51
|
Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells 2022; 11:2803. [PMID: 36139380 PMCID: PMC9496777 DOI: 10.3390/cells11182803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.
Collapse
Affiliation(s)
- Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
52
|
Barragán-Álvarez CP, Flores-Fernandez JM, Hernández-Pérez OR, Ávila-Gónzalez D, Díaz NF, Padilla-Camberos E, Dublan-García O, Gómez-Oliván LM, Diaz-Martinez NE. Recent advances in the use of CRISPR/Cas for understanding the early development of molecular gaps in glial cells. Front Cell Dev Biol 2022; 10:947769. [PMID: 36120556 PMCID: PMC9479146 DOI: 10.3389/fcell.2022.947769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Glial cells are non-neuronal elements of the nervous system (NS) and play a central role in its development, maturation, and homeostasis. Glial cell interest has increased, leading to the discovery of novel study fields. The CRISPR/Cas system has been widely employed for NS understanding. Its use to study glial cells gives crucial information about their mechanisms and role in the central nervous system (CNS) and neurodegenerative disorders. Furthermore, the increasingly accelerated discovery of genes associated with the multiple implications of glial cells could be studied and complemented with the novel screening methods of high-content and single-cell screens at the genome-scale as Perturb-Seq, CRISP-seq, and CROPseq. Besides, the emerging methods, GESTALT, and LINNAEUS, employed to generate large-scale cell lineage maps have yielded invaluable information about processes involved in neurogenesis. These advances offer new therapeutic approaches to finding critical unanswered questions about glial cells and their fundamental role in the nervous system. Furthermore, they help to better understanding the significance of glial cells and their role in developmental biology.
Collapse
Affiliation(s)
- Carla Patricia Barragán-Álvarez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| | - José Miguel Flores-Fernandez
- Departamento de Investigación e Innovación, Universidad Tecnológica de Oriental, Oriental, Mexico
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | - Daniela Ávila-Gónzalez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, México City, Mexico
| | - Nestor Fabian Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, México City, Mexico
| | - Eduardo Padilla-Camberos
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| | - Octavio Dublan-García
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Toluca, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Toluca, México
| | - Nestor Emmanuel Diaz-Martinez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
53
|
Human Brain Organoid: A Versatile Tool for Modeling Neurodegeneration Diseases and for Drug Screening. Stem Cells Int 2022; 2022:2150680. [PMID: 36061149 PMCID: PMC9436613 DOI: 10.1155/2022/2150680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022] Open
Abstract
Clinical trials serve as the fundamental prerequisite for clinical therapy of human disease, which is primarily based on biomedical studies in animal models. Undoubtedly, animal models have made a significant contribution to gaining insight into the developmental and pathophysiological understanding of human diseases. However, none of the existing animal models could efficiently simulate the development of human organs and systems due to a lack of spatial information; the discrepancy in genetic, anatomic, and physiological basis between animals and humans limits detailed investigation. Therefore, the translational efficiency of the research outcomes in clinical applications was significantly weakened, especially for some complex, chronic, and intractable diseases. For example, the clinical trials for human fragile X syndrome (FXS) solely based on animal models have failed such as mGluR5 antagonists. To mimic the development of human organs more faithfully and efficiently translate in vitro biomedical studies to clinical trials, extensive attention to organoids derived from stem cells contributes to a deeper understanding of this research. The organoids are a miniaturized version of an organ generated in vitro, partially recapitulating key features of human organ development. As such, the organoids open a novel avenue for in vitro models of human disease, advantageous over the existing animal models. The invention of organoids has brought an innovative breakthrough in regeneration medicine. The organoid-derived human tissues or organs could potentially function as invaluable platforms for biomedical studies, pathological investigation of human diseases, and drug screening. Importantly, the study of regeneration medicine and the development of therapeutic strategies for human diseases could be conducted in a dish, facilitating in vitro analysis and experimentation. Thus far, the pilot breakthrough has been made in the generation of numerous types of organoids representing different human organs. Most of these human organoids have been employed for in vitro biomedical study and drug screening. However, the efficiency and quality of the organoids in recapitulating the development of human organs have been hindered by engineering and conceptual challenges. The efficiency and quality of the organoids are essential for downstream applications. In this article, we highlight the application in the modeling of human neurodegenerative diseases (NDDs) such as FXS, Alzheimer's disease (AD), Parkinson's disease (PD), and autistic spectrum disorders (ASD), and organoid-based drug screening. Additionally, challenges and weaknesses especially for limits of the brain organoid models in modeling late onset NDDs such as AD and PD., and future perspectives regarding human brain organoids are addressed.
Collapse
|
54
|
Guan A, Wang S, Huang A, Qiu C, Li Y, Li X, Wang J, Wang Q, Deng B. The role of gamma oscillations in central nervous system diseases: Mechanism and treatment. Front Cell Neurosci 2022; 16:962957. [PMID: 35966207 PMCID: PMC9374274 DOI: 10.3389/fncel.2022.962957] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022] Open
Abstract
Gamma oscillation is the synchronization with a frequency of 30–90 Hz of neural oscillations, which are rhythmic electric processes of neuron groups in the brain. The inhibitory interneuron network is necessary for the production of gamma oscillations, but certain disruptions such as brain inflammation, oxidative stress, and metabolic imbalances can cause this network to malfunction. Gamma oscillations specifically control the connectivity between different brain regions, which is crucial for perception, movement, memory, and emotion. Studies have linked abnormal gamma oscillations to conditions of the central nervous system, including Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Evidence suggests that gamma entrainment using sensory stimuli (GENUS) provides significant neuroprotection. This review discusses the function of gamma oscillations in advanced brain activities from both a physiological and pathological standpoint, and it emphasizes gamma entrainment as a potential therapeutic approach for a range of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ao Guan
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Shaoshuang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ailing Huang
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Chenyue Qiu
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Yansong Li
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xuying Li
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Jinfei Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Wang
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Qiang Wang,
| | - Bin Deng
- Department of Anesthesiology, Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Bin Deng,
| |
Collapse
|
55
|
Van Breedam E, Ponsaerts P. Promising Strategies for the Development of Advanced In Vitro Models with High Predictive Power in Ischaemic Stroke Research. Int J Mol Sci 2022; 23:ijms23137140. [PMID: 35806146 PMCID: PMC9266337 DOI: 10.3390/ijms23137140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Although stroke is one of the world’s leading causes of death and disability, and more than a thousand candidate neuroprotective drugs have been proposed based on extensive in vitro and animal-based research, an effective neuroprotective/restorative therapy for ischaemic stroke patients is still missing. In particular, the high attrition rate of neuroprotective compounds in clinical studies should make us question the ability of in vitro models currently used for ischaemic stroke research to recapitulate human ischaemic responses with sufficient fidelity. The ischaemic stroke field would greatly benefit from the implementation of more complex in vitro models with improved physiological relevance, next to traditional in vitro and in vivo models in preclinical studies, to more accurately predict clinical outcomes. In this review, we discuss current in vitro models used in ischaemic stroke research and describe the main factors determining the predictive value of in vitro models for modelling human ischaemic stroke. In light of this, human-based 3D models consisting of multiple cell types, either with or without the use of microfluidics technology, may better recapitulate human ischaemic responses and possess the potential to bridge the translational gap between animal-based in vitro and in vivo models, and human patients in clinical trials.
Collapse
|
56
|
Jäntti H, Sitnikova V, Ishchenko Y, Shakirzyanova A, Giudice L, Ugidos IF, Gómez-Budia M, Korvenlaita N, Ohtonen S, Belaya I, Fazaludeen F, Mikhailov N, Gotkiewicz M, Ketola K, Lehtonen Š, Koistinaho J, Kanninen KM, Hernández D, Pébay A, Giugno R, Korhonen P, Giniatullin R, Malm T. Microglial amyloid beta clearance is driven by PIEZO1 channels. J Neuroinflammation 2022; 19:147. [PMID: 35706029 PMCID: PMC9199162 DOI: 10.1186/s12974-022-02486-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Background Microglia are the endogenous immune cells of the brain and act as sensors of pathology to maintain brain homeostasis and eliminate potential threats. In Alzheimer's disease (AD), toxic amyloid beta (Aβ) accumulates in the brain and forms stiff plaques. In late-onset AD accounting for 95% of all cases, this is thought to be due to reduced clearance of Aβ. Human genome-wide association studies and animal models suggest that reduced clearance results from aberrant function of microglia. While the impact of neurochemical pathways on microglia had been broadly studied, mechanical receptors regulating microglial functions remain largely unexplored. Methods Here we showed that a mechanotransduction ion channel, PIEZO1, is expressed and functional in human and mouse microglia. We used a small molecule agonist, Yoda1, to study how activation of PIEZO1 affects AD-related functions in human induced pluripotent stem cell (iPSC)-derived microglia-like cells (iMGL) under controlled laboratory experiments. Cell survival, metabolism, phagocytosis and lysosomal activity were assessed using real-time functional assays. To evaluate the effect of activation of PIEZO1 in vivo, 5-month-old 5xFAD male mice were infused daily with Yoda1 for two weeks through intracranial cannulas. Microglial Iba1 expression and Aβ pathology were quantified with immunohistochemistry and confocal microscopy. Published human and mouse AD datasets were used for in-depth analysis of PIEZO1 gene expression and related pathways in microglial subpopulations. Results We show that PIEZO1 orchestrates Aβ clearance by enhancing microglial survival, phagocytosis, and lysosomal activity. Aβ inhibited PIEZO1-mediated calcium transients, whereas activation of PIEZO1 with a selective agonist, Yoda1, improved microglial phagocytosis resulting in Aβ clearance both in human and mouse models of AD. Moreover, PIEZO1 expression was associated with a unique microglial transcriptional phenotype in AD as indicated by assessment of cellular metabolism, and human and mouse single-cell datasets. Conclusion These results indicate that the compromised function of microglia in AD could be improved by controlled activation of PIEZO1 channels resulting in alleviated Aβ burden. Pharmacological regulation of these mechanoreceptors in microglia could represent a novel therapeutic paradigm for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02486-y.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Yevheniia Ishchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Departments of Molecular Biophysics and Biochemistry and Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Irina Belaya
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Feroze Fazaludeen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Nikita Mikhailov
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Maria Gotkiewicz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Damian Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
57
|
Cakir B, Tanaka Y, Kiral FR, Xiang Y, Dagliyan O, Wang J, Lee M, Greaney AM, Yang WS, duBoulay C, Kural MH, Patterson B, Zhong M, Kim J, Bai Y, Min W, Niklason LE, Patra P, Park IH. Expression of the transcription factor PU.1 induces the generation of microglia-like cells in human cortical organoids. Nat Commun 2022; 13:430. [PMID: 35058453 PMCID: PMC8776770 DOI: 10.1038/s41467-022-28043-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Microglia play a role in the emergence and preservation of a healthy brain microenvironment. Dysfunction of microglia has been associated with neurodevelopmental and neurodegenerative disorders. Investigating the function of human microglia in health and disease has been challenging due to the limited models of the human brain available. Here, we develop a method to generate functional microglia in human cortical organoids (hCOs) from human embryonic stem cells (hESCs). We apply this system to study the role of microglia during inflammation induced by amyloid-β (Aβ). The overexpression of the myeloid-specific transcription factor PU.1 generates microglia-like cells in hCOs, producing mhCOs (microglia-containing hCOs), that we engraft in the mouse brain. Single-cell transcriptomics reveals that mhCOs acquire a microglia cell cluster with an intact complement and chemokine system. Functionally, microglia in mhCOs protect parenchyma from cellular and molecular damage caused by Aβ. Furthermore, in mhCOs, we observed reduced expression of Aβ-induced expression of genes associated with apoptosis, ferroptosis, and Alzheimer's disease (AD) stage III. Finally, we assess the function of AD-associated genes highly expressed in microglia in response to Aβ using pooled CRISPRi coupled with single-cell RNA sequencing in mhCOs. In summary, we provide a protocol to generate mhCOs that can be used in fundamental and translational studies as a model to investigate the role of microglia in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Bilal Cakir
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yoshiaki Tanaka
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec, H1T 2M4, Canada
| | - Ferdi Ridvan Kiral
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan Wang
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Maria Lee
- Department of Molecular, Cellular, Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Allison M Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Woo Sub Yang
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | | | - Mehmet Hamdi Kural
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Benjamin Patterson
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mei Zhong
- Department of Cell Biology, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Jonghun Kim
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yalai Bai
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Laura E Niklason
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Prabir Patra
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, 06604, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
58
|
Zourray C, Kurian MA, Barral S, Lignani G. Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions. Front Mol Neurosci 2022; 15:839366. [PMID: 35250479 PMCID: PMC8888527 DOI: 10.3389/fnmol.2022.839366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Human cortical development is an intricate process resulting in the generation of many interacting cell types and long-range connections to and from other brain regions. Human stem cell-derived cortical organoids are now becoming widely used to model human cortical development both in physiological and pathological conditions, as they offer the advantage of recapitulating human-specific aspects of corticogenesis that were previously inaccessible. Understanding the electrophysiological properties and functional maturation of neurons derived from human cortical organoids is key to ensure their physiological and pathological relevance. Here we review existing data on the electrophysiological properties of neurons in human cortical organoids, as well as recent advances in the complexity of cortical organoid modeling that have led to improvements in functional maturation at single neuron and neuronal network levels. Eventually, a more comprehensive and standardized electrophysiological characterization of these models will allow to better understand human neurophysiology, model diseases and test novel treatments.
Collapse
Affiliation(s)
- Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Gabriele Lignani,
| |
Collapse
|