51
|
Nanishi K, Konishi H, Shoda K, Arita T, Kosuga T, Komatsu S, Shiozaki A, Kubota T, Fujiwara H, Okamoto K, Ichikawa D, Otsuji E. Circulating circERBB2 as a potential prognostic biomarker for gastric cancer: An investigative study. Cancer Sci 2020; 111:4177-4186. [PMID: 32896032 PMCID: PMC7648027 DOI: 10.1111/cas.14645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/23/2020] [Accepted: 08/30/2020] [Indexed: 01/15/2023] Open
Abstract
Circular RNA is a novel endogenous non‐coding RNA that can serve as a biomarker because of its stable loop structure. We investigated and examined the utility of plasma circERBB2 as a prognostic biomarker in 70 patients with gastric cancer who underwent gastrectomy. We investigated by real‐time quantitative PCR the circERBB2 concentrations in the preoperative and postoperative plasma and the circERBB2 expression in the resected tumors. The relationships between circERBB2 concentration in plasma and the clinicopathological features and prognosis were analyzed. circERBB2 was detected in the preoperative plasma samples of 37 patients. The presence of circERBB2 in preoperative plasma (high group) was significantly correlated with lymph node metastasis (P = .035) and tended to be correlated with men (P = .069). Both relapse‐free and overall survival were significantly poor in the high group (P = .001 and P = .009, respectively). The Cox proportional‐hazard model revealed that the high group was an independent prognostic factor of relapse‐free survival (P = .038). Among 16 patients of the high group, 13 patients did not show circERBB2 in the postoperative plasma. The concentration of circERBB2 in plasma was significantly higher in patients with recurrent cancer than those recurrence‐free patients (P < .001). In 2 patients with recurrent cancer, plasma circERBB2 concentrations were increased, whereas, in 2 recurrence‐free patients, these concentrations hardly changed during the treatment progress. The circERBB2 concentrations in preoperative plasma samples can be considered as a noninvasive prognostic biomarker for gastric cancer. Furthermore, monitoring the postoperative plasma circERBB2 concentrations may be useful for detecting gastric cancer recurrences.
Collapse
Affiliation(s)
- Kenji Nanishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Ichikawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
52
|
Epitranscriptomics in Normal and Malignant Hematopoiesis. Int J Mol Sci 2020; 21:ijms21186578. [PMID: 32916783 PMCID: PMC7555315 DOI: 10.3390/ijms21186578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Epitranscriptomics analyze the biochemical modifications borne by RNA and their downstream influence. From this point of view, epitranscriptomics represent a new layer for the control of genetic information and can affect a variety of molecular processes including the cell cycle and the differentiation. In physiological conditions, hematopoiesis is a tightly regulated process that produces differentiated blood cells starting from hematopoietic stem cells. Alteration of this process can occur at different levels in the pathway that leads from the genetic information to the phenotypic manifestation producing malignant hematopoiesis. This review focuses on the role of epitranscriptomic events that are known to be implicated in normal and malignant hematopoiesis, opening a new pathophysiological and therapeutic scenario. Moreover, an evolutionary vision of this mechanism will be provided.
Collapse
|
53
|
Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020; 5:193. [PMID: 32900991 PMCID: PMC7479143 DOI: 10.1038/s41392-020-00300-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial–mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Huibin Song
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Dongcheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhuoxun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA
| | - Pan Zhao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China. .,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
54
|
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, Springer NA, Brown JA. Naturally occurring modified ribonucleosides. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1595. [PMID: 32301288 PMCID: PMC7694415 DOI: 10.1002/wrna.1595] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
The chemical identity of RNA molecules beyond the four standard ribonucleosides has fascinated scientists since pseudouridine was characterized as the "fifth" ribonucleotide in 1951. Since then, the ever-increasing number and complexity of modified ribonucleosides have been found in viruses and throughout all three domains of life. Such modifications can be as simple as methylations, hydroxylations, or thiolations, complex as ring closures, glycosylations, acylations, or aminoacylations, or unusual as the incorporation of selenium. While initially found in transfer and ribosomal RNAs, modifications also exist in messenger RNAs and noncoding RNAs. Modifications have profound cellular outcomes at various levels, such as altering RNA structure or being essential for cell survival or organism viability. The aberrant presence or absence of RNA modifications can lead to human disease, ranging from cancer to various metabolic and developmental illnesses such as Hoyeraal-Hreidarsson syndrome, Bowen-Conradi syndrome, or Williams-Beuren syndrome. In this review article, we summarize the characterization of all 143 currently known modified ribonucleosides by describing their taxonomic distributions, the enzymes that generate the modifications, and any implications in cellular processes, RNA structure, and disease. We also highlight areas of active research, such as specific RNAs that contain a particular type of modification as well as methodologies used to identify novel RNA modifications. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Phillip J. McCown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Agnieszka Ruszkowska
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
- Present address:
Institute of Bioorganic ChemistryPolish Academy of SciencesPoznanPoland
| | - Charlotte N. Kunkler
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Kurtis Breger
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jacob P. Hulewicz
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew C. Wang
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Noah A. Springer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jessica A. Brown
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
55
|
Thuy-Boun AS, Thomas JM, Grajo HL, Palumbo CM, Park S, Nguyen LT, Fisher AJ, Beal PA. Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Res 2020; 48:7958-7972. [PMID: 32597966 PMCID: PMC7641318 DOI: 10.1093/nar/gkaa532] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine to inosine in duplex RNA, a modification that exhibits a multitude of effects on RNA structure and function. Recent studies have identified ADAR1 as a potential cancer therapeutic target. ADARs are also important in the development of directed RNA editing therapeutics. A comprehensive understanding of the molecular mechanism of the ADAR reaction will advance efforts to develop ADAR inhibitors and new tools for directed RNA editing. Here we report the X-ray crystal structure of a fragment of human ADAR2 comprising its deaminase domain and double stranded RNA binding domain 2 (dsRBD2) bound to an RNA duplex as an asymmetric homodimer. We identified a highly conserved ADAR dimerization interface and validated the importance of these sequence elements on dimer formation via gel mobility shift assays and size exclusion chromatography. We also show that mutation in the dimerization interface inhibits editing in an RNA substrate-dependent manner for both ADAR1 and ADAR2.
Collapse
Affiliation(s)
| | - Justin M Thomas
- Department of Chemistry, University of California, Davis, CA, USA
| | - Herra L Grajo
- Department of Chemistry, University of California, Davis, CA, USA
| | - Cody M Palumbo
- Department of Chemistry, University of California, Davis, CA, USA
| | - SeHee Park
- Department of Chemistry, University of California, Davis, CA, USA
| | - Luan T Nguyen
- Department of Chemistry, University of California, Davis, CA, USA
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, CA, USA
| |
Collapse
|
56
|
Liao Y, Jung SH, Kim T. A-to-I RNA editing as a tuner of noncoding RNAs in cancer. Cancer Lett 2020; 494:88-93. [PMID: 32822814 DOI: 10.1016/j.canlet.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/11/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Recent advancement in RNA technology and computation biology shows the abundance and impact of RNA editing at the genome-wide level. Of RNA editing events, Adenosine-to-inosine (A-to-I) RNA editing is one of the most frequent types of RNA editing catalyzed by ADAR proteins. Indeed, A-to-I RNA editing occurs at the various coding and noncoding regions, triggering abnormal signaling pathways involved in cancer pathogenesis. Noncoding RNAs such as microRNA and long noncoding RNA have emerged as key regulators of pathways in cancer. The RNA editing including A-to-I editing is enriched in noncoding regions because of the abundance of noncoding RNAs accounting for 99% of total transcripts in the human genome. The effects of A-to-I editing in coding genes have been investigated and reported. However, those in noncoding RNAs have been less known in spite of the high frequency of editing events in noncoding regions. In this review, we will briefly discuss current findings and potential directions of A-to-I RNA editing research of noncoding RNAs and cancer. We will also introduce the concept of A-to-I editing, ADAR proteins, RNA editing technologies and databases.
Collapse
Affiliation(s)
- Yuanfan Liao
- Department of Anatomy, Histology and Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University, Health Science Center, Shenzhen, 518055, China
| | - Seung Ho Jung
- Applied Neuroscience, Warfighter Interface Division, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, 45433, USA; ORISE, Oak Ridge, TN, 37830, USA.
| | - Taewan Kim
- Department of Anatomy, Histology and Developmental Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University, Health Science Center, Shenzhen, 518055, China; The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
57
|
Nguyen TM, Alchalabi S, Oluwatoyosi A, Ropri AS, Herschkowitz JI, Rosen JM. New twists on long noncoding RNAs: from mobile elements to motile cancer cells. RNA Biol 2020; 17:1535-1549. [PMID: 32522127 DOI: 10.1080/15476286.2020.1760535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this review is to highlight several areas of lncRNA biology and cancer that we hope will provide some new insights for future research. These include the relationship of lncRNAs and the epithelial to mesenchymal transition (EMT) with a focus on transcriptional and alternative splicing mechanisms and mRNA stability through miRNAs. In addition, we highlight the potential role of enhancer e-lncRNAs, the importance of transposable elements in lncRNA biology, and finally the emerging area of using antisense oligonucleotides (ASOs) and small molecules to target lncRNAs and their therapeutic implications.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School , Boston, MA, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Sumayya Alchalabi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Adewunmi Oluwatoyosi
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| | - Ali S Ropri
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jeffrey M Rosen
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
58
|
Behroozi J, Shahbazi S, Bakhtiarizadeh MR, Mahmoodzadeh H. ADAR expression and copy number variation in patients with advanced gastric cancer. BMC Gastroenterol 2020; 20:152. [PMID: 32410589 PMCID: PMC7227226 DOI: 10.1186/s12876-020-01299-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Gastric cancer (GC) is a world health problem and it is the third leading cause of cancer deaths worldwide. The current practice for prognosis assessment in GC is based on radiological and pathological criteria and they may not result in an accurate prognosis. The aim of this study is to evaluate expression and copy number variation of the ADAR gene in advanced GC and clarify its correlation with survival and histopathological characteristics. Methods Forty two patients with stage III and IV GC were included in this study. ADAR gene expression and copy number variation were measured by real-time PCR and Quantitative multiplex fluorescent-PCR, respectively. Survival analysis performed based on the Kaplan–Meier method and Mantel–Cox test. Results ADAR mRNA was significantly overexpressed in the tumor tissues when compared to the adjacent normal tissues (p < 0.01). Also, ADAR expression level in stage IV was higher than stage III. 40% of patients showed amplification in ADAR gene and there was a positive correlation between ADAR copy number and expression. Increased ADAR expression was clearly correlated with poorer survival outcomes and Mantel–Cox test showed statistically significant differences between low and high expression groups (p < 0.0001). ADAR overexpression and amplification were significantly associated with metastasis, size and stage of tumor. Conclusions Together, our data indicate that amplification leads to over expression of ADAR and it could be used as a prognostic biomarker for disease progression, especially for the metastatic process in GC.
Collapse
Affiliation(s)
- Javad Behroozi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Habibollah Mahmoodzadeh
- Department of Surgical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
59
|
Gu T, Fu AQ, Bolt MJ, Zhao X. Systematic identification of A-to-I editing associated regulators from multiple human cancers. Comput Biol Med 2020; 119:103690. [PMID: 32339124 DOI: 10.1016/j.compbiomed.2020.103690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/11/2020] [Accepted: 02/29/2020] [Indexed: 11/18/2022]
Abstract
A-to-I editing is the most common editing type in humans that is catalyzed by ADAR family members (ADARs), ADAR1 and ADAR2. Although millions of A-to-I editing sites have recently been discovered, the regulation mechanisms of the RNA editing process are still not clear. Herein, we developed a two-step logistic regression model to identify genes that are potentially involved in the RNA editing process in four human cancers. In the first step, we tested the association of each editing site with known enzymes. To validate the logistic regression model, we collected 10 genes with 168 editing sites from multiple published studies and obtained a nearly 100% validation rate. ADAR1 was identified as the enzyme associated with the majority of the A-to-I editing sites. Thus, ADAR1 was taken as a control gene in the second step to identify genes that have a stronger regulation effect on editing sites than ADAR1. Using our advanced method, we successfully found a set of genes that were significantly positively or negatively associated (PA or NA) with specific sets of RNA editing sites. 51 of these genes had been reported in at least one previous study. We highlighted two genes: 1), SRSF5, supported by three previous studies, and 2) MIR22HG, supported by one previous study and two of our cancer datasets. The PA and NA genes were cancer-specific but shared common pathways. Interestingly, the PA genes from kidney cancer were enriched for survival-associated genes while the NA genes were not, indicating that the PA genes may play more important roles in kidney cancer progression.
Collapse
Affiliation(s)
- Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA.
| | - Audrey Qiuyan Fu
- Department of Statistical Science, Institute of Bioinformatics and Evolutionary Studies, Institute for Modeling Collaboration & Innovation, University of Idaho, Moscow, ID, USA
| | - Michael J Bolt
- Institute for Genomics and Systems Biology, Institute for Molecular Engineering, Department of Human Genetics, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Xiwu Zhao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
60
|
Cao S, Rogers J, Yeo J, Anderson-Steele B, Ashby J, David SS. 2'-Fluorinated Hydantoins as Chemical Biology Tools for Base Excision Repair Glycosylases. ACS Chem Biol 2020; 15:915-924. [PMID: 32069022 DOI: 10.1021/acschembio.9b00923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The guanine oxidation products, 5-guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), are mutagenic and toxic base lesions that are removed by Fpg, Nei, and the Nei-like (NEIL) glycosylases as the first step in base excision repair (BER). The hydantoins are excellent substrates for the NEIL glycosylases in a variety of DNA contexts beyond canonical duplex DNA, implicating the potential impact of repair activity on a multitude of cellular processes. In order to prepare stable derivatives as chemical biology tools, oligonucleotides containing fluorine at the 2'-position of the sugar of 8-oxo-7,8-dihydro-2'-deoxyguanosine2'-F-OG) were synthesized in ribo and arabino configuration. Selective oxidation of 2'-F-OG within a DNA oligonucleotide provided the corresponding 2'-F-Gh or 2'-F-Sp containing DNA. The 2'-F-hydantoins in duplex DNA were found to be highly resistant to the glycosylase activity of Fpg and NEIL1 compared to the unmodified lesion substrates. Surprisingly, however, some glycosylase-mediated base removal from both the 2'-F-ribo- and 2'-F-arabinohydantoin duplex DNA was observed. Notably, the associated β-lyase strand scission reaction of the 2'-F-arabinohydantoins was inhibited such that the glycosylases were "stalled" at the Schiff-base intermediate. Fpg and NEIL1 showed high affinity for the 2'-F-Gh duplexes in both ribo and arabino configurations. However, binding affinity assessed using catalytically inactive variants of Fpg and NEIL1 indicated higher affinity for the 2'-F-riboGh-containing duplexes. The distinct features of glycosylase processing of 2'-F-ribohydantoins and 2'-F-arabinohydantoins illustrate their utility to reveal structural insight into damage recognition and excision by NEIL and related glycosylases and provide opportunities for delineating the impact of lesion formation and repair in cells.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - JohnPatrick Rogers
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jongchan Yeo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Brittany Anderson-Steele
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jonathan Ashby
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sheila S. David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
61
|
Yang X, Liu M, Li M, Zhang S, Hiju H, Sun J, Mao Z, Zheng M, Feng B. Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Mol Cancer 2020; 19:64. [PMID: 32209098 PMCID: PMC7092482 DOI: 10.1186/s12943-020-01159-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Empowered by recent advances of sequencing techniques, transcriptome-wide studies have characterized over 150 different types of post-transcriptional chemical modifications of RNA, ranging from methylations of single base to complex installing reactions catalyzed by coordinated actions of multiple modification enzymes. These modifications have been shown to regulate the function and fate of RNAs and further affecting various cellular events. However, the current understanding of their biological functions in human diseases, especially in cancers, is still limited. Once regarded as “junk” or “noise” of the transcriptome, noncoding RNA (ncRNA) has been proved to be involved in a plethora of cellular signaling pathways especially those regulating cancer initiation and progression. Accumulating evidence has demonstrated that ncRNAs manipulate multiple phenotypes of cancer cells including proliferation, metastasis and chemoresistance and may become promising biomarkers and targets for diagnosis and treatment of cancer. Importantly, recent studies have mapped plenty of modified residues in ncRNA transcripts, indicating the existence of epigenetic modulation of ncRNAs and the potential effects of RNA modulation on cancer progression. In this review, we briefly introduced the characteristics of several main epigenetic marks on ncRNAs and summarized their consecutive effects on cancer cells. We found that ncRNAs could act both as regulators and targets of epigenetic enzymes, which indicated a cross-regulating network in cancer cells and unveil a novel dimension of cancer biology. Moreover, by epitomizing the knowledge of RNA epigenetics, our work may pave the way for the design of patient-tailored therapeutics of cancers.
Collapse
Affiliation(s)
- Xiao Yang
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Ming Liu
- Department of genecology and obstetrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Mengmeng Li
- Shanghai tenth People's Hospital, Medical School of Tongji University, Shanghai, 200205, China
| | - Sen Zhang
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Hong Hiju
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Jing Sun
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China
| | - Zhihai Mao
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| | - Minhua Zheng
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| | - Bo Feng
- Department of General Surgery, Division of gastrointestinal and colorectal Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200205, China.
| |
Collapse
|
62
|
ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity. Oncogene 2020; 39:3738-3753. [PMID: 32157211 PMCID: PMC7190574 DOI: 10.1038/s41388-020-1248-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
Abstract
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. A-to-I editing of RNA is a widespread posttranscriptional process that has recently emerged as an important mechanism in cancer biology. A-to-I editing levels are high in several human cancers, including thyroid cancer, but ADAR1 editase-dependent mechanisms governing thyroid cancer progression are unexplored. To address the importance of RNA A-to-I editing in thyroid cancer, we examined the role of ADAR1. Loss-of-function analysis showed that ADAR1 suppression profoundly repressed proliferation, invasion, and migration in thyroid tumor cell models. These observations were validated in an in vivo xenograft model, which showed that ADAR1-silenced cells had a diminished ability to form tumors. RNA editing of miRNAs has the potential to markedly alter target recognition. According to TCGA data, the tumor suppressor miR-200b is overedited in thyroid tumors, and its levels of editing correlate with a worse progression-free survival and disease stage. We confirmed miR-200b overediting in thyroid tumors and we showed that edited miR-200b has weakened activity against its target gene ZEB1 in thyroid cancer cells, likely explaining the reduced aggressiveness of ADAR1-silenced cells. We also found that RAS, but not BRAF, modulates ADAR1 levels, an effect mediated predominantly by PI3K and in part by MAPK. Lastly, pharmacological inhibition of ADAR1 activity with the editing inhibitor 8-azaadenosine reduced cancer cell aggressiveness. Overall, our data implicate ADAR1-mediated A-to-I editing as an important pathway in thyroid cancer progression, and highlight RNA editing as a potential therapeutic target in thyroid cancer.
Collapse
|
63
|
Liang W, Lin Z, Du C, Qiu D, Zhang Q. mRNA modification orchestrates cancer stem cell fate decisions. Mol Cancer 2020; 19:38. [PMID: 32101138 PMCID: PMC7043046 DOI: 10.1186/s12943-020-01166-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
Despite their small numbers, cancer stem cells play a central role in driving cancer cell growth, chemotherapeutic resistance, and distal metastasis. Previous studies mainly focused on how DNA or histone modification determines cell fate in cancer. However, it is still largely unknown how RNA modifications orchestrate cancer cell fate decisions. More than 170 distinct RNA modifications have been identified in the RNA world, while only a few RNA base modifications have been found in mRNA. Growing evidence indicates that three mRNA modifications, inosine, 5-methylcytosine, and N6-methyladenosine, are essential for the regulation of spatiotemporal gene expression during cancer stem cell fate transition. Furthermore, transcriptome-wide mapping has found that the aberrant deposition of mRNA modification, which can disrupt the gene regulatory network and lead to uncontrollable cancer cell growth, is widespread across different cancers. In this review, we try to summarize the recent advances of these three mRNA modifications in maintaining the stemness of cancer stem cells and discuss the underlying molecular mechanisms, which will shed light on the development of novel therapeutic approaches for eradicating cancer stem cells.
Collapse
Affiliation(s)
- Weicheng Liang
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zexiao Lin
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Cong Du
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongbo Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Qi Zhang
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China. .,Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
64
|
Esteve-Puig R, Bueno-Costa A, Esteller M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett 2020; 474:127-137. [PMID: 31991154 DOI: 10.1016/j.canlet.2020.01.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
Although cancer was originally considered a disease driven only by genetic mutations, it has now been proven that it is also an epigenetic disease driven by DNA hypermethylation-associated silencing of tumor suppressor genes and aberrant histone modifications. Very recently, a third component has emerged: the so-called epitranscriptome understood as the chemical modifications of RNA that regulate and alter the activity of RNA molecules. In this regard, the study of genetic and epigenetic disruption of the RNA-modifying proteins is gaining momentum in advancing our understanding of cancer biology. Furthermore, the development of epitranscriptomic anticancer drugs could lead to new promising and unexpected therapeutic strategies for oncology in the coming years.
Collapse
Affiliation(s)
- Rosaura Esteve-Puig
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Alberto Bueno-Costa
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
65
|
Goncharov AO, Kliuchnikova AA, Nasaev SS, Moshkovskii SA. RNA Editing by ADAR Adenosine Deaminases: From Molecular Plasticity of Neural Proteins to the Mechanisms of Human Cancer. BIOCHEMISTRY (MOSCOW) 2019; 84:896-904. [PMID: 31522671 DOI: 10.1134/s0006297919080054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA editing by adenosine deaminases of the ADAR family attracts a growing interest of researchers, both zoologists studying ecological and evolutionary plasticity of invertebrates and medical biochemists focusing on the mechanisms of cancer and other human diseases. These enzymes deaminate adenosine residues in the double-stranded (ds) regions of RNA with the formation of inosine. As a result, some RNAs change their three-dimensional structure and functions. Adenosine-to-inosine editing in the mRNA coding sequences may cause amino acid substitutions in the encoded proteins. Here, we reviewed current concepts on the functions of two active ADAR isoforms identified in mammals (including humans). The ADAR1 protein, which acts non-specifically on extended dsRNA regions, is capable of immunosuppression via inactivation of the dsRNA interactions with specific sensors inducing the cell immunity. Expression of a specific ADAR1 splicing variant is regulated by the type I interferons by the negative feedback mechanism. It was shown that immunosuppressing effects of ADAR1 facilitate progression of some types of cancer. On the other hand, changes in the amino acid sequences resulting from the mRNA editing by the ADAR enzymes can result in the formation of neoantigens that can activate the antitumor immunity. The ADAR2 isoform acts on RNA more selectively; its function is associated with the editing of mRNA coding regions and can lead to the amino acid substitutions, in particular, those essential for the proper functioning of some neurotransmitter receptors in the central nervous system.
Collapse
Affiliation(s)
- A O Goncharov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
| | - A A Kliuchnikova
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - S S Nasaev
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - S A Moshkovskii
- Institute of Biomedical Chemistry, Moscow, 119121, Russia. .,Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
66
|
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci 2019; 20:E6249. [PMID: 31835747 PMCID: PMC6941098 DOI: 10.3390/ijms20246249] [Citation(s) in RCA: 574] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the capability of modulating gene expression at the post-transcriptional level either by inhibiting messenger RNA (mRNA) translation or by promoting mRNA degradation. The outcome of a myriad of physiological processes and pathologies, including cancer, cardiovascular and metabolic diseases, relies highly on miRNAs. However, deciphering the precise roles of specific miRNAs in these pathophysiological contexts is challenging due to the high levels of complexity of their actions. Indeed, regulation of mRNA expression by miRNAs is frequently cell/organ specific; highly dependent on the stress and metabolic status of the organism; and often poorly correlated with miRNA expression levels. Such biological features of miRNAs suggest that various regulatory mechanisms control not only their expression, but also their activity and/or bioavailability. Several mechanisms have been described to modulate miRNA action, including genetic polymorphisms, methylation of miRNA promoters, asymmetric miRNA strand selection, interactions with RNA-binding proteins (RBPs) or other coding/non-coding RNAs. Moreover, nucleotide modifications (A-to-I or C-to-U) within the miRNA sequences at different stages of their maturation are also critical for their functionality. This regulatory mechanism called "RNA editing" involves specific enzymes of the adenosine/cytidine deaminase family, which trigger single nucleotide changes in primary miRNAs. These nucleotide modifications greatly influence a miRNA's stability, maturation and activity by changing its specificity towards target mRNAs. Understanding how editing events impact miRNA's ability to regulate stress responses in cells and organs, or the development of specific pathologies, e.g., metabolic diseases or cancer, should not only deepen our knowledge of molecular mechanisms underlying complex diseases, but can also facilitate the design of new therapeutic approaches based on miRNA targeting. Herein, we will discuss the current knowledge on miRNA editing and how this mechanism regulates miRNA biogenesis and activity.
Collapse
Affiliation(s)
| | | | | | | | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (M.C.d.S.); (M.G.); (D.D.); (C.S.)
| |
Collapse
|
67
|
Non-Coding RNA Networks in ALK-Positive Anaplastic-Large Cell Lymphoma. Int J Mol Sci 2019; 20:ijms20092150. [PMID: 31052302 PMCID: PMC6539248 DOI: 10.3390/ijms20092150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are essential regulators of gene expression. In recent years, it has become more and more evident that the different classes of ncRNAs, such as micro RNAs, long non-coding RNAs and circular RNAs are organized in tightly controlled networks. It has been suggested that deregulation of these networks can lead to disease. Several studies show a contribution of these so-called competing-endogenous RNA networks in various cancer entities. In this review, we highlight the involvement of ncRNA networks in anaplastic-large cell lymphoma (ALCL), a T-cell neoplasia. A majority of ALCL cases harbor the molecular hallmark of this disease, a fusion of the anaplastic lymphoma kinase (ALK) gene with the nucleophosmin (NPM, NPM1) gene leading to a permanently active kinase that promotes the malignant phenotype. We have focused especially on ncRNAs that are regulated by the NPM-ALK fusion gene and illustrate how their deregulation contributes to the pathogenesis of ALCL. Lastly, we summarize the findings and point out potential therapeutic implications.
Collapse
|