51
|
Miotto PM, Horbatuk M, Proudfoot R, Matravadia S, Bakovic M, Chabowski A, Holloway GP. α-Linolenic acid supplementation and exercise training reveal independent and additive responses on hepatic lipid accumulation in obese rats. Am J Physiol Endocrinol Metab 2017; 312:E461-E470. [PMID: 28270444 PMCID: PMC5494579 DOI: 10.1152/ajpendo.00438.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 02/06/2023]
Abstract
α-Linolenic acid (ALA) supplementation or exercise training can independently prevent hepatic lipid accumulation and reduced insulin signaling; however, this may occur through different mechanisms of action. In the current study, obese Zucker rats displayed decreased phospholipid (PL) content in association with hepatic lipid abundance, and therefore, we examined whether ALA and exercise training would prevent these abnormalities differently to reveal additive effects on the liver. To achieve this aim, obese Zucker rats were fed control diet alone or supplemented with ALA and were sedentary or exercise trained for 4 wk (C-Sed, ALA-Sed, C-Ex, and ALA-Ex). ALA-Sed rats had increased microsomal-triglyceride transfer protein (MTTP), a protein required for lipoprotein assembly/secretion, as well as modestly increased PL content in the absence of improvements in mitochondrial content, lipid accumulation, or insulin sensitivity. In contrast, C-Ex rats had increased mitochondrial content and insulin sensitivity; however, this corresponded with minimal improvements in PL content and hepatic lipid accumulation. Importantly, ALA-Ex rats demonstrated additive improvements in PL content and hepatic steatosis, which corresponded with increased mitochondrial content, MTTP and apolipoprotein B100 content, greater serum triacylglyceride, and insulin sensitivity. Overall, these data demonstrate additive effects of ALA and exercise training on hepatic lipid accumulation, as exercise training preferentially increased mitochondrial content, while ALA promoted an environment conducive for lipid secretion. These data highlight the potential for combination therapy to mitigate liver disease progression.
Collapse
Affiliation(s)
- Paula M Miotto
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Meaghan Horbatuk
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Ross Proudfoot
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Sarthak Matravadia
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Marica Bakovic
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
52
|
Chagovets VV, Wang Z, Kononikhin AS, Starodubtseva NL, Borisova A, Salimova D, Popov IA, Kozachenko AV, Chingin K, Chen H, Frankevich VE, Adamyan LV, Sukhikh GT. Endometriosis foci differentiation by rapid lipid profiling using tissue spray ionization and high resolution mass spectrometry. Sci Rep 2017; 7:2546. [PMID: 28566741 PMCID: PMC5451410 DOI: 10.1038/s41598-017-02708-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Obtaining fast screening information on molecular composition of a tissue sample is of great importance for a disease biomarkers search and for online surgery control. In this study, high resolution mass spectrometry analysis of eutopic and ectopic endometrium tissues (90 samples) is done using direct tissue spray mass spectrometry in both positive and negative ion modes. The most abundant peaks in the both ion modes are those corresponding to lipids. Species of three lipid classes are observed, phosphatidylcholines (PC), sphingomyelins (SM) and phosphoethanolamines (PE). Direct tissue analysis gives mainly information on PC and SM lipids (29 species) in positive ion mode and PC, SM and PE lipids (50 species) in negative ion mode which gives complementary data for endometriosis foci differentiation. The biggest differences were found for phospholipids with polyunsaturated acyls and alkils. Although, tissue spray shows itself as appropriate tool for tissue investigation, caution should be paid to the interpretation of mass spectra because of their higher complexity with more possible adducts formation and multiple interferences must be taken into account. The present work extends the application of direct tissue analysis for the rapid differentiation between endometriotic tissues of different foci.
Collapse
Affiliation(s)
- Vitaliy V Chagovets
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Zhihao Wang
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China
| | - Alexey S Kononikhin
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Natalia L Starodubtseva
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Anna Borisova
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Dinara Salimova
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Igor A Popov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Andrey V Kozachenko
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China.
| | - Vladimir E Frankevich
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia.
| | - Leila V Adamyan
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| |
Collapse
|
53
|
Zhang H, Zheng H, Zhao G, Tang C, Lu S, Cheng B, Wu F, Wei J, Liang Y, Ruan J, Song H, Su Z. Metabolomic study of corticosterone-induced cytotoxicity in PC12 cells by ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. MOLECULAR BIOSYSTEMS 2016; 12:902-13. [PMID: 26775910 DOI: 10.1039/c5mb00642b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucocorticoids (GCs) have been proved to be an important pathogenic factor of some neuropsychiatric disorders. Usually, a classical injury model based on corticosterone-induced cytotoxicity of differentiated rat pheochromocytoma (PC12) cells was used to stimulate the state of GC damage of hippocampal neurons and investigate its potential mechanisms involved. However, up to now, the mechanism of corticosterone-induced cytotoxicity in PC12 cells was still looking forward to further elucidation. In this work, the metabolomic study of the biochemical changes caused by corticosterone-induced cytotoxicity in differentiated PC12 cells with different corticosterone concentrations was performed for the first time, using the ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF MS). Partial least squares-discriminate analysis (PLS-DA) indicated that metabolic profiles of different corticosterone treatment groups deviated from the control group. A total of fifteen metabolites were characterized as potential biomarkers involved in corticosterone-induced cytotoxicity, which were corresponding to the dysfunctions of five pathways including glycerophospholipid metabolism, sphingolipid metabolism, oxidation of fatty acids, glycerolipid metabolism and sterol lipid metabolism. This study indicated that the rapid and holistic cell metabolomics approach might be a powerful tool to further study the pathogenesis mechanism of corticosterone-induced cytotoxicity in PC12 cells.
Collapse
Affiliation(s)
- Hongye Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Hua Zheng
- Medical Scientific Research Center, Guangxi Medical University, Nanning 530021, China
| | - Gan Zhao
- Department of Pharmacy, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, China
| | - Chaoling Tang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Shiyin Lu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Bang Cheng
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Fang Wu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Yonghong Liang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Junxiang Ruan
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Hui Song
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
54
|
Global metabolite analysis of the land snail Theba pisana hemolymph during active and aestivated states. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:25-33. [PMID: 27318654 DOI: 10.1016/j.cbd.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
Abstract
The state of metabolic dormancy has fascinated people for hundreds of years, leading to research exploring the identity of natural molecular components that may induce and maintain this state. Many animals lower their metabolism in response to high temperatures and/or arid conditions, a phenomenon called aestivation. The biological significance for this is clear; by strongly suppressing metabolic rate to low levels, animals minimize their exposure to stressful conditions. Understanding blood or hemolymph metabolite changes that occur between active and aestivated animals can provide valuable insights relating to those molecular components that regulate hypometabolism in animals, and how they afford adaptation to their different environmental conditions. In this study, we have investigated the hemolymph metabolite composition from the land snail Theba pisana, a remarkably resilient mollusc that displays an annual aestivation period. Using LC-MS-based metabolomics analysis, we have identified those hemolymph metabolites that show significant changes in relative abundance between active and aestivated states. We show that certain metabolites, including some phospholipids [e.g. LysoPC(14:0)], and amino acids such as l-arginine and l-tyrosine, are present at high levels within aestivated snails. Further investigation of our T. pisana RNA-sequencing data elucidated the entire repertoire of phospholipid-synthesis genes in the snail digestive gland, as a precursor towards future comparative investigation between the genetic components of aestivating and non-aestivating species. In summary, we have identified a large number of metabolites that are elevated in the hemolymph of aestivating snails, supporting their role in protecting against heat or desiccation.
Collapse
|
55
|
Ding Q, Kang J, Dai J, Tang M, Wang Q, Zhang H, Guo W, Sun R, Yu H. AGXT2L1 is down-regulated in heptocellular carcinoma and associated with abnormal lipogenesis. J Clin Pathol 2016; 69:215-220. [PMID: 26294768 DOI: 10.1136/jclinpath-2015-203042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022]
Abstract
AIMS To clarify the clinical implications and functional role of the alanine-glyoxylate aminotransferase 2-like 1 (AGXT2L1) gene in hepatocellular carcinoma (HCC). METHODS AND RESULTS We confirmed that AGXT2L1 was down-regulated in liver cancer samples by immunohistochemical (IHC) staining. We also demonstrated that this down-regulation was associated with several clinicopathological features such as alpha fetoprotein (AFP) serum level and T stage. Furthermore, we showed with Kaplan-Meier analysis that expression of AGXT2L1 in tumour samples was significantly correlated with patient prognosis. The bioinformatic tool indicated that AGXT2L1 plays a role in the lipid metabolic process of HCC tissue, while siRNA silenced the expression of AGXT2L1 in HCC 97H and LM3 cells, confirming that down-regulation of AGXT2L1 promotes the lipogenesis of cancer cells. CONCLUSIONS For the first time, we have shown that AGXT2L1 is down-regulated in HCC and its low expression indicates a poor prognosis. Our findings also demonstrated that AGXT2L1 is a crucial gene in the abnormal lipogenesis of HCC tissue.
Collapse
Affiliation(s)
- Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Kang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinfen Dai
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Tang
- Department of Immunology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Qi Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haotian Zhang
- Department of Math and Statistics, Liberal Arts College, Portland State University, Portland, OR, USA
| | - Wenyi Guo
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rongze Sun
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
56
|
Baillon L, Oses J, Pierron F, Bureau du Colombier S, Caron A, Normandeau E, Lambert P, Couture P, Labadie P, Budzinski H, Dufour S, Bernatchez L, Baudrimont M. Gonadal transcriptome analysis of wild contaminated female European eels during artificial gonad maturation. CHEMOSPHERE 2015; 139:303-309. [PMID: 26159298 DOI: 10.1016/j.chemosphere.2015.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Since the early 1980s, the population of European eels (Anguilla anguilla) has dramatically declined. Nowadays, the European eel is listed on the red list of threatened species (IUCN Red List) and is considered as critically endangered of extinction. Pollution is one of the putative causes for the collapse of this species. Among their possible effects, contaminants gradually accumulated in eels during their somatic growth phase (yellow eel stage) would be remobilized during their reproductive migration leading to potential toxic events in gonads. The aim of this study was to investigate the effects of organic and inorganic contaminants on the gonad development of wild female silver eels. Female silver eels from two sites with differing contamination levels were artificially matured. Transcriptomic analyses by means of a 1000 candidate gene cDNA microarray were performed on gonads after 11weeks of maturation to get insight into the mechanisms of toxicity of contaminants. The transcription levels of several genes, that were associated to the gonadosomatic index (GSI), were involved in mitotic cell division but also in gametogenesis. Genes associated to contaminants were mainly involved in the mechanisms of protection against oxidative stress, in DNA repair, in the purinergic signaling pathway and in steroidogenesis, suggesting an impairment of gonad development in eels from the polluted site. This was in agreement with the fact that eels from the reference site showed a higher gonad growth in comparison to contaminated fish.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Jennifer Oses
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France.
| | | | - Antoine Caron
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9, Canada
| | - Eric Normandeau
- Muséum National d'Histoire Naturelle, UMR BOREA UPMC, CNRS 7208, IRD 207, UCBN, 7 rue Cuvier CP 32, F-75231 Paris, France
| | - Patrick Lambert
- Irtsea, UR EABX, 50 avenue de Verdun-Gazinet, 33612 Cestas, France
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9, Canada
| | - Pierre Labadie
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Hélène Budzinski
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, UMR BOREA UPMC, CNRS 7208, IRD 207, UCBN, 7 rue Cuvier CP 32, F-75231 Paris, France
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6, Canada
| | - Magalie Baudrimont
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence, France; CNRS, EPOC, UMR 5805, F-33400 Talence, France
| |
Collapse
|
57
|
Pereira TJ, Fonseca MA, Campbell KE, Moyce BL, Cole LK, Hatch GM, Doucette CA, Klein J, Aliani M, Dolinsky VW. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome. J Physiol 2015; 593:3181-97. [PMID: 25922055 DOI: 10.1113/jp270429] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/17/2015] [Indexed: 12/16/2022] Open
Abstract
Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring.
Collapse
Affiliation(s)
- Troy J Pereira
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Mario A Fonseca
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Kristyn E Campbell
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Brittany L Moyce
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Laura K Cole
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba.,Department of Physiology and Pathophysiology
| | | | - Michel Aliani
- Department of Human Nutrition, University of Manitoba, Winnipeg, MB, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| |
Collapse
|
58
|
Selathurai A, Kowalski GM, Burch ML, Sepulveda P, Risis S, Lee-Young RS, Lamon S, Meikle PJ, Genders AJ, McGee SL, Watt MJ, Russell AP, Frank M, Jackowski S, Febbraio MA, Bruce CR. The CDP-Ethanolamine Pathway Regulates Skeletal Muscle Diacylglycerol Content and Mitochondrial Biogenesis without Altering Insulin Sensitivity. Cell Metab 2015; 21:718-30. [PMID: 25955207 DOI: 10.1016/j.cmet.2015.04.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/20/2015] [Accepted: 03/28/2015] [Indexed: 01/20/2023]
Abstract
Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis.
Collapse
Affiliation(s)
- Ahrathy Selathurai
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, 3125 VIC, Australia
| | - Greg M Kowalski
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, 3125 VIC, Australia
| | - Micah L Burch
- Department of Physiology, Monash University, Clayton, 3800 VIC, Australia
| | - Patricio Sepulveda
- Department of Physiology, Monash University, Clayton, 3800 VIC, Australia
| | - Steve Risis
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Prahran, 3004 VIC, Australia
| | - Robert S Lee-Young
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Prahran, 3004 VIC, Australia
| | - Severine Lamon
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, 3125 VIC, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Prahran, 3004 VIC, Australia
| | - Amanda J Genders
- Metabolic Research Unit, Deakin University, Waurn Ponds, 3216 VIC, Australia
| | - Sean L McGee
- Metabolic Research Unit, Deakin University, Waurn Ponds, 3216 VIC, Australia
| | - Matthew J Watt
- Department of Physiology, Monash University, Clayton, 3800 VIC, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, 3125 VIC, Australia
| | - Matthew Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Suzanne Jackowski
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Prahran, 3004 VIC, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition (C-PAN) Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, 3125 VIC, Australia.
| |
Collapse
|
59
|
Pavlovic Z, Singh RK, Bakovic M. A novel murine CTP:phosphoethanolamine cytidylyltransferase splice variant is a post-translational repressor and an indicator that both cytidylyltransferase domains are required for activity. Gene 2014; 543:58-68. [PMID: 24703999 DOI: 10.1016/j.gene.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/20/2014] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) has an important regulatory function in biosynthesis of the membrane phospholipid phosphatidylethanolamine. We previously determined that the full-length Pcyt2α and its splice variant Pcyt2β are the main active isoforms of this enzyme. Here we report that mouse Pcyt2 could be spliced at Introns 7 and 8 to produce a unique third isoform, Pcyt2γ, in which the second cytidylyltransferase domain at the C-terminus becomes deleted. Pcyt2γ is ubiquitously expressed in embryonic and adult mouse tissues, and is the most abundant in the kidney, skeletal muscle and testis. Pcyt2γ splicing mechanism dominates over Pcyt2β exon-skipping mechanism in most examined tissues. Although Pcyt2γ maintains the N-terminal cytidylyltransferase domain as most cytidylyltransferases, the lack of the C-terminal cytidylyltransferase domain causes a complete loss of catalytic activity. However, Pcyt2γ interacts with the active isoform, Pcyt2α, and significantly reduces Pcyt2α homodimerization and activity. The inactive N-domain (H35Y, H35A) and C-domain (H244Y, H244A) mutants of Pcyt2α also reduce Pcyt2α homodimerization and activity. This study revealed the importance of both cytidylyltransferase (35)HYGH and (244)HIGH motifs for the activity of murine Pcyt2α and established that the naturally occurring splice variant Pcyt2γ has a function to restrain the enzyme activity through the formation of unproductive enzyme complexes.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada.
| | - Ratnesh Kumar Singh
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
60
|
Tian S, Ohtsuka J, Wang S, Nagata K, Tanokura M, Ohta A, Horiuchi H, Fukuda R. Human CTP:phosphoethanolamine cytidylyltransferase: enzymatic properties and unequal catalytic roles of CTP-binding motifs in two cytidylyltransferase domains. Biochem Biophys Res Commun 2014; 449:26-31. [PMID: 24802409 DOI: 10.1016/j.bbrc.2014.04.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
CTP:phosphoethanolamine cytidylyltransferase (ECT) is a key enzyme in the CDP-ethanolamine branch of the Kennedy pathway, which is the primary pathway of phosphatidylethanolamine (PE) synthesis in mammalian cells. Here, the enzymatic properties of recombinant human ECT (hECT) were characterized. The catalytic reaction of hECT obeyed Michaelis-Menten kinetics with respect to both CTP and phosphoethanolamine. hECT is composed of two tandem cytidylyltransferase (CT) domains as ECTs of other organisms. The histidines, especially the first histidine, in the CTP-binding motif HxGH in the N-terminal CT domain were critical for its catalytic activity in vitro, while those in the C-terminal CT domain were not. Overexpression of the wild-type hECT and hECT mutants containing amino acid substitutions in the HxGH motif in the C-terminal CT domain suppressed the growth defect of the Saccharomyces cerevisiae mutant of ECT1 encoding ECT in the absence of a PE supply via the decarboxylation of phosphatidylserine, but overexpression of hECT mutants of the N-terminal CT domain did not. These results suggest that the N-terminal CT domain of hECT contributes to its catalytic reaction, but C-terminal CT domain does not.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Ohtsuka
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shipeng Wang
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
61
|
Pavlovic Z, Zhu L, Pereira L, Singh RK, Cornell RB, Bakovic M. Isoform-specific and protein kinase C-mediated regulation of CTP:phosphoethanolamine cytidylyltransferase phosphorylation. J Biol Chem 2014; 289:9053-64. [PMID: 24519946 DOI: 10.1074/jbc.m113.544932] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) is the main regulatory enzyme for de novo biosynthesis of phosphatidylethanolamine by the CDP-ethanolamine pathway. There are two isoforms of Pcyt2, -α and -β; however, very little is known about their specific roles in this important metabolic pathway. We previously demonstrated increased phosphatidylethanolamine biosynthesis subsequent to elevated activity and phosphorylation of Pcyt2α and -β in MCF-7 breast cancer cells grown under conditions of serum deficiency. Mass spectroscopy analyses of Pcyt2 provided evidence for isoform-specific as well as shared phosphorylations. Pcyt2β was specifically phosphorylated at the end of the first cytidylyltransferase domain. Pcyt2α was phosphorylated within the α-specific motif that is spliced out in Pcyt2β and on two PKC consensus serine residues, Ser-215 and Ser-223. Single and double mutations of PKC consensus sites reduced Pcyt2α phosphorylation, activity, and phosphatidylethanolamine synthesis by 50-90%. The phosphorylation and activity of endogenous Pcyt2 were dramatically increased with phorbol esters and reduced by specific PKC inhibitors. In vitro translated Pcyt2α was phosphorylated by PKCα, PKCβI, and PKCβII. Pcyt2α Ser-215 was also directly phosphorylated with PKCα. Mapping of the Pcyt2α- and -β-phosphorylated sites to the solved structure of a human Pcyt2β showed that they clustered within and flanking the central linker region that connects the two catalytic domains and is a novel regulatory segment not present in other cytidylyltransferases. This study is the first to demonstrate differences in phosphorylation between Pcyt2 isoforms and to uncover the role of the PKC-regulated phosphorylation.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- From the Department of Human Health and Nutritional Sciences, University of Guelph, Ontario N1G 2W1 and
| | | | | | | | | | | |
Collapse
|
62
|
Identification of early transcriptome-based biomarkers related to lipid metabolism in peripheral blood mononuclear cells of rats nutritionally programmed for improved metabolic health. GENES AND NUTRITION 2013; 9:366. [PMID: 24343050 DOI: 10.1007/s12263-013-0366-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
Abstract
Moderate maternal calorie restriction during lactation protects rat offspring against obesity development in adulthood, due to an improved ability to handle and store excess dietary fuel. We used this model to identify early transcriptome-based biomarkers of metabolic health using peripheral blood mononuclear cells (PBMCs), an easily accessible surrogate tissue, by focusing on molecular markers of lipid handling. Male and female offspring of control and 20 % calorie-restricted lactating dams (CR) were studied. At weaning, a set of pups was killed, and PBMCs were isolated for whole-genome microarray analysis. The remaining pups were killed at 6 months of age. CR gave lower body weight, food intake and fat accumulation, and improved levels of insulin and leptin throughout life, particularly in females. Microarray analysis of weaned rat PBMCs identified 278 genes significantly differentially expressed between control and CR. Among lipid metabolism-related genes, expression of Cpt1a, Lipe and Star was increased and Fasn, Lrp1 and Rxrb decreased in CR versus control, with changes fully confirmed by qPCR. Among them, Cpt1a, Fasn and Star emerged as particularly interesting. Transcript levels of Cpt1a in PBMCs correlated with their levels in WAT and liver at both ages examined; Fasn expression levels in PBMCs at an early age correlated with their expression levels in WAT; and early changes in Star expression levels in PBMCs correlated with their expression levels in liver and were sustained in adulthood. These findings reveal the possibility of using transcript levels of lipid metabolism-related genes in PBMCs as early biomarkers of metabolic health status.
Collapse
|
63
|
Gohil VM, Zhu L, Baker CD, Cracan V, Yaseen A, Jain M, Clish CB, Brookes PS, Bakovic M, Mootha VK. Meclizine inhibits mitochondrial respiration through direct targeting of cytosolic phosphoethanolamine metabolism. J Biol Chem 2013; 288:35387-95. [PMID: 24142790 PMCID: PMC3853286 DOI: 10.1074/jbc.m113.489237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism.
Collapse
Affiliation(s)
- Vishal M Gohil
- From the Departments of Molecular Biology and Medicine, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
| | | | | | | | | | | | | | | | | | | |
Collapse
|