51
|
Strieder MM, Neves MIL, Belinato JR, Silva EK, Meireles MAA. Impact of thermosonication processing on the phytochemicals, fatty acid composition and volatile organic compounds of almond-based beverage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
52
|
PINTO DDS, SILVA SDS, FIGUEIREDO RWD, MENEZES FLD, CASTRO JSD, PIMENTA ATÁ, SANTOS JEDÁD, NASCIMENTO RFD, GABAN SVF. Production of healthy mixed vegetable beverage: antioxidant capacity, physicochemical and sensorial properties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.28121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
53
|
Eazhumalai G, Ranjitha Gracy TK, Mishra A, Annapure US. Atmospheric pressure nonthermal pin to plate plasma system for the microbial decontamination of oat milk. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gunaseelan Eazhumalai
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| | - T. K. Ranjitha Gracy
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| | - Anusha Mishra
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| | - Uday S. Annapure
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
- Institute of Chemical Technology Marathwada Campus Jalna India
| |
Collapse
|
54
|
Probiotic bacteria and plant-based matrices: An association with improved health-promoting features. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
55
|
Drewnowski A. Perspective: Identifying Ultra-Processed Plant-Based Milk Alternatives in the USDA Branded Food Products Database. Adv Nutr 2021; 12:2068-2075. [PMID: 34291276 PMCID: PMC8634539 DOI: 10.1093/advances/nmab089] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
This study explored the characteristics of plant-based beverages (PBBs) that are marketed as "milks" in the United States. First, machine searches of product names and ingredients in the USDA Branded Food Products Database (BFPDB) yielded 641 nondairy PBBs that included almond, soy, coconut, cashew, other tree nut, flax/hemp, pea, and quinoa and rice "milks." The products varied in energy density and the majority of PBBs contained added salt (69%) and added sugar (53%). Scores on nutrient density metrics [Nutri-Score, Choices, and the Nutrient Rich Food index 7.3 (NRF7.3)] were higher for almond and pea products and lower for coconut PBBs, which contained saturated fat. Ingredient lists were searched further for added flavors, stabilizers, or preservatives said to be characteristic of the NOVA food classification system's ultra-processed group. Most PBBs (90.1%) and 95% of almond milks met the NOVA criteria for ultra-processed foods, because they were created from food components and contained multiple substances not used in normal cooking. Replacing milk and dairy products with plant-based alternatives will necessarily involve the use of ultra-processed foods.
Collapse
Affiliation(s)
- Adam Drewnowski
- Center for Public Health Nutrition, University of Washington, Seattle, WA, USA
| |
Collapse
|
56
|
Vegan Alternatives to Processed Cheese and Yogurt Launched in the European Market during 2020: A Nutritional Challenge? Foods 2021; 10:foods10112782. [PMID: 34829064 PMCID: PMC8619069 DOI: 10.3390/foods10112782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 01/25/2023] Open
Abstract
Vegan alternatives to cheese (VAC) and yogurt (VAY) are fast-growing markets in Europe due to the increasing interest in plant-based alternatives to dairy products. This study aimed to take a closer look at the year 2020 and accordingly retrieved the nutritional information of dairy cheese and yogurt and their vegan counterparts for comparison. It was found that VAY (n = 182) provide more energy, total fats, and carbohydrates than dairy yogurt (n = 86), while saturated fatty acids (SFAs), sugars, and salt were not different between the two categories. Compared to dairy products (25.6%), 72.9% of the alternative products were declared low/no/reduced allergen, hence providing a larger spectrum of products to respond to consumers’ requirements. VAC (n = 114) showed high versatility of form compared to dairy (n = 115). Nutritionally, VAC have higher total fats, SFAs, and carbohydrates, but lower protein, salt, and sugar than dairy cheese. Food developers will continue to look for clean label solutions to improve the nutritional values of vegan products through the incorporation of natural ingredients, besides enhancing their taste and texture to appeal to flexitarians.
Collapse
|
57
|
Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing. PHOTONICS 2021. [DOI: 10.3390/photonics8110498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renewed technology has created a demand for foods which are natural in taste, minimally processed, and safe for consumption. Although thermal processing, such as pasteurization and sterilization, effectively limits pathogenic bacteria, it alters the aroma, flavor, and structural properties of milk and milk products. Nonthermal technologies have been used as an alternative to traditional thermal processing technology and have the ability to provide safe and healthy dairy products without affecting their nutritional composition and organoleptic properties. Other than nonthermal technologies, infrared spectroscopy is a nondestructive technique and may also be used for predicting the shelf life and microbial loads in milk. This review explains the role of pascalization or nonthermal techniques such as high-pressure processing (HPP), pulsed electric field (PEF), ultrasound (US), ultraviolet (UV), cold plasma treatment, membrane filtration, micro fluidization, and infrared spectroscopy in milk processing and preservation.
Collapse
|
58
|
Drewnowski A, Henry CJ, Dwyer JT. Proposed Nutrient Standards for Plant-Based Beverages Intended as Milk Alternatives. Front Nutr 2021; 8:761442. [PMID: 34746213 PMCID: PMC8564006 DOI: 10.3389/fnut.2021.761442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Plant-based beverages (PBB) that are marketed as alternatives to cow milk are gaining in popularity worldwide. Nutrient quality of PBB can be highly variable. Objective: To develop a set of voluntary or mandatory nutrient standards for the PBB product category in order to assist innovation and guide product development and reformulation. Methods: The present goal was to develop standards for PBB energy content, minimum protein content and quality, maximum content for added fat, sugar, and salt, and to suggest fortification levels for selected vitamins and minerals. The standards were based on dietary recommendations and guidelines and current practices of federal agencies in the US. Results: The proposed energy and nutrient content for PBB milk alternatives are maximum 85-100 kcal energy per 100 g; a minimum for 2.2/100 g of high-quality protein, low content of saturated fat (<0.75/100 g) and added sugar (5.3-6.25/100 g) and consistent fortification with calcium, vitamins A, D, B-2, and B-12 at levels comparable to those found in cow milk (1%). Ideally, the protein content ought to be increased (2.8/100 g) and added sugar content reduced even further (2.7-3.1/100 g) for "best of class" products. These proposed standards were applied to the 641 existing PBB products listed in the 2018 version of the USDA Branded Food Products Database (BFPDB). The standards were met by <5% of the PBB on the US market. Conclusion: Often viewed as equivalent to milk in nutritional value, many PBB are often low in protein and are fortified with varying amounts of calcium, and vitamins A and D. Nutrient standards for this category should be adopted by the food industry, by public health regulatory authorities, and by standardization bodies such as the Codex Alimentarius.
Collapse
Affiliation(s)
- Adam Drewnowski
- Center for Public Health Nutrition, University of Washington, Seattle, WA, United States
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Singapore, Singapore
| | - Johanna T. Dwyer
- Frances Stern Nutrition Center Tufts Medical Center and Jean Mayer USDA Human Nutrition Research Center on Aging, Department of Medicine, School of Medicine and Friedman School of Nutrition Science and Policy at Tufts University, Boston, MA, United States
| |
Collapse
|
59
|
Roobab U, Shabbir MA, Khan AW, Arshad RN, Bekhit AED, Zeng XA, Inam-Ur-Raheem M, Aadil RM. High-pressure treatments for better quality clean-label juices and beverages: Overview and advances. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111828] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
60
|
Effect of high-pressure processing to improve the safety and quality of an Quercus acorn beverage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
61
|
Patra T, Rinnan Å, Olsen K. The physical stability of plant-based drinks and the analysis methods thereof. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
62
|
Abstract
Maize, together with its fermented products, is fundamental for human nutrition and animal feed globally. Non-alcoholic fermentation of maize using lactic acid bacteria (LAB) is one of the food preservation methods that has been utilised throughout the centuries and has played a vital role in the manufacturing of many fermented beverages consumed these days. However, the coincidence of LAB and yeasts during the spontaneous fermentation of maize-based products is inevitable. The involvement of other microorganisms such as moulds, Bacillus species and acetic acid bacteria in the fermentation of maize is important to the characteristics of the final product. Fermented beverages are affordable, have been produced traditionally and are known for their organoleptic properties, as well as their health-promoting compounds. The consumption of non-alcoholic beverages has the prospect of reducing the detrimental health and economic effects of a poor diet. Different fermented maize-based gruels and beverages such as ogi, mawe, banku and kenkey in West Africa, togwa in East Africa, as well as mahewu in South Africa have been documented. The physical and biochemical properties of most of these maize-based fermented products have been investigated and modified by various researchers. Attempts to enhance the nutritional properties of these products rely on supplementation with legumes to supply the insufficient amino acids. The production technology of these products has evolved from traditional to industrial production in recent years.
Collapse
|
63
|
Penha CB, Santos VDP, Speranza P, Kurozawa LE. Plant-based beverages: Ecofriendly technologies in the production process. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
64
|
An Overview on Nutritional Aspects of Plant-Based Beverages Used as Substitutes for Cow's Milk. Nutrients 2021; 13:nu13082650. [PMID: 34444815 PMCID: PMC8399839 DOI: 10.3390/nu13082650] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/09/2023] Open
Abstract
The presence of milk in meals and products consumed daily is common and at the same time the adoption of a milk-free diet increases due to milk allergy, lactose intolerance, vegan diets, and others. Therefore, there is an increasing demand for plant-based beverages, which present variable and, sometimes, unknown nutritional characteristics. This study sought to compare the nutritional aspects of plant-based beverages used as substitutes for cow’s milk described in scientific studies. Therefore, we used a review of the scientific literature on PubMed, Google Scholar, Scopus, Web of Science, Google Patents, Embase, and ScienceDirect databases. The inclusion criteria were scientific studies referring to plant-based beverage used as an alternative to cow’s milk; published in the English language; present data on the serving size, ingredients, and nutritional composition, containing at least data on energy and macronutrients of plant-based beverages. Ingredients and data on energy, macronutrients, and, if available, dietary fiber and some micronutrients of plant-based beverages were collected. Data were obtained from 122 beverages of 22 different matrices, with soy being the most used (27.87%, n = 34). The variation in the amount of nutrients found was 6–183 Kcal/100 mL for energy value; 0.00–22.29 g/100 mL for carbohydrate; 0.06–12.43 g/100 mL for protein; 0.00–19.00 g/100 mL for lipid; 0.00–4.40 g/100 mL for dietary fiber; 0.00–1252.94 mg/100 mL for calcium; 0.04–1.40 mg/100 mL for iron; 0.84–10,178.60 mg/100 mL for magnesium; 0.00–343.43 mg/100 mL for sodium. Salt was the most commonly found added ingredient in plant-based beverages. Some beverages have reached certain amounts of cow’s milk nutrients. However, studies have pointed out differences in their qualities/types. Thus, attention is needed when replacing milk with these alternatives.
Collapse
|
65
|
Strieder MM, Landim Neves MI, Silva EK, Meireles MAA. Impact of thermosonication pretreatment on the production of plant protein-based natural blue colorants. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
66
|
Barriers to consumption of plant-based beverages: A comparison of product users and non-users on emotional, conceptual, situational, conative and psychographic variables. Food Res Int 2021; 144:110363. [PMID: 34053556 DOI: 10.1016/j.foodres.2021.110363] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 12/21/2022]
Abstract
Production and consumption practices that reduce the environmental burden of eating and drinking and promote global sustainability are of paramount interest. Against this background, we present a quantitative study of US adults' perceptions of selected non-alcoholic beverages including pairs of regular and plant-based alternatives (iced coffee/iced coffee with almond milk, fruit smoothie/fruit smoothie with soy milk and cow's milk/oat milk). Particular focus was directed to comparing product perceptions of consumers who never consumed these plant-based alternatives with those who did (n = 249 and n = 274), as a means for contextualising the barriers that hinder uptake among non-users. The data were collected via an online survey with a multi-response empirical strategy where the beverages were characterised using a large set of emotional, conceptual, situational, and attitudinal/behavioural variables. Fitting expectations, negative associations were dominant in the group of consumers who never consumed the plant-based beverage variants. However, these associations were product dependent and decreased in the order: oat milk, fruit smoothie with soy milk and iced coffee with almond milk. This pointed to a likely interplay of sensory properties, situational appropriateness and household routines. Food neophobia negatively influenced perceptions of less familiar products, including but not limited to plant-based beverages. While the research was limited to a small number of beverages and plant-based alternatives, it identified the important role that in-depth and product-specific investigations have in helping to uncover and overcome barriers to sustainable eating and drinking solutions.
Collapse
|
67
|
Vogelsang-O’Dwyer M, Zannini E, Arendt EK. Production of pulse protein ingredients and their application in plant-based milk alternatives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
68
|
Galanakis CM, Rizou M, Aldawoud TM, Ucak I, Rowan NJ. Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era. Trends Food Sci Technol 2021; 110:193-200. [PMID: 36567851 PMCID: PMC9759022 DOI: 10.1016/j.tifs.2021.02.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
Background COVID-19 pandemic has caused a global lockdown that has abruptly shut down core businesses and caused a worldwide recession. The forecast for a smooth transition for the agri-food and drink industry is, at best, alarming. Given that COVID-19 shutdown multiple core services (such as aviation, food services, supply chains, and export and import markets), there is an enormous deficiency in critical information to inform priority decision making for companies where this uncertainly is likely to impact negatively upon recovery. Scope and approach The current article investigates potential innovations within the era of the COVID-19 crisis after framing them within the four issues of the food sector (food safety, bioactive food compounds, food security, and sustainability) that are directly affected by the pandemic. The prospect of foreseen innovations to disrupt the food sector during lockdown periods and the post-COVID-19 era is also discussed. Key findings and conclusions Internet and Communication Technologies, blockchain in the food supply chain and other Industry 4.0 applications, as well as approaches that redefine the way we consume food (e.g., lab-grown meat, plant-based alternatives of meat, and valorization of a vast range of bioresources), are the innovations with the highest potential in the new era. There is also an equally pressing need to exploit social marketing to understand attitudes, perceptions, and barriers that influence the behavior change of consumers and the agri-food industry. Subsequently, this change will contribute to adapting to new norms forged by the COVID-19 pandemic, where there is a significant gap in knowledge for decision making.
Collapse
Affiliation(s)
- Charis M. Galanakis
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece,College of Science, King Saud University, Riyadh, Saudi Arabia,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria,Corresponding author. Research & Innovation Department, Galanakis Laboratories, Chania, Greece
| | - Myrto Rizou
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece
| | | | - Ilknur Ucak
- Nigde Omer Halisdemir University, Faculty of Agricultural Sciences and Technologies, Nigde, Turkey
| | - Neil J. Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Ireland,Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
69
|
Fang S, Liu S, Song J, Huang Q, Xiang Z. Recognition of pathogens in food matrixes based on the untargeted in vivo microbial metabolite profiling via a novel SPME/GC × GC-QTOFMS approach. Food Res Int 2021; 142:110213. [PMID: 33773687 DOI: 10.1016/j.foodres.2021.110213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Foodborne diseases incurred by pathogenic bacteria are one of the major threats in food safety, and thus it is important to develop facile and effective recognition methodology of pathogens in food. Herein, a new automatic approach for detection of in vivo volatile metabolites emitted from foodborne pathogens was proposed by coupling solid phase microextraction (SPME) technique with a comprehensive two-dimensional gas chromatography quadrupole time-of-flight mass spectrometry (GC × GC-QTOFMS). A novel polymer composite based SPME probe which possessed high-coverage of microbial metabolites was utilized in this contribution to realize the sensitive extraction of untargeted metabolites. As a result, a total of 126 in vivo metabolites generated by the investigated pathogens were detected and identified, with 33, 29, 25, 21 and 18 volatile metabolites belonging to Shigella sonnei, Escherichia coli, Salmonella typhimurium, Vibrio parahaemolyticus and Staphylococcus aureus, respectively. Multivariate statistical analyses were applied for further analysis of metabolic data and separation of responsive metabolic features among different microbial systems were found, which were also successfully verified in foodstuffs contaminated by microorganisms. The growth trend of the potential volatile markers of each pathogen in food samples kept consistent with that of the pure strain incubated in medium during the whole incubation time. This study promotes the application of SPME technology in microbial volatile metabolomics and contributes to the development of new approaches for foodborne pathogens recognition.
Collapse
Affiliation(s)
- Shuting Fang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuqin Liu
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Juyi Song
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550001, China
| | - Qihong Huang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Zhangmin Xiang
- Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences(China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
70
|
Bartkiene E, Bartkevics V, Pugajeva I, Borisova A, Zokaityte E, Lele V, Starkute V, Zavistanaviciute P, Klupsaite D, Zadeike D, Juodeikiene G. The Quality of Wheat Bread With Ultrasonicated and Fermented By-Products From Plant Drinks Production. Front Microbiol 2021; 12:652548. [PMID: 33815341 PMCID: PMC8009971 DOI: 10.3389/fmicb.2021.652548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 01/28/2023] Open
Abstract
During plant-based drinks production a significant amount of valuable by-products (BPs) is obtained. The valorization of BPs is beneficial for both the environment and the food industry. The direct incorporation of the fermented and/or ultrasonicated almond, coconut, and oat drinks production BPs in other food products, such as wheat bread (WB) could lead to the better nutritional value as well as quality of WB. Therefore, in this study, various quantities (5, 10, 15, and 20%) of differently treated [ultrasonicated (37 kHz) or fermented with Lacticaseibacillus casei LUHS210] almond, coconut, and oat drinks preparation BPs were used in wheat bread (WB) formulations. Microbiological and other quality parameters (acidity, color, specific volume, porosity, moisture content, overall acceptability) as well as bread texture hardness during the storage and acrylamide content in the WB were evaluated. Among the fermented samples, 12-h-fermented almond and oat, as well as 24-h-fermented coconut drinks preparation BPs (pH values of 2.94, 2.41, and 4.50, respectively; total enterobacteria and mold/yeast were not found) were selected for WB production. In most cases, the dough and bread quality parameters were significantly (p ≤ 0.05) influenced by the BPs used, the treatment of the BPs, and the quantity of the BPs. The highest overall acceptability of the WB prepared with 20% fermented almond drink preparation by-product (AP), 15% fermented oat drink preparation by-product (OP), and 15% ultrasonicated OP was established. After 96 h of storage, the lowest hardness (on average, 1.2 mJ) of the breads prepared with 5% fermented AP, coconut drink preparation by-product (CP), and OP and ultrasonicated CP was found. The lowest content of acrylamide in the WB prepared with OP was found (on average, 14.7 μg/kg). Finally, 15% fermented OP could be safely used for WB preparation because the prepared bread showed high overall acceptability, as well as low acrylamide content.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Centre of Food Chemistry, University of Latvia, Riga, Latvia.,Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Anastasija Borisova
- Institute of Food Safety, Animal Health and Environment "BIOR," Riga, Latvia
| | - Egle Zokaityte
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vita Lele
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulina Zavistanaviciute
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daiva Zadeike
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| | - Grazina Juodeikiene
- Department of Food Science and Technology, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
71
|
Pontonio E, Rizzello CG. Milk Alternatives and Non-Dairy Fermented Products: Trends and Challenges. Foods 2021; 10:foods10020222. [PMID: 33494460 PMCID: PMC7911977 DOI: 10.3390/foods10020222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/14/2023] Open
Affiliation(s)
- Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Giovanni Amendola 165/A, 70126 Bari, Italy
- Correspondence: ; Tel.: +39-080-5442945
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
72
|
Martínez-Padilla E, Li K, Blok Frandsen H, Skejovic Joehnke M, Vargas-Bello-Pérez E, Lykke Petersen I. In Vitro Protein Digestibility and Fatty Acid Profile of Commercial Plant-Based Milk Alternatives. Foods 2020; 9:E1784. [PMID: 33271952 PMCID: PMC7760957 DOI: 10.3390/foods9121784] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Plant-based milk alternatives (PBMA) are a new popular food trend among consumers in Europe and North America. The forecast shows that PBMA will double their value by 2023. The objective of this study was to analyze the nutritional value of commercial products in terms of their fatty acid profile and protein digestibility from commercial PBMA. Eight commercially available PBMA were selected for fatty acid analysis, performed with gas chromatography of methylated fatty acids (GC-FAME), and, from these, four commercial products (almond drink, hemp drink, oat drink, and soy drink) were selected for a short-term in vitro protein digestibility (IVPD) analysis. The fatty acid analysis results showed that most of the products predominantly contained oleic acid (C18:1 ω-9) and linoleic acid (C18:2 ω-6). Hemp drink contained the highest omega-6/omega-3 (ω6/ω3) ratio among all tested products (3.43). Oat drink and almond drink were the PBMA with the highest short-term protein digestibility, non-significantly different from cow's milk, while soy drink showed the lowest value of protein digestibility. In conclusion, PBMA showed a significant variability depending on the plant source, both in terms of fatty acid composition and protein digestibility. These results provide more in-depth nutritional information, for future product development, and for consumer's choice.
Collapse
Affiliation(s)
- Eliana Martínez-Padilla
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
| | - Kexin Li
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
| | - Heidi Blok Frandsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
- SiccaDania, Pilehøj 18, DK-3460 Birkerød, Denmark
| | - Marcel Skejovic Joehnke
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark;
| | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark; (E.M.-P.); (K.L.); (H.B.F.); (M.S.J.)
| |
Collapse
|
73
|
Leialohilani A, de Boer A. EU food legislation impacts innovation in the area of plant-based dairy alternatives. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
74
|
Dimitrellou D, Solomakou N, Kokkinomagoulos E, Kandylis P. Yogurts Supplemented with Juices from Grapes and Berries. Foods 2020; 9:foods9091158. [PMID: 32825783 PMCID: PMC7555734 DOI: 10.3390/foods9091158] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Nowadays, there is growing interest for the development of enriched dairy products with phenolic compounds derived from edible sources, mainly due to their safety and potential health benefits. Following that trend, in the present study, fruit juices (blueberry, aronia, and grape) were supplemented into yogurt as functional ingredients. The main physicochemical characteristics (pH, reducing sugars, acidity, color, and syneresis), total phenolic content, antioxidant activity, and viability of yogurt starters were monitored during production and storage. The use of juices had no significant effect on milk acidification rate and on the main physicochemical characteristics of yogurts, while resulted in increased red color. Total phenolic content increased from 30 to 33% (grape and aronia) and up to 49% (blueberry), while similar results were observed in antioxidant activity. Similar values of syneresis were presented in all yogurts, probably due to exopolysaccharide producing starter culture. Streptococcus thermophilus retained high viable counts during storage especially in yogurts with fruit juices (>108 cells g−1) revealing a possible prebiotic effect of juices. The results obtained from this study show that fruit juices (aronia, blueberry, and grape) have potential to be used in yogurt production in order to optimize the benefits of probiotic products with high phenolic compound intake.
Collapse
|
75
|
Ignat MV, Salanță LC, Pop OL, Pop CR, Tofană M, Mudura E, Coldea TE, Borșa A, Pasqualone A. Current Functionality and Potential Improvements of Non-Alcoholic Fermented Cereal Beverages. Foods 2020; 9:E1031. [PMID: 32752167 PMCID: PMC7466267 DOI: 10.3390/foods9081031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Fermentation continues to be the most common biotechnological tool to be used in cereal-based beverages, as it is relatively simple and economical. Fermented beverages hold a long tradition and have become known for their sensory and health-promoting attributes. Considering the attractive sensory traits and due to increased consumer awareness of the importance of healthy nutrition, the market for functional, natural, and non-alcoholic beverages is steadily increasing all over the world. This paper outlines the current achievements and technological development employed to enhance the qualitative and nutritional status of non-alcoholic fermented cereal beverages (NFCBs). Following an in-depth review of various scientific publications, current production methods are discussed as having the potential to enhance the functional properties of NFCBs and their safety, as a promising approach to help consumers in their efforts to improve their nutrition and health status. Moreover, key aspects concerning production techniques, fermentation methods, and the nutritional value of NFCBs are highlighted, together with their potential health benefits and current consumption trends. Further research efforts are required in the segment of traditional fermented cereal beverages to identify new potentially probiotic microorganisms and starter cultures, novel ingredients as fermentation substrates, and to finally elucidate the contributions of microorganisms and enzymes in the fermentation process.
Collapse
Affiliation(s)
- Maria Valentina Ignat
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.V.I.); (E.M.); (T.E.C.); (A.B.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.R.P.); (M.T.)
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.R.P.); (M.T.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.R.P.); (M.T.)
| | - Maria Tofană
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (O.L.P.); (C.R.P.); (M.T.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.V.I.); (E.M.); (T.E.C.); (A.B.)
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.V.I.); (E.M.); (T.E.C.); (A.B.)
| | - Andrei Borșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.V.I.); (E.M.); (T.E.C.); (A.B.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| |
Collapse
|
76
|
Mesa J, Hinestroza-Córdoba LI, Barrera C, Seguí L, Betoret E, Betoret N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020; 25:E3305. [PMID: 32708208 PMCID: PMC7397014 DOI: 10.3390/molecules25143305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022] Open
Abstract
Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade.
Collapse
Affiliation(s)
- José Mesa
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Leidy Indira Hinestroza-Córdoba
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
- Grupo de Valoración y Aprovechamiento de la Biodiversidad, Universidad Tecnológica del Chocó. AA.292, Calle 22 No. 18B-10, Quibdó-Chocó CP 270001, Colombia
| | - Cristina Barrera
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Lucía Seguí
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Spain
| | - Noelia Betoret
- Institute of Food Engineering for Development, Universitat Politècnica de València, CP 46022 València, Spain; (J.M.); (L.I.H.-C.); (C.B.); (L.S.)
| |
Collapse
|
77
|
Dias S, Castanheira EMS, Fortes AG, Pereira DM, Gonçalves MST. Natural Pigments of Anthocyanin and Betalain for Coloring Soy-Based Yogurt Alternative. Foods 2020; 9:E771. [PMID: 32545265 PMCID: PMC7353562 DOI: 10.3390/foods9060771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this work was to evaluate the color stability of betalain- and anthocyanin-rich extracts in yogurt-like fermented soy, in order to develop a preliminary understanding of how these pigments behave in this type of food system during storage for 21 days at 4 °C. Thus, the extracts of red beetroot, opuntia, hibiscus and red radish were integrated into the yogurt-like fermented soy in two different ways-directly after lyophilization, and encapsulated in nanosystems based in soybean lecithin-as this approach has never been used to further increase the value and potential of the dairy-free alternatives of yogurt-like fermented soy. The results showed that non-encapsulated betalain-rich extracts from red radish are the most promising for coloring yogurt-like fermented soy. However, encapsulated opuntia extracts can also be an alternative to supplement the soy fermented beverages with betalains, without changing significantly the color of the system but giving all its health benefits, due to the protection of the pigments by nanoencapsulation.
Collapse
Affiliation(s)
- Sandra Dias
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (S.D.); (A.G.F.)
| | | | - A. Gil Fortes
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (S.D.); (A.G.F.)
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (S.D.); (A.G.F.)
| |
Collapse
|
78
|
Angelino D, Rosi A, Vici G, Dello Russo M, Pellegrini N, Martini D. Nutritional Quality of Plant-Based Drinks Sold in Italy: The Food Labelling of Italian Products (FLIP) Study. Foods 2020; 9:E682. [PMID: 32466295 PMCID: PMC7278734 DOI: 10.3390/foods9050682] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
Plant-based drinks represent a heterogeneous class of beverages, made from several vegetal sources, with a market rapidly expanding around the world. These beverages are mainly drunk in the replacement of milk. Thus, aims of the present study were to: (i) evaluate the nutritional declaration of 330 plant-based drinks currently available on the Italian market; (ii) compare their nutrition facts based on type, presence or not of organic certification and nutrition (NC) or health claims (HC), and of specific claims ("no added sugars" and "source of calcium"); (iii) compare their nutrition composition with cow's milk. A high variability in terms of nutrient profile among products was observed. Limited difference was found between products belonging to both organic and NC categories, while products carrying HC showed lower energy, carbohydrates, sugar, and higher protein contents than the related counterparts. Compared to cow's milk, plant-based drinks showed differences in terms of nutrient profile, mostly regarding the lower protein content (except for soy drinks). Overall, due to the variability, findings from the present survey show that plant-based drinks sold in Italy cannot be considered tout court as milk substitutes and support the importance of improving knowledge towards food labeling to make conscious food choices.
Collapse
Affiliation(s)
- Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Alice Rosi
- Department of Food and Drug, University of Parma, 43100 Parma, Italy;
| | - Giorgia Vici
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Marika Dello Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy;
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20122 Milan, Italy;
| | | |
Collapse
|