51
|
Leboulleux S, Lamartina L, Hadoux J, Baudin E, Schlumberger M. Emerging drugs for the treatment of radioactive iodine refractory papillary thyroid cancer. Expert Opin Investig Drugs 2022; 31:669-679. [PMID: 35522027 DOI: 10.1080/13543784.2022.2071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The most frequent radioactive (RAI) refractory thyroid cancers are papillary thyroid carcinoma, followed by poorly differentiated thyroid carcinoma. They are rare and lethal. In recent years, significant therapeutic progress has been achieved. AREAS COVERED This paper offers insights on refractoriness to RAI treatment and the optimization of treatment initiation and treatment choice. Clinical trials performed with anti-angiogenic kinase inhibitors and with targeted inhibitors in patients with BRAF, RAS mutation or RET, TRK or ALK fusion are discussed. EXPERT OPINION These treatments provide high response rates. Anti-angiogenic kinase inhibitors improve median progression-free-survival; however, their benefit in terms of overall survival has been shown in only few subsets of patients. Treatment sequencing is challenging; in the absence of targetable abnormality, lenvatinib should be used as first line treatment. Options for second line treatment include lenvatinib (if not given at first line), cabozantinib or the addition of an anti-checkpoint antibody. In patients with a targetable abnormality, specific inhibitors, might be used as first line treatment and lenvatinib as second line or vice-versa. Further studies are needed, based on documented genomic and immunologic characteristics of the tumor to assess the potential role of combination and redifferentiation therapy.
Collapse
Affiliation(s)
- Sophie Leboulleux
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris Saclay, 114 rue Edouard Vaillant 94800 Villejuif, France.,Division of Endocrinology, Diabetes, Nutrition and Therapeutic patient education, Geneva University Hospitals, Geneva, Switzerland
| | - Livia Lamartina
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris Saclay, 114 rue Edouard Vaillant 94800 Villejuif, France
| | - Julien Hadoux
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris Saclay, 114 rue Edouard Vaillant 94800 Villejuif, France
| | - Eric Baudin
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris Saclay, 114 rue Edouard Vaillant 94800 Villejuif, France
| | - Martin Schlumberger
- Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy and University Paris Saclay, 114 rue Edouard Vaillant 94800 Villejuif, France
| |
Collapse
|
52
|
Wu XQ, Tian X, Xu FJ, Wang Y, Xu WH, Su JQ, Qu YY, Zhao JY, Zhang HL, Ye DW. Increased expression of tribbles homolog 3 predicts poor prognosis and correlates with tumor immunity in clear cell renal cell carcinoma: a bioinformatics study. Bioengineered 2022; 13:14000-14012. [PMID: 35726370 PMCID: PMC9275882 DOI: 10.1080/21655979.2022.2086380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tribbles homolog 3 (TRIB3), a pseudokinase that regulates multiple intracellular signaling pathways, has been reported to promote the growth of multiple tumors. However, its role in clear cell renal cell carcinoma (ccRCC) remains unelucidated. We evaluated the role of TRIB3 in ccRCC using publicly available data from The Cancer Genome Atlas and analyzed its relationship with the tumor microenvironment; moreover, we used gene knockout and overexpression techniques to detect the effects of TRIB3 on the biological behavior of ccRCC cells. RT-qPCR and western blotting were used to detect transfection efficiency, and the invasiveness of ccRCC cells was determined by Transwell migration assays. We found that TRIB3 overexpression was significantly associated with increased grade, stage, and distant metastasis, positively correlated with ccRCC invasiveness, and also an independent risk factor for overall survival (OS). In addition, 361 differentially expressed genes (DEGs) related to TRIB3 were identified. Functional enrichment analysis showed that DEGs were mainly enriched in humoral immune responses, collagen-containing extracellular matrix, and serine hydrolase activity. Immune landscape characterization revealed that TRIB3 expression was significantly and negatively associated with CD8+ T and hematopoietic stem cells, whereas it was positively associated with NK T and macrophage M1 cells. Single-cell sequencing showed that localization and binding targets of TRIB3 mainly involved monocytes/macrophages and CD4+ and CD8+ T cells. Overall, our study revealed that elevated TRIB3 expression represents a promising prognostic marker for ccRCC patients and may play a key role in tumor microenvironment modulation.
Collapse
Affiliation(s)
- Xin-Qiang Wu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fu-Jiang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jia-Qi Su
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Jian-Yuan Zhao
- Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of MedicineInstitute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai, Shanghai, China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
53
|
Cai T, Peng B, Hu J, He Y. Long noncoding RNA BBOX1-AS1 promotes the progression of gastric cancer by regulating the miR-361-3p/Mucin 13 signaling axis. Bioengineered 2022; 13:13407-13421. [PMID: 36700475 PMCID: PMC9275992 DOI: 10.1080/21655979.2022.2072629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Gastric cancer (GC) places a heavy burden on global health, and the information on the molecular mechanism of the progression of GC is still inadequate. Long noncoding RNA (LncRNA) has been confirmed to be widely involved in regulating the progression of GC. Our aim in this study was to explore the role and potential regulatory mechanism of lncRNA BBOX1-AS1 in GC. The expression levels of BBOX1-AS1, miR-361-3p, and MUC13 in GC tissues and cells were evaluated using quantitative real-time polymerase chain reaction and western blotting. The silencer of BBOX1 antisense RNA 1 (BBOX1-AS1) and mucin 13 (MUC13), the mimics and inhibitor of miR-361-3p, and their negative controls were used to alter the expression of these genes. Luciferase reporter, pull-down, and RNA immunoprecipitation assays were performed to verify the correlation between miR-361-3p, BBOX1-AS1, and MUC13. GC cell proliferation, invasion, and apoptosis were detected by cell counting kit-8, transwell, and flow cytometry assays, respectively. An in vivo functional experiment was performed to assess the effect of BBOX1-AS1 on GC. The results showed that BBOX1-AS1 was significantly upregulated in GC tissues. Silencing of BBOX1-AS1 inhibited GC cell proliferation and invasion and inhibited tumor growth in vivo, whereas it promoted apoptosis. MiR-361-3p was significantly downregulated in GC and counteracted the inhibitory effects of BBOX1-AS1 on GC progression. MUC13, which is targeted by miR-361-3p, is significantly upregulated in GC. MUC13 silencing inhibited GC progression was aborgated by miR-361-3p inhibitor. Collectively, BBOX1-AS1 silencing inhibits GC progression by regulating the miR-361-3p/MUC13 axis, providing a potential therapeutic biomarker for GC.
Collapse
Affiliation(s)
- Tao Cai
- Department of Gastrointestinal Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Binyu Peng
- Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jun Hu
- Department of Gastrointestinal Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Yan He
- Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China,CONTACT Yan He Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan 430033, Hubei, China
| |
Collapse
|
54
|
Ruan S, Huang Y, He M, Gao H. Advanced Biomaterials for Cell-Specific Modulation and Restore of Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200027. [PMID: 35343112 PMCID: PMC9165523 DOI: 10.1002/advs.202200027] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Indexed: 05/09/2023]
Abstract
The past decade has witnessed the explosive development of cancer immunotherapies. Nevertheless, low immunogenicity, limited specificity, poor delivery efficiency, and off-target side effects remain to be the major limitations for broad implementation of cancer immunotherapies to patient bedside. Encouragingly, advanced biomaterials offering cell-specific modulation of immunological cues bring new solutions for improving the therapeutic efficacy while relieving side effect risks. In this review, focus is given on how functional biomaterials can enable cell-specific modulation of cancer immunotherapy within the cancer-immune cycle, with particular emphasis on antigen-presenting cells (APCs), T cells, and tumor microenvironment (TME)-resident cells. By reviewing the current progress in biomaterial-based cancer immunotherapy, here the aim is to provide a better understanding of biomaterials' role in targeting modulation of antitumor immunity step-by-step and guidelines for rationally developing targeting biomaterials for more personalized cancer immunotherapy. Moreover, the current challenge and future perspective regarding the potential application and clinical translation will also be discussed.
Collapse
Affiliation(s)
- Shaobo Ruan
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081China
| | - Mei He
- College of PharmacyUniversity of FloridaGainesvilleFL32610USA
| | - Huile Gao
- West China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
55
|
Wang G, Lin X, Han H, Zhang H, Li X, Feng M, Jiang C. lncRNA H19 promotes glioblastoma multiforme development by activating autophagy by sponging miR-491-5p. Bioengineered 2022; 13:11440-11455. [PMID: 35506168 PMCID: PMC9275997 DOI: 10.1080/21655979.2022.2065947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant cancer with severely poor survival, and the cells continue to thrive during hypoxia and toxic stress through autophagy. To validate the oncogenic role of long noncoding RNA H19 in GBM progression and examine whether autophagy and/or miR-491-5p participate in the process. The expression of H19 and autophagy-related genes in GBM and healthy control tissues was assessed via quantitative polymerase chain reaction. In addition, cell viability, proliferation, apoptosis and autophagy were respectively determined via cell counting kit-8 assay, clone formation assay, flow cytometry, western blotting and green fluorescent protein-microtubule-associated protein 1 light chain 3 alpha fluorescence analysis in vitro. Furthermore, a rescue assay was performed using rapamycin or miR-491-5p antagomir to examine the role of autophagy or miR-491-5p in H19-mediated regulation of proliferation and apoptosis. RNA pull-down and dual-luciferase reporter assays were employed to analyze the interaction between H19 and miR-491-5p. Additionally, tumor growth in a xenograft-bearing mouse model and autophagy in tumor mass were analyzed in vivo. The expression H19 was increased in GBM and was positively correlated with LC3 or Beclin-1. Silencing H19 inhibited growth and promoted apoptosis in GBM cells both in vitro and in vivo, and miR-491-5p was identified as one of the important mediators. H19 regulated the autophagy signaling pathway at least partly via miR-491-5p. Increased H19 expression in GBM exerts oncogenic effects by sponging miR-491-5p and enhancing autophagy. Therefore, H19 may be explored as a target for GBM therapy.
Collapse
Affiliation(s)
- Guo Wang
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Xiaoyan Lin
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Han Han
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Hongxu Zhang
- Department of Ophthalmology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Ophthalmology, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Xiaoli Li
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Mei Feng
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| | - Chunming Jiang
- Department of Pediatrics, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou Zhejiang, P.R. China
- Department of Pediatrics, Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou Zhejiang, P.R. China
| |
Collapse
|
56
|
Song L, Liu S, Zhao S. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway. Bioengineered 2022; 13:11240-11257. [PMID: 35485300 PMCID: PMC9208494 DOI: 10.1080/21655979.2022.2064205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the 4th most prevalent malignancy in females. This study explored the mechanism of everolimus (RAD001) combined with programmed death-1 (PD-1) blockade on radiosensitivity by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and autophagy in CC cells. Low-radiosensitive CaSki cells were selected as study objects. After RAD001 treatment, PI3K/AKT/mTOR pathway activation, autophagy, migration and invasion abilities, autophagy-related proteins (LC3-I, LC3-II, and p62), and PD-L1 expression in CC cells were detected. After triple treatment of radiotherapy (RT), RAD001, and PD-1 blockade to the CC mouse models, tumor weight and volume were recorded. Ki67 expression, the number of CD8 + T cells, and the ability to produce IFN-γ and TNF-α in tumor tissues were determined. RAD001 promoted autophagy by repressing PI3K/AKT/mTOR pathway, augmented RT-induced apoptosis, and weakened migration and invasion, thereby increasing CC cell radiosensitivity. RAD001 elevated RT-induced PD-L1 level. RT combined with RAD001 and PD-1 blockade intensified the inhibitory effect of RT on tumor growth, reduced the amount of Ki67-positive cells, enhanced radiosensitivity of CC mice, and increased the quantity and killing ability of CD8 + T cells. Briefly, RAD001 combined with PD-1 blockade increases radiosensitivity of CC by impeding the PI3K/AKT/mTOR pathway and potentiating cell autophagy.
Collapse
Affiliation(s)
- Lili Song
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sufen Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
57
|
Huang Y, Min Y, Yang G, Wang H, Yin G, Zhang L. Construction and Validation of a Prediction Model for Identifying Clinical Risk Factors of Lateral Lymph Node Metastasis in Medullary Thyroid Carcinoma. Int J Gen Med 2022; 15:2301-2309. [PMID: 35256856 PMCID: PMC8898042 DOI: 10.2147/ijgm.s353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Medullary thyroid carcinoma (MTC) is a rare but highly invasive malignancy, especially in terms of cervical lymph node metastasis. However, the role of prophylactic lateral lymph node dissection (LLND) is still controversial. We hereby aim to explore the risk factors of lateral lymph node metastasis (LLNM) in patients with MTC to guide clinical practice. PATIENTS AND METHODS The clinicopathological characteristics of patients with MTC from the Surveillance, Epidemiology, and End Results (SEER) Program and the Second Affiliated Hospital of Chongqing Medical University were reviewed and analyzed. Univariate and multivariate logistics regression analyses were used to screen the risk factors of LLNM in patients with MTC. RESULTS Four variables, including male gender, multifocality, extrathyroidal invasion (EI), and large tumor size (all p < 0.05), were identified as potential independent factors of LLNM in patients with MTC. Based on these results, an individualized prediction model was subsequently developed with a satisfied C-index of 0.798, supported by both internal and external validation with a C-index of 0.816 and 0.896, respectively. We also performed the decision curve analysis (DCA) and calibration curve, which indicated a remarkable agreement in our model for predicting the risk of LLNM. CONCLUSION We determined that various clinical characteristics, male gender, multifocality, EI, and large tumor size, were significantly associated with LLNM in patients with MTC. Thus, a validated prediction model utilizing readily available variables was successfully established to help clinicians make individualized clinical decisions on MTC management, especially regarding whether the LLND is necessary for patients with clinical negative lateral lymph node involvement and the frequency of follow-up without LLND.
Collapse
Affiliation(s)
- Yizhou Huang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yu Min
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Hanghang Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Guobing Yin
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Lili Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
58
|
Zhang J, Liu W, Ji P, Zhang Y. Silencing of long chain noncoding RNA paternally expressed gene (PEG10) inhibits the progression of neuroblastoma by regulating microRNA-449a (miR-449a)/ribosomal protein S2 (RPS2) axis. Bioengineered 2022; 13:6309-6322. [PMID: 35212607 PMCID: PMC8973610 DOI: 10.1080/21655979.2022.2042999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To investigate the mechanism of paternally expressed gene (PEG10) in regulating neuroblastoma (NB) progression. PEG10 expression was detected using quantitative real-time reverse transcription polymerase-chain reaction (qRT-PCR). The interaction of miR-449a and PEG10 or ribosomal protein S2 (RPS2) was employed by starBase, and then proved through RIP and dual-luciferase reporter assays. The NB cell viability, proliferation, invasion, and migration were evaluated by Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assay. The mRNA and protein levels were determined by qRT-PCR and Western blotting, respectively. The levels of PEG10 and RPS2 were remarkably increased in NB tissues and cells, nevertheless the expression of miR-449a was conspicuously declined in NB tissues and cells. Silencing of PEG10 inhibited proliferation, migration, and invasion in SK-N-BE (2) cells, while overexpression of PEG10 promoted proliferation, migration, and invasion in SH-SY5Y cells. We affirmed that PEG10 interacted with miR-449a, and miR-449a could target the 3'UTR of RPS2 and negatively regulate its expression in NB cells. The upregulation of miR-449a inhibited proliferation, migration, and invasion in SK-N-BE (2) cells, while downregulation of miR-449a promoted proliferation, migration, and invasion in SH-SY5Y cells. Moreover, miR-449a overexpression weaken the function of PEG10-mediated on promoting proliferation, migration, and invasion in SH-SY5Y cells, while RPS2 overexpression rescued the effects of miR-449a-mediated on inhibiting those behaviors of SH-SY5Y cells. In conclusion, Silencing of PEG10 could inhibit proliferation, migration, and invasion via the miR-449a/RPS2 axis in NB cells.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Geriatrics, Qingdao Chengyang District People's Hospital, Qingdao, Shandong, P.R. China
| | - Wei Liu
- Department of Health Management, Qingdao Eighth People's Hospital, Qingdao, Shandong, P.R. China
| | - Ping Ji
- Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong, P.R. China
| | - Yan Zhang
- The Third Department of Internal Medicine, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|