastatic candidate for tumor chemotherapy.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Wen-Xu Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling-Li Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yu-Zhu Cao
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Ya-Di Geng
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Xiao-Jun Feng
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Ai-Yun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao-Lin Chen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ai-Zong Shen
- Department of Pharmacy, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China.,Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
59
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
60
|
Dong X, Wu D, Zhang Y, Jia L, Pan X, Sun J, Pan LL. Cathelicidin Modulates Vascular Smooth Muscle Cell Phenotypic Switching through ROS/IL-6 Pathway. Antioxidants (Basel) 2020; 9:antiox9060491. [PMID: 32516877 PMCID: PMC7346167 DOI: 10.3390/antiox9060491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/16/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Vascular smooth muscle cells (VSMC) are stromal cells of the blood vessels and their differentiation is thought to be essential during atherosclerosis. Cathelicidin-related antimicrobial peptides (CRAMP) are suggested to play a role in the development of atherosclerosis. Even so, the relationship of CRAMP and VSMC remains unclear. The present study was to determine whether CRAMP regulates VSMC phenotypic transformation and underlying mechanisms. We demonstrated that CRAMP could reverse platelet-derived growth factor-BB (PDGF-BB)-induced VSMC phenotypic transformation, evidencing by increasing α-smooth muscle actin (α-SMA), smooth muscle 22α (SM22α) and decreasing of proliferation and migration. Further studies showed that CRAMP inhibited nuclear factor κB (NF-κB)-induced autocrine of interleukin-6 (IL-6), which further activated of janus kinase 2 (JAK2)/signal transducer and activator 3 (STAT3). Meanwhile, our data showed that CRAMP can significantly inhibit PDGF-BB enhanced intracellular reactive oxygen species (ROS) level which further affected the NF-κB signaling pathway, indicating that CRAMP can regulate the phenotypic transformation of VSMC by regulating oxidative stress. These results indicated that CRAMP regulated the differentiation of VSMC by inhibiting ROS-mediated IL-6 autocrine, suggesting that targeting CRAMP is a potential avenue for regulating the differentiation of VSMC and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; (X.D.); (D.W.); (L.J.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.Z.); (X.P.)
| | - Di Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; (X.D.); (D.W.); (L.J.)
| | - Yihan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.Z.); (X.P.)
| | - Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; (X.D.); (D.W.); (L.J.)
| | - Xiaohua Pan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.Z.); (X.P.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jia Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China; (Y.Z.); (X.P.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- Correspondence: (J.S.); (L.-L.P.); Tel.: +86-510-85197370 (J.S.); +86-510-85328363 (L.-L.P.)
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China; (X.D.); (D.W.); (L.J.)
- Correspondence: (J.S.); (L.-L.P.); Tel.: +86-510-85197370 (J.S.); +86-510-85328363 (L.-L.P.)
| |
Collapse
|