51
|
Multiparametric Approach to Interactions between Saccharomyces cerevisiae and Lachancea thermotolerans during Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of a significant part of current wine technology research is to better understand and monitor mixed culture fermentations and optimize the microbiological processes and characteristics of the final wine. In this context, the yeast couple formed by Lachancea thermotolerans and Saccharomyces cerevisiae is of particular interest. The diverse results observed in the literature have shown that wine characteristics are dependent on both interactions between yeasts and environmental and fermentation parameters. Here, we took a multiparametric approach to study the impact of fermentation parameters on three different but related aspects of wine fermentation: population dynamics, fermentation, and volatile compound production. An experimental design was used to assess the effects of four independent factors (temperature, oxygenation, nitrogen content, inoculum ratio) on variables representing these three aspects. Temperature and, to a lesser extent, oxygenation and the inoculum ratio, were shown to constitute key factors in optimizing the presence of Lachancea thermotolerans during fermentation. The inoculum ratio also appeared to greatly impact lactic acid production, while the quantity of nitrogen seemed to be involved more in the management of aroma compound production. These results showed that a global approach to mixed fermentations is not only pertinent, but also constitutes an important tool for controlling them.
Collapse
|
52
|
Modulation of aroma and chemical composition of Albariño semi-synthetic wines by non-wine Saccharomyces yeasts and bottle aging. Food Microbiol 2022; 104:103981. [DOI: 10.1016/j.fm.2022.103981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
|
53
|
Wang C, Liang S, Yang J, Wu C, Qiu S. The impact of indigenous Saccharomyces cerevisiae and Schizosaccharomyces japonicus on typicality of crystal grape (Niagara) wine. Food Res Int 2022; 159:111580. [DOI: 10.1016/j.foodres.2022.111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022]
|
54
|
Effects of UV-B and Water Deficit on Aroma Precursors in Grapes and Flavor Release during Wine Micro-Vinification and Consumption. Foods 2022; 11:foods11091336. [PMID: 35564058 PMCID: PMC9103088 DOI: 10.3390/foods11091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
UV-B radiation and water availability can affect amino acids(AAs) concentration in berries, resulting in the evolution of aroma compounds during alcoholic fermentation. This study investigated the effects of UV-B exposure and water availability onwine aroma compounds in Pinot noir, focusing on the role of AAs in the process.Enhanced UV-B radiation significantly decreased total AA concentrations and most individual AAs inberries and wines, while water deficitincreased some individual AAsin wines. Higher alcohols, fatty acids, esters, monoterpenes, and C13-norisoprenoids were affected by UV-B interaction with water deficit in wines. These results suggested individual or combined UV-B exposure and water deficit had direct effects on fruit AAs, leading to significant differences in some wine aroma compounds.
Collapse
|
55
|
Abstract
The utilization of native yeast strains associated with a distinct terroir for autochthonous grape types represents a novel trend in winemaking, contributing to the production of unique wines with regional character. Hence, this study aimed to isolate native strains of the yeast H. uvarum from the surface of various fruits and to characterize its fermentation capability in Prokupac grape must. Out of 31 yeasts, 8 isolates were identified as H. uvarum. The isolates were able to grow at low (4 °C) temperatures, SO2 concentrations up to 300 ppm and ethanol concentrations up to 5%. Additionally, they provided a good profile of organic acids during the microvinification of sterile grape must. Although the content of acetic acid (0.54–0.63 g/L) was relatively high, the sniffing test proved that the yeast isolates developed a pleasant aroma characterized as fruity. All H. uvarum isolates produced twice the concentration of glycerol compared to commercial wine yeast Saccharomyces cerevisiae, contributing to the fullness and sweetness of the wine. The results for pure and sequential fermentation protocols confirmed that the selected S-2 isolate has good oenological characteristics, the capability to reduce the ethanol content (up to 1% v/v) and a potential to give a distinctive note to Prokupac-grape wines.
Collapse
|
56
|
Xu A, Xiao Y, He Z, Liu J, Wang Y, Gao B, Chang J, Zhu D. Use of Non-Saccharomyces Yeast Co-Fermentation with Saccharomyces cerevisiae to Improve the Polyphenol and Volatile Aroma Compound Contents in Nanfeng Tangerine Wines. J Fungi (Basel) 2022; 8:jof8020128. [PMID: 35205881 PMCID: PMC8875693 DOI: 10.3390/jof8020128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
This study attempted to improve the polyphenol and volatile aroma compound contents in Nanfeng tangerine wines using non-Saccharomyces yeast and Saccharomyces cerevisiae. The effects of fermentation with pure cultures of Candida ethanolica, Hanseniaspora guilliermondii and Hanseniaspora thailandica, as well as in sequential and mixed inoculations (1:1 or 1:100 ratio) with S. cerevisiae in Nanfeng tangerine wines were evaluated. C. ethanolica was found to produce the most polyphenols (138.78 mg/L) during pure fermentation, while H. guilliermondii produced the most volatile aroma compounds (442.34 mg/L). The polyphenol content produced during sequential fermentation with S. cerevisiae and H. guilliermondii (140.24 mg/L) or C. ethanolica (140.21 mg/L) was significantly higher than other co-fermentations. Meanwhile, the volatile aroma compounds were found to be more abundant in S. cerevisiae/H. guilliermondii mixed fermentation (1:1 ratio) (588.35 mg/L) or S. cerevisiae/H. guilliermondii sequential fermentation (549.31 mg/L). Thus, S. cerevisiae/H. guilliermondii sequential fermentation could considerably boost the polyphenol and volatile aroma component contents in Nanfeng tangerine wines. The findings of this study can be used to drive strategies to increase the polyphenol content and sensory quality of tangerine wines and provide a reference for selecting the co-fermentation styles for non-Saccharomyces yeast and S. cerevisiae in fruit wine fermentation.
Collapse
Affiliation(s)
- Ahui Xu
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Yiwen Xiao
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Zhenyong He
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Jiantao Liu
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
- Correspondence: (J.L.); (D.Z.)
| | - Ya Wang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Boliang Gao
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Jun Chang
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
| | - Du Zhu
- Key Laboratory of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (A.X.); (Y.X.); (Z.H.); (Y.W.); (B.G.); (J.C.)
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
- Correspondence: (J.L.); (D.Z.)
| |
Collapse
|
57
|
Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Hu K, Zhao H, Kang X, Ge X, Zheng M, Hu Z, Tao Y. Fruity aroma modifications in Merlot wines during simultaneous alcoholic and malolactic fermentations through mixed culture of S. cerevisiae, P. fermentans, and L. brevis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
The Influence of Fermenting Yeast on the Sensory Properties of Graševina Wine. Foods 2021; 10:foods10112752. [PMID: 34829033 PMCID: PMC8623077 DOI: 10.3390/foods10112752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Recent research has showed a breakthrough in investigating the effect of non-Saccharomyces yeast on wine quality and sensory properties. The aim of this study was to compare the influence of conventional yeast, Saccharomyces cerevisiae, vs. that of the non-Saccharomyces Torulaspora delbrueckii on the sensory profile of the white wine Graševina, and to establish if there are any differences in physical–chemical properties in regards to the applied yeast. Sample One was inoculated with both yeasts, while Sample Two was inoculated only with S. cerevisiae. The results indicated that a combination of T. delbrueckii and S. cerevisiae resulted in somewhat higher ethanol content in the finished wine. Sensory evaluation showed no significant discrepancies for any of the wines. Aspect and flavor were graded similarly, but the quality and intensity of the bouquet of Sample One was graded somewhat higher (14 and 6.6) than Sample Two (13.6 and 6.4). These findings open a very wide gate for future research in white wines.
Collapse
|
60
|
Traditional Fermented Beverages of Mexico: A Biocultural Unseen Foodscape. Foods 2021; 10:foods10102390. [PMID: 34681439 PMCID: PMC8535898 DOI: 10.3390/foods10102390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022] Open
Abstract
Mexico is one of the main regions of the world where the domestication of numerous edible plant species originated. Its cuisine is considered an Intangible Cultural Heritage of Humanity and ferments are important components but have been poorly studied. Traditional fermented foods are still diverse, but some are endangered, requiring actions to promote their preservation. Our study aimed to (1) systematize information on the diversity and cultural history of traditional Mexican fermented beverages (TMFB), (2) document their spatial distribution, and (3) identify the main research trends and topics needed for their conservation and recovery. We reviewed information and constructed a database with biocultural information about TMFB prepared and consumed in Mexico, and we analyzed the information through network approaches and mapped it. We identified 16 TMFB and 143 plant species involved in their production, species of Cactaceae, Asparagaceae, and Poaceae being the most common substrates. Microbiological research has been directed to the potential biotechnological applications of Lactobacillus, Bacillus, and Saccharomyces. We identified a major gap of research on uncommon beverages and poor attention on the cultural and technological aspects. TMFB are dynamic and heterogenous foodscapes that are valuable biocultural reservoirs. Policies should include their promotion for conservation. The main needs of research and policies are discussed.
Collapse
|
61
|
Chemical and Sensory Characterization of Vidal Icewines Fermented with Different Yeast Strains. FERMENTATION 2021. [DOI: 10.3390/fermentation7040211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study is to comprehensively investigate the aroma composition and sensory attributes of Vidal icewine fermented with four yeast strains (ST, K1, EC1118, and R2). A total of 485 kinds of volatile components were identified by comprehensive two-dimensional gas chromatography-time of flight mass spectrometry, among which 347 kinds of volatile compounds were the same in four kinds of sample. The heat map was conducted with 156 volatile compounds, which have aroma contributions, and the analysis results identified the characteristics of the aroma composition of icewine fermented with different yeasts. Quantitative descriptive analysis was performed with a trained panel to obtain the sensory profiles. The aroma attributes of honey and nut of the icewine fermented by R2 were much higher than others. Partial least squares discriminant analysis further provided 40 compounds that were mainly responsible for the differences of the aroma characteristics of the icewines fermented by four yeasts. This study provides more data on the current status of Vidal icewines by main commercial yeasts.
Collapse
|
62
|
Carrau F, Henschke PA. Hanseniaspora vineae and the Concept of Friendly Yeasts to Increase Autochthonous Wine Flavor Diversity. Front Microbiol 2021; 12:702093. [PMID: 34421859 PMCID: PMC8371320 DOI: 10.3389/fmicb.2021.702093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022] Open
Abstract
In this perspective, we will explain the concept of “friendly” yeasts for developing wine starters that do not suppress desirable native microbial flora at the initial steps of fermentation, as what usually happens with Saccharomyces strains. Some non-Saccharomyces strains might allow the development of yeast consortia with the native terroir microflora of grapes and its region. The positive contribution of non-Saccharomyces yeasts was underestimated for decades. Avoiding them as spoilage strains and off-flavor producers was the main objective in winemaking. It is understandable, as in our experience after more than 30 years of wine yeast selection, it was shown that no more than 10% of the isolated native strains were positive contributors of superior flavors. Some species that systematically gave desirable flavors during these screening processes were Hanseniaspora vineae and Metschnikowia fructicola. In contrast to the latter, H. vineae is an active fermentative species, and this fact helped to build an improved juice ecosystem, avoiding contaminations of aerobic bacteria and yeasts. Furthermore, this species has a complementary secondary metabolism with S. cerevisiae, increasing flavor complexity with benzenoid and phenylpropanoid synthetic pathways practically inexistent in conventional yeast starters. How does H. vineae share the fermentation niche with other yeast strains? It might be due to the friendly conditions it creates, such as ideal low temperatures and low nitrogen demand during fermentation, reduced synthesis of medium-chain fatty acids, and a rich acetylation capacity of aromatic higher alcohols, well-known inhibitors of many yeasts. We will discuss here how inoculation of H. vineae strains can give the winemaker an opportunity to develop ideal conditions for flavor expression of the microbial terroir without the risk of undesirable strains that can result from spontaneous yeast fermentations.
Collapse
Affiliation(s)
- Francisco Carrau
- Área Enología y Biotecnología de Fermentaciones, Departamento Ciencia y Tecnología de Alimentos, Universidad de la Republica, Montevideo, Uruguay
| | - Paul A Henschke
- The Australian Wine Research Institute, Adelaide, SA, Australia.,School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
63
|
Wine Aroma Characterization of the Two Main Fermentation Yeast Species of the Apiculate Genus Hanseniaspora. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hanseniaspora species are the main yeasts isolated from grapes and grape musts. Regarding genetic and phenotypical characterization, especially fermentative behavior, they can be classified in two technological clusters: the fruit group and the fermentation group. Among the species belonging to the last group, Hanseniaspora osmophila and Hanseniaspora vineae have been previously isolated in spontaneous fermentations of grape must. In this work, the oenological aptitudes of the two species of the fermentation group were compared with Saccharomyces cerevisiae and the main species of the fruit group, Hanseniaspora uvarum. Both H. osmophila and H. vineae conferred a positive aroma to final wines and no sensory defects were detected. Wines fermented with H. vineae presented significantly higher concentrations of 2-phenylethyl, tryptophol and tyrosol acetates, acetoin, mevalonolactone, and benzyl alcohol compared to H. osmophila. Sensorial analysis showed increased intensity of fruity and flowery notes in wines vinificated with H. vineae. In an evolutionary context, the detoxification of alcohols through a highly acetylation capacity might explain an adaption to fermentative environments. It was concluded that, although H. vineae show close alcohol fermentation adaptations to H. osmophila, the increased activation of phenylpropanoid metabolic pathway is a particular characteristic of H. vineae within this important apiculate genus.
Collapse
|
64
|
Zilelidou EA, Nisiotou A. Understanding Wine through Yeast Interactions. Microorganisms 2021; 9:microorganisms9081620. [PMID: 34442699 PMCID: PMC8399628 DOI: 10.3390/microorganisms9081620] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Wine is a product of microbial activities and microbe–microbe interactions. Yeasts are the principal microorganisms responsible for the evolution and fulfillment of alcoholic fermentation. Several species and strains coexist and interact with their environment and with each other during the fermentation course. Yeast–yeast interactions occur even from the early stages of fermentation, determining yeast community structure and dynamics during the process. Different types of microbial interactions (e.g., mutualism and commensalism or competition and amensalism) may exert positive or negative effects, respectively, on yeast populations. Interactions are intimately linked to yeast metabolic activities that influence the wine analytical profile and shape the wine character. In this context, much attention has been given during the last years to the interactions between Saccharomyces cerevisiae (SC) and non-Saccharomyces (NS) yeast species with respect to their metabolic contribution to wine quality. Yet, there is still a significant lack of knowledge on the interaction mechanisms modulating yeast behavior during mixed culture fermentation, while much less is known about the interactions between the various NS species or between SC and Saccharomyces non-cerevisiae (SNC) yeasts. There is still much to learn about their metabolic footprints and the genetic mechanisms that alter yeast community equilibrium in favor of one species or another. Gaining deeper insights on yeast interactions in the grape–wine ecosystem sets the grounds for understanding the rules underlying the function of the wine microbial system and provides means to better control and improve oenological practices.
Collapse
|
65
|
Increased Varietal Aroma Diversity of Marselan Wine by Mixed Fermentation with Indigenous Non-Saccharomyces Yeasts. FERMENTATION 2021. [DOI: 10.3390/fermentation7030133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The common use of commercial yeasts usually leads to dull wine with similar aromas and tastes. Therefore, screening for novel indigenous yeasts to practice is a promising method. In this research, aroma discrepancies among six wine groups fermentated with indigenous yeasts were analyzed. Three Saccharomyces yeasts (FS36, HL12, YT28) and three matched non-Saccharomyces yeasts (FS31, HL9, YT2) were selected from typical Chinese vineyards. The basic oenological parameters, aroma compounds, and sensory evaluation were analyzed. The results showed that each indigenous Saccharomyces yeast had excellent fermentation capacity, and mixed-strain fermentation groups produced more glycerol, contributing to sweeter and rounder taste. The results from GC-MS, principal components analysis (PCA), and sensory evaluation highlighted that the HL mixed group kept the most content of Marselan varietal flavors such as calamenene and β-damascone hereby ameliorated the whole aroma quality. Our study also implied that the indigenous yeast from the same region as the grape variety seems more conducive to preserve the natural variety characteristics of grapes.
Collapse
|
66
|
Influence of Microencapsulation on Fermentative Behavior of Hanseniaspora osmophila in Wine Mixed Starter Fermentation. FERMENTATION 2021. [DOI: 10.3390/fermentation7030112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, as a consequence of the re-evaluation of the role of non-Saccharomyces yeasts, several studies have been conducted on the use of controlled mixed fermentations with Saccharomyces and different non-Saccharomyces yeast species from the winemaking environment. To benefit from the metabolic particularities of some non-Saccharomyces yeasts, the management of a non-Saccharomyces strain in mixed fermentation is a crucial step, in particular the use of procedures addressed to increase the persistence of non-Saccharomyces strains during the fermentative process. The use of microencapsulation for cell immobilization might represent a strategy for enhancing the competitiveness of non-Saccharomyces yeasts during mixed fermentation. This study was aimed to assess the fermentative performance of a mixed starter culture, composed by a wild Hanseniaspora osmophila strain (ND1) and a commercial Saccharomyces cerevisiae strain (EC1118). For this purpose, free and microencapsulated cells of ND1 strain were tested in co-culture with EC1118 during mixed fermentations in order to evaluate the effect of the microencapsulation on fermentative behavior of mixed starter and final wine composition. The data have shown that H. osmophila cell formulation affects the persistence of both ND1 and EC1118 strains during fermentations and microencapsulation resulted in a suitable system to increase the fermentative efficiency of ND1 strain during mixed starter fermentation.
Collapse
|
67
|
Ability of Yeast Metabolic Activity to Reduce Sugars and Stabilize Betalains in Red Beet Juice. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To lower the risk of obesity, diabetes, and other related diseases, the WHO recommends that consumers reduce their consumption of sugars. Here, we propose a microbiological method to reduce the sugar content in red beet juice, while incurring only slight losses in the betalain content and maintaining the correct proportion of the other beet juice components. Several yeast strains with different metabolic activities were investigated for their ability to reduce the sugar content in red beet juice, which resulted in a decrease in the extract level corresponding to sugar content from 49.7% to 58.2%. This strategy was found to have the additional advantage of increasing the chemical and microbial stability of the red beet juice. Only slight losses of betalain pigments were noted, to final concentrations of 5.11% w/v and 2.56% w/v for the red and yellow fractions, respectively.
Collapse
|
68
|
The Combined Use of Lachancea thermotolerans and Lactiplantibacillus plantarum (former Lactobacillus plantarum) in Wine Technology. Foods 2021; 10:foods10061356. [PMID: 34199225 PMCID: PMC8232010 DOI: 10.3390/foods10061356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
Most commercialized red wines are produced through alcoholic fermentation performed by yeasts of the Saccharomyces genus, and a second fermentation performed by lactic bacteria of the Oenococus oeni species once the first is completely finished. However, the classical process can suffer complications, of which the risks can increase in grape juices with high contents of sugar and pH. Due to climate change, these situations are becoming more common in the winemaking industry. The main risks in those scenarios are alcoholic-fermentation stops or sluggish and undesirable bacteria development while alcoholic fermentation is not finished yet and wine still contains residual sugars. The study propose a novel alternative that offers a solution or reduces the risk of those scenarios while increasing acidity, which is another serious problem of warm viticulture regions. The alternative consists of the combined use of Lachancea thermotolerans to reduce the pH of musts that suffer from a lack of acidity, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) to achieve malic acid stability during the first stages of alcoholic fermentation, and Saccharomyces bayanus to complete the alcoholic fermentation in difficult wines of high potential alcohol degree of over 15% (v/v). The new proposed biotechnology produced wines with higher final concentrations in lactic acid, glycerol, color intensity, ethyl lactate and 2-phenyl ethyl acetate in 2.39 g/L, 0.52 g/L, 21%, 48% and 37% respectively than the classical methodology where Saccharomyces genus performs alcoholic fermentation and later Oenococus oeni performs malolactic fermentation. Additionally, the new alternative produced wines with lower concentration in ethanol, pH, acetic acid, ethyl acetate, diacetyl and 1-propanol in 0.37% (v/v), 0.26, 0.08 g/L, 22%, 69% and 28% respectively than the classic method.
Collapse
|
69
|
Pereira C, Mendes D, Dias T, Garcia R, da Silva MG, Cabrita MJ. Revealing the yeast modulation potential on amino acid composition and volatile profile of Arinto white wines by a combined chromatographic-based approach. J Chromatogr A 2021; 1641:461991. [PMID: 33640805 DOI: 10.1016/j.chroma.2021.461991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
The importance of yeasts in aroma production during wine fermentation is a significant concern for obtaining a wine that appraises a broad number of consumers. For wine producers, wine aroma modulation is an essential issue where the yeasts used during the winemaking process represents a feasible way to improve the complexity and enhance wines specific characteristics. During the fermentation process of wines, yeasts convert grapes sugars into alcohol, carbon dioxide and a large number of secondary metabolites, depending on yeast metabolism, affecting the wine composition, namely its aroma and amino acids (AAs) composition. So, the present work aims to study the effect of different Saccharomyces-type yeasts on the AAs composition and volatile profile of Arinto white wines. To pursue this goal, four white wines from Arinto grapes were fermented with three different commercial yeasts (Saccharomyces bayanus EC1118, Saccharomyces cerevisiae CY3079, Saccharomyces bayanus QA23) and one Native yeast. Arinto wines AAs composition was quantified by HPLC-DAD, after a derivatization step to obtain the aminoenone derivatives. The volatile content of Arinto wines was determined by GC/MS, after an HS-SPME extraction. Results showed significant differences among the AAs content and volatile profile in the Arinto wines. The higher AAs content was found in the Arinto wines fermented with the CY3079 yeast (470.74 mg•L-1), and the lowest content of AAs in the Arinto wines fermented with EC1118 yeast (343.06 mg•L-1). Native yeast results in wines with a volatile profile richer in esters compared to the other sample wines. Principal component analysis (PCA) obtained with combined data of AAs and volatile compounds, after normalization, for each Arinto wine samples, shows a clear separation of wines fermented with Native and CY3079 yeasts in relation to QA23 and EC1118 fermented wines . The first and second principal components are responsible for 44.40% and 32.20%, respectively, of the system's variance, which clearly showed a differentiation among wines.
Collapse
Affiliation(s)
- Catarina Pereira
- MED - Mediterranean Institute for Agriculture, Environment and Development. Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Davide Mendes
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Thomas Dias
- MED - Mediterranean Institute for Agriculture, Environment and Development. Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Raquel Garcia
- MED - Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal
| | - Marco Gomes da Silva
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria João Cabrita
- MED - Mediterranean Institute for Agriculture, Environment and Development, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra. Ap. 94, 7006-554 Évora, Portugal.
| |
Collapse
|