51
|
Uyanıkgil Y, Turgut M, Baka M. Effects of Melatonin on the Cerebellum of Infant Rat Following Kaolin-Induced Hydrocephalus: a Histochemical and Immunohistochemical Study. THE CEREBELLUM 2017; 16:142-150. [PMID: 27113349 DOI: 10.1007/s12311-016-0778-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrocephalus is a developmental disorder causing abnormally collected cerebrospinal fluid within the cerebral ventricles. It leads to bigger skulls and many dysfunctions related to the nervous system. Here, we addressed whether exogenous melatonin administration could reverse the clinical features of kaolin-induced hydrocephalus in infantile rats. A controlled double-blinded study was conducted in 2-week-old 45 Wistar albino rats, which were divided into three groups: Group A, the control group, received intracisternal sham injection with solely the needle insertion; group B, the hydrocephalus group, was treated with isotonic NaCl after kaolin injection; and group C, the hydrocephalus + melatonin group, was given i.p. exogenous melatonin at a dose of 0.5 mg/100 g body weight after kaolin injection. Histological and immunohistochemical analyses were performed after the induction of hydrocephalus and melatonin administration. Glial fibrillary acidic protein was stained by immunohistochemical method. TUNEL method was used to define and quantitate apoptosis in the cerebellar tissues. Statistical analysis was performed by nonparametric Kruskal-Wallis H test, and once significance was determined among means, post hoc pairwise comparisons were carried out using Mann-Whitney U test. We found that melatonin administration significantly ameliorated ratio of substantia grisea area/substantia alba area in the cerebellum of infantile rats. Histologically, there was a significant reduction in the number of cerebellar apoptotic cells after the hydrocephalus induced by kaolin (P < 0.05). Our results clearly revealed that the histopathological changes in the cerebellum were reversed by systemic melatonin administration in infantile rats with kaolin-induced hydrocephalus. Nevertheless, further studies are needed to suggest melatonin as a candidate protective drug in children with hydrocephalus.
Collapse
Affiliation(s)
- Yiğit Uyanıkgil
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, Izmir, Turkey
| | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydın, Turkey. .,, Cumhuriyet Mahallesi, Adnan Menderes Bulvarı, Haltur Apartmanı, No: 6 Daire: 7, TR-09020, Aydın, Turkey.
| | - Meral Baka
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, Izmir, Turkey
| |
Collapse
|
52
|
Harriman T, Bradshaw WT, Blake SM. The Use of Whole Body Cooling in the Treatment of Hypoxic-Ischemic Encephalopathy. Neonatal Netw 2017; 36:273-279. [PMID: 28847350 DOI: 10.1891/0730-0832.36.5.273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a major cause of morbidity and mortality in neonates. Hypoxic-ischemic encephalopathy occurs as a result of a perinatal hypoxic-ischemic event just prior to or during delivery. Therapeutic hypothermia using whole body cooling is the current treatment of choice to reduce brain injury and improve long-term neurodevelopmental outcomes for neonates with HIE. All English language articles published since 2005 in PubMed and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) were analyzed for existing evidence-based methods for whole body cooling. Whole body cooling is effective in the treatment of HIE in term and near-term neonates. Further research is needed to investigate the use of adjunctive therapies in conjunction with whole body cooling for improved neuroprotection.
Collapse
|
53
|
Xu LX, Lv Y, Li YH, Ding X, Wang Y, Han X, Liu MH, Sun B, Feng X. Melatonin alleviates brain and peripheral tissue edema in a neonatal rat model of hypoxic-ischemic brain damage: the involvement of edema related proteins. BMC Pediatr 2017; 17:90. [PMID: 28351378 PMCID: PMC5371222 DOI: 10.1186/s12887-017-0824-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/02/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Previous studies have indicated edema may be involved in the pathophysiology following hypoxic-ischemic encephalopathy (HIE), and melatonin may exhibit neuro-protection against brain insults. However, little is known regarding the mechanisms that involve the protective effects of melatonin in the brain and peripheral tissues after HIE. The present study aimed to examine the effects of melatonin on multiple organs, and the expression of edema related proteins in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). METHODS One hundred ninety-two neonatal rats were randomly divided into three subgroups that underwent a sham surgery or HIBD. After the HIBD or sham-injury, the rats received an intraperitoneal injection of melatonin or an equal volume vehicle, respectively. We investigated the effects of melatonin on brain, kidney, and colon edema via histological examination and the expression of edema related proteins, including AQP-4, ZO-1 and occludin, via qPCR and western blot. RESULTS Our data indicated (1) Melatonin reduced the histological injury in the brain and peripheral organs induced by HIBD as assessed via H-E staining and transmission electron microscopy. (2) Melatonin alleviated the HIBD-induced cerebral edema characterized by increased brain water content. (3) HIBD induced significant changes of edema related proteins, such as AQP-4, ZO-1 and occludin, and these changes were partially reversed by melatonin treatment. CONCLUSIONS These findings provide substantial evidence that melatonin treatment has protective effects on the brain and peripheral organs after HIBD, and the edema related proteins, AQP4, ZO-1, and occludin, may indirectly contribute tothe mechanism of the edema protection by melatonin.
Collapse
Affiliation(s)
- Li-Xiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215006, China
| | - Yuan Lv
- Department of Neonatology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yan-Hong Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215006, China
| | - Xin Ding
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215006, China
| | - Ying Wang
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215006, China
| | - Xing Han
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215006, China
| | - Ming-Hua Liu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Sun
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215006, China.
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
54
|
Klimentova J, Cebova M, Barta A, Matuskova Z, Vrankova S, Rehakova R, Kovacsova M, Pechanova O. Effect of melatonin on blood pressure and nitric oxide generation in rats with metabolic syndrome. Physiol Res 2017; 65:S373-S380. [PMID: 27775422 DOI: 10.33549/physiolres.933436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Melatonin, a multitasking indolamine, seems to be involved in a variety of physiological and metabolic processes via both receptor-mediated and receptor-independent mechanisms. The aim of our study was to find out whether melatonin can affect blood pressure (BP), nitric oxide synthase (NOS) activity, eNOS and nNOS protein expressions in rats with metabolic syndrome (SHR/cp). Rats were divided into four groups: 6-week-old male WKY andSHR/cp and age-matched WKY and SHR/cp treated with melatonin (10 mg/kg/day) for 3 weeks. BP was measured by tail-cuff plethysmography. NOS activity, eNOS and nNOS protein expressions were determined in the heart, aorta, brain cortex and cerebellum. MT(1) receptors were analyzed in the brain cortex and cerebellum. In SHR/cp rats, BP was decreased after melatonin treatment. In the same group, melatonin did not affect NOS activity and eNOS protein expression in the heart and aorta, while it increased both parameters in the brain cortex and cerebellum. Interestingly, melatonin elevated MT1 protein expression in the cerebellum. Neuronal NOS protein expression was not changed within the groups. In conclusion, increased NOS activity/eNOS upregulation in particular brain regions may contribute partially to BP decrease in SHR/cp rats after melatonin treatment. Participation of MT(1) receptors in this melatonin action may be supposed.
Collapse
Affiliation(s)
- J Klimentova
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
56
|
Zhao M, Zhu P, Fujino M, Zhuang J, Guo H, Sheikh I, Zhao L, Li XK. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies. Int J Mol Sci 2016; 17:ijms17122078. [PMID: 27973415 PMCID: PMC5187878 DOI: 10.3390/ijms17122078] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply and is, thus, extremely sensitive to hypoxia. Strong evidence indicates that oxidative stress plays an important role in pathogenesis and progression. Following hypoxia and ischemia, reactive oxygen species (ROS) production rapidly increases and overwhelms antioxidant defenses. A large excess of ROS will directly modify or degenerate cellular macromolecules, such as membranes, proteins, lipids, and DNA, and lead to a cascading inflammatory response, and protease secretion. These derivatives are involved in a complex interplay of multiple pathways (e.g., inflammation, apoptosis, autophagy, and necrosis) which finally lead to brain injury. In this review, we highlight the molecular mechanism for oxidative stress in HIE, summarize current research on therapeutic strategies utilized in combating oxidative stress, and try to explore novel potential clinical approaches.
Collapse
Affiliation(s)
- Mingyi Zhao
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha 410006, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
| | - Masayuki Fujino
- National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China.
| | - IdrisAhmed Sheikh
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha 410006, China.
| | - Lingling Zhao
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha 410006, China.
| | - Xiao-Kang Li
- Department of Pediatrics, the Third Xiangya Hospital, Central South University, Changsha 410006, China.
- National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| |
Collapse
|
57
|
Yıldız EP, Ekici B, Tatlı B. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother 2016; 17:449-459. [PMID: 27830959 DOI: 10.1080/14737175.2017.1259567] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Hypoxic ischemic encephalopathy (HIE) is the most important reason for morbidity and mortality in term-born infants. Understanding pathophysiology of the brain damage is essential for the early detection of patients with high risk for HIE and development of strategies for their treatments. Areas covered: This review discusses pathophysiology of the neonatal HIE and its treatment options, including hypothermia, melatonin, allopurinol, topiramate, erythropoietin, N-acetylcyctein, magnesium sulphate and xenon. Expert commentary: Several clinical studies have been performed in order to decrease the risk of brain injury due to difficulties in the early diagnosis and treatment, and to develop strategies for better long-term outcomes. Although currently standard treatment methods include therapeutic hypothermia for neonates with moderate to severe HIE, new supportive options are needed to enhance neuroprotective effects of the hypothermia, which should aim to reduce production of the free radicals and to have anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
| | - Barış Ekici
- b Department of Pediatric Neurology , Liv Hospital , Istanbul , Turkey
| | - Burak Tatlı
- a Department of Pediatric Neurology , Istanbul University , Istanbul , Turkey
| |
Collapse
|
58
|
Romero A, Ramos E, Patiño P, Oset-Gasque MJ, López-Muñoz F, Marco-Contelles J, Ayuso MI, Alcázar A. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke. Front Aging Neurosci 2016; 8:281. [PMID: 27932976 PMCID: PMC5120103 DOI: 10.3389/fnagi.2016.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023] Open
Abstract
Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Eva Ramos
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital Madrid, Spain
| | - Maria J Oset-Gasque
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Ciudad Universitaria Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela UniversityMadrid, Spain; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research InstituteMadrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC) Madrid, Spain
| | - María I Ayuso
- Neurovascular Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla, Spain
| | - Alberto Alcázar
- Department of Investigation, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
59
|
McAdams RM, Juul SE. Neonatal Encephalopathy: Update on Therapeutic Hypothermia and Other Novel Therapeutics. Clin Perinatol 2016; 43:485-500. [PMID: 27524449 PMCID: PMC4987711 DOI: 10.1016/j.clp.2016.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neonatal encephalopathy (NE) is a major cause of neonatal mortality and morbidity. Therapeutic hypothermia (TH) is standard treatment for newborns at 36 weeks of gestation or greater with intrapartum hypoxia-related NE. Term and late preterm infants with moderate to severe encephalopathy show improved survival and neurodevelopmental outcomes at 18 months of age after TH. TH can increase survival without increasing major disability, rates of an IQ less than 70, or cerebral palsy. Neonates with severe NE remain at risk of death or severe neurodevelopmental impairment. This review discusses the evidence supporting TH for term or near term neonates with NE.
Collapse
|
60
|
Schuch CP, Jeffers MS, Antonescu S, Nguemeni C, Gomez-Smith M, Pereira LO, Morshead CM, Corbett D. Enriched rehabilitation promotes motor recovery in rats exposed to neonatal hypoxia-ischemia. Behav Brain Res 2016; 304:42-50. [PMID: 26876139 DOI: 10.1016/j.bbr.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 01/21/2023]
Abstract
Despite continuous improvement in neonatology there is no clinically effective treatment for perinatal hypoxia ischemia (HI). Therefore, development of a new therapeutic intervention to minimize the resulting neurological consequences is urgently needed. The immature brain is highly responsive to environmental stimuli, such as environmental enrichment but a more effective paradigm is enriched rehabilitation (ER), which combines environmental enrichment with daily reach training. Another neurorestorative strategy to promote tissue repair and functional recovery is cyclosporine A (CsA). However, potential benefits of CsA after neonatal HI have yet to be investigated. The aim of this study was to investigate the effects of a combinational therapy of CsA and ER in attempts to promote cognitive and motor recovery in a rat model of perinatal hypoxic-ischemic injury. Seven-day old rats were submitted to the HI procedure and divided into 4 groups: CsA+Rehabilitation; CsA+NoRehabilitation; Vehicle+Rehabilitation; Vehicle+NoRehabilitation. Behavioural parameters were evaluated pre (experiment 1) and post 4 weeks of combinational therapy (experiment 2). Results of experiment 1 demonstrated reduced open field activity of HI animals and increased foot faults relative to shams in the ladder rung walking test. In experiment 2, we showed that ER facilitated acquisition of a staircase skilled-reaching task, increased number of zone crosses in open-field exploration and enhanced coordinated limb use during locomotion on the ladder rung task. There were no evident deficits in novel object recognition testing. Delayed administration of CsA, had no effect on functional recovery after neonatal HI. There was a significant reduction of cortical and hemispherical volume and hippocampal area, ipsilateral to arterial occlusion in HI animals; combinational therapy had no effect on these morphological measurements. In conclusion, the present study demonstrated that ER, but not CsA was the main contributor to enhanced recovery of motor ability after neonatal HI.
Collapse
Affiliation(s)
- Clarissa Pedrini Schuch
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Matthew Strider Jeffers
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Sabina Antonescu
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Carine Nguemeni
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | - Mariana Gomez-Smith
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada
| | | | - Cindi M Morshead
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Dale Corbett
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Faculty of Medicine, Memorial University, St. John's, NL, Canada; Canadian Partnership for Stroke Recovery, Ottawa, ON, Canada.
| |
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW Hypoxic-ischemic brain injury is a leading cause of mortality and morbidity in neonates. Treating such injury by interrupting the excitotoxic-oxidative cascade is of immense importance. This review will focus on novel techniques of neuroprotection and describe the latest advances in established therapeutic methods. KEY FINDINGS Although the primacy of therapeutic hypothermia in treating hypoxic-ischemic encephalopathy is well established, recent research establishes that the arbitrarily chosen regimen of cooling to 33°C for 72 h may indeed be the most appropriate method. The optimal duration of antenatal magnesium therapy for neuroprotection remains unsettled, though it is reassuring that even 12 h or less of magnesium therapy results in comparable neurological outcomes. Combining adjuvant therapies such as melatonin or erythropoietin with therapeutic hypothermia results in favorable neurological outcomes compared with hypothermia alone. Finally, stem cell-based therapies show considerable potential in preclinical studies. SUMMARY Significant advances have occurred in the management of neonatal brain injury. With establishment of the optimal temperature and duration of hypothermia, combinatory therapies using adjuncts hold the greatest promise. Promising preclinical approaches such as stem cell-based therapy and use of noble gases need to be confirmed with clinical trials.
Collapse
|
62
|
El-Mashad AR, Elmahdy H, El-Dib M, Elbatch M, Aly H. Can melatonin be used as a marker for neonatal sepsis? J Matern Fetal Neonatal Med 2015; 29:2870-3. [PMID: 26471842 DOI: 10.3109/14767058.2015.1107898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Melatonin, an indolamine endogenously produced by pineal body, has important role as an anti-oxidant, anti-inflammatory and anti-apoptotic. Whether melatonin concentration changes in neonatal sepsis and whether it can be used as a marker of sepsis is unknown. OBJECTIVE The objective of this study is to evaluate melatonin concentration in the serum as a marker for neonatal sepsis and compare it to standard markers. STUDY DESIGN We prospectively studied 40 neonates: 20 diagnosed with late neonatal sepsis and 20 healthy neonates as a control group. Markers of sepsis and melatonin concentration were compared between both groups. RESULTS The sepsis groups had significantly increased immature to total neutrophils ratio (I/T ratio), and high sensitivity C-reactive protein (HsCRP), and decreased platelet count. Melatonin concentration was increased in sepsis group when compared to control group (27.2 ± 3.3 versus 11.4 ± 3.2 pg/ml, p = 0.001), and positively correlated with HsCRP (r = 0.952, p = 0.001) and I/T ratio (r = 0.326, p = 0.015). Combining melatonin to HsCRP increased sensitivity and specificity to detect neonatal sepsis to 97.3 and 93.3%, respectively. CONCLUSIONS Endogenous melatonin concentration is increased in late neonatal sepsis and can potentially be used as a marker for sepsis especially when combined with CRP.
Collapse
Affiliation(s)
| | - Heba Elmahdy
- a Department of Neonatology , Tanta University , Tanta , Egypt
| | - Mohamed El-Dib
- b Department of Newborn Services , George Washington University and Children's National Health System , Washington , DC , USA and
| | - Manal Elbatch
- c Department of Biochemistry , Tanta University , Tanta , Egypt
| | - Hany Aly
- b Department of Newborn Services , George Washington University and Children's National Health System , Washington , DC , USA and
| |
Collapse
|
63
|
Liu S, Guo Y, Yuan Q, Pan Y, Wang L, Liu Q, Wang F, Wang J, Hao A. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy. J Pineal Res 2015; 59:508-17. [PMID: 26475080 DOI: 10.1111/jpi.12282] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/02/2015] [Indexed: 01/11/2023]
Abstract
Melatonin, an endogenous neurohormone secreted by the pineal gland, has a variety of physiological functions and neuroprotective effects. However, its protective role on the neural tube defects (NTDs) was not very clear. The aim of this study was to investigate the effects of melatonin on the incidence of NTDs (including anencephaly, encephalocele, and spina bifida) of offspring from diabetic pregnant mice as well as its underlying mechanisms. Pregnant mice were given 10 mg/kg melatonin by daily i.p. injection from embryonic day (E) 0.5 until being killed on E11.5. Here, we showed that melatonin decreased the NTDs (especially exencephaly) rate of embryos exposed to maternal diabetes. Melatonin stimulated proliferation of neural stem cells (NSCs) under hyperglycemic condition through the extracellular regulated protein kinases (ERK) pathway. Furthermore, as a direct free radical scavenger, melatonin decreased apoptosis of NSCs exposed to hyperglycemia. In the light of these findings, it suggests that melatonin supplementation may play an important role in the prevention of neural malformations in diabetic pregnancy.
Collapse
Affiliation(s)
- Shangming Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yuji Guo
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qiuhuan Yuan
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Yan Pan
- Institute of Biomedical Engineering, Shandong University School of Medicine, Jinan, Shandong, China
| | - Liyan Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Qian Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Jingjing Wang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| |
Collapse
|
64
|
Dixon BJ, Reis C, Ho WM, Tang J, Zhang JH. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2015; 16:22368-401. [PMID: 26389893 PMCID: PMC4613313 DOI: 10.3390/ijms160922368] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 12/21/2022] Open
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future.
Collapse
Affiliation(s)
- Brandon J Dixon
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Medical University Innsbruck, Tyrol 6020, Austria.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
65
|
Wu Q, Chen W, Sinha B, Tu Y, Manning S, Thomas N, Zhou S, Jiang H, Ma H, Kroessler DA, Yao J, Li Z, Inder TE, Wang X. Neuroprotective agents for neonatal hypoxic-ischemic brain injury. Drug Discov Today 2015; 20:1372-81. [PMID: 26360053 DOI: 10.1016/j.drudis.2015.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/31/2015] [Accepted: 09/01/2015] [Indexed: 01/13/2023]
Abstract
Hypoxic-ischemic (H-I) brain injury in newborns is a major cause of morbidity and mortality that claims thousands of lives each year. In this review, we summarize the promising neuroprotective agents tested on animal models and pilot clinical studies of neonatal H-I brain injury according to the different phases of the disease. These agents target various phases of injury including the early phase of excitotoxicity, oxidative stress and apoptosis as well as late-phase inflammatory reaction and neural repair. We analyze the cell survival and cell death pathways modified by these agents in neonatal H-I brain injury. We aim to 'build a bridge' between animal trials of neuroprotective agents and potential candidate treatments for future clinical applications against H-I encephalopathy.
Collapse
Affiliation(s)
- Qiaofeng Wu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610091, China
| | - Wu Chen
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Clinical Laboratory, Dongfeng Hospital of Hubei University of Medicine, Shiyan, Hubei 442012, China
| | - Bharati Sinha
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yanyang Tu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Simon Manning
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Niranjan Thomas
- Department of Neonatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hong Jiang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - He Ma
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530031, China
| | - Daphne A Kroessler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiemin Yao
- Third Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530031, China
| | - Zhipu Li
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Terry E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
66
|
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2015. [PMID: 26209346 DOI: 10.1016/j.preteyeres.2015.07.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the last four decades, proliferative vitreoretinopathy (PVR) has defied the efforts of many researchers to prevent its occurrence or development. Thus, PVR is still the major complication following retinal detachment (RD) surgery and a bottle-neck for advances in cell therapy that require intraocular surgery. In this review we tried to combine basic and clinical knowledge, as an example of translational research, providing new and practical information for clinicians. PVR was defined as the proliferation of cells after RD. This idea was used for classifying PVR and also for designing experimental models used for testing many drugs, none of which were successful in humans. We summarize current information regarding the pathogenic events that follow any RD because this information may be the key for understanding and treating the earliest stages of PVR. A major focus is made on the intraretinal changes derived mainly from retinal glial cell reactivity. These responses can lead to intraretinal PVR, an entity that has not been clearly recognized. Inflammation is one of the major components of PVR, and we describe new genetic biomarkers that have the potential to predict its development. New treatment approaches are analyzed, especially those directed towards neuroprotection, which can also be useful for preventing visual loss after any RD. We also summarize the results of different surgical techniques and clinical information that is oriented toward the identification of high risk patients. Finally, we provide some recommendations for future classification of PVR and for designing comparable protocols for testing new drugs or techniques.
Collapse
Affiliation(s)
- J Carlos Pastor
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain.
| | - Jimena Rojas
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Universitario Austral, Universidad Austral, Buenos Aires, Argentina
| | - Salvador Pastor-Idoate
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Manchester Royal Eye Hospital, Manchester Vision Regeneration (MVR) Lab at NIHR/Wellcome Trust, Manchester, United Kingdom
| | - Salvatore Di Lauro
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Lucia Gonzalez-Buendia
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Santiago Delgado-Tirado
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
67
|
Revuelta M, Arteaga O, Montalvo H, Alvarez A, Hilario E, Martinez-Ibargüen A. Antioxidant Treatments Recover the Alteration of Auditory-Evoked Potentials and Reduce Morphological Damage in the Inferior Colliculus after Perinatal Asphyxia in Rat. Brain Pathol 2015; 26:186-98. [PMID: 25990815 DOI: 10.1111/bpa.12272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023] Open
Abstract
Maturation of the auditory pathway is dependent on the central nervous system myelination and it can be affected by pathologies such as neonatal hypoxic ischemic (HI) encephalopathy. Our aim was to evaluate the functional integrity of the auditory pathway and to visualize, by histological and cellular methods, the damage to the brainstem using a neonatal rat model of HI brain injury. To carry out this morphofunctional evaluation, we studied the effects of the administration of the antioxidants nicotine, melatonin, resveratrol and docosahexaenoic acid after hypoxia-ischemia on the inferior colliculus and the auditory pathway. We found that the integrity of the auditory pathway in the brainstem was altered as a consequence of the HI insult. Thus, the auditory brainstem response (ABR) showed increased I-V and III-V wave latencies. At a histological level, HI altered the morphology of the inferior colliculus neurons, astrocytes and oligodendricytes, and at a molecular level, the mitochondria membrane potential and integrity was altered during the first hours after the HI and reactive oxygen species (ROS) activity is increased 12 h after the injury in the brainstem. Following antioxidant treatment, ABR interpeak latency intervals were restored and the body and brain weight was recovered as well as the morphology of the inferior colliculus that was similar to the control group. Our results support the hypothesis that antioxidant treatments have a protective effect on the functional changes of the auditory pathway and on the morphological damage which occurs after HI insult.
Collapse
Affiliation(s)
- Miren Revuelta
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Olatz Arteaga
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Haizea Montalvo
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Agustin Martinez-Ibargüen
- Department of Otorhinolaryngology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| |
Collapse
|
68
|
Bruni O, Alonso-Alconada D, Besag F, Biran V, Braam W, Cortese S, Moavero R, Parisi P, Smits M, Van der Heijden K, Curatolo P. Current role of melatonin in pediatric neurology: clinical recommendations. Eur J Paediatr Neurol 2015; 19:122-33. [PMID: 25553845 DOI: 10.1016/j.ejpn.2014.12.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND/PURPOSE Melatonin, an indoleamine secreted by the pineal gland, plays a key role in regulating circadian rhythm. It has chronobiotic, antioxidant, anti-inflammatory and free radical scavenging properties. METHODS A conference in Rome in 2014 aimed to establish consensus on the roles of melatonin in children and on treatment guidelines. RESULTS AND CONCLUSION The best evidence for efficacy is in sleep onset insomnia and delayed sleep phase syndrome. It is most effective when administered 3-5 h before physiological dim light melatonin onset. There is no evidence that extended-release melatonin confers advantage over immediate release. Many children with developmental disorders, such as autism spectrum disorder, attention-deficit/hyperactivity disorder and intellectual disability have sleep disturbance and can benefit from melatonin treatment. Melatonin decreases sleep onset latency and increases total sleep time but does not decrease night awakenings. Decreased CYP 1A2 activity, genetically determined or from concomitant medication, can slow metabolism, with loss of variation in melatonin level and loss of effect. Decreasing the dose can remedy this. Animal work and limited human data suggest that melatonin does not exacerbate seizures and might decrease them. Melatonin has been used successfully in treating headache. Animal work has confirmed a neuroprotective effect of melatonin, suggesting a role in minimising neuronal damage from birth asphyxia; results from human studies are awaited. Melatonin can also be of value in the performance of sleep EEGs and as sedation for brainstem auditory evoked potential assessments. No serious adverse effects of melatonin in humans have been identified.
Collapse
Affiliation(s)
- Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Rome, Italy
| | - Daniel Alonso-Alconada
- Institute for Women's Health, University College London, London, UK; Department of Cell Biology and Histology, University of the Basque Country, Spain
| | - Frank Besag
- South Essex Partnership University NHS Foundation Trust, Bedfordshire, & Institute of Psychiatry, London, UK
| | - Valerie Biran
- Neonatal Intensive Care Unit, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Univ Paris Diderot, 75019 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, INSERM, U1141, 75019 Paris, France
| | - Wiebe Braam
- 's Heeren Loo, Department Advisium, Wekerom, The Netherlands; Governor Kremers Centre, University Maastricht, The Netherlands
| | - Samuele Cortese
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; School of Medicine, and the Centre for ADHD and Neurodevelopmental Disorders Across the Lifespan, Institute of Mental Health, University of Nottingham, UK; New York University Child Study Center, NY, USA
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University of Rome, Italy; Neurology Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pasquale Parisi
- Child Neurology-Chair of Pediatrics, c/o Sant'Andrea Hospital, NESMOS Department, Faculty of Medicine & Psychology, Sapienza University, Rome, Italy
| | - Marcel Smits
- Governor Kremers Centre, University Maastricht, The Netherlands; Department of Sleep-wake Disorders and Chronobiology, Hospital Gelderse Vallei Ede, The Netherlands
| | - Kristiaan Van der Heijden
- Leiden Institute for Brain and Cognition & Institute of Education and Child Studies, Leiden University, The Netherlands
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University of Rome, Italy.
| |
Collapse
|
69
|
Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol 2015; 35:186-91. [PMID: 25393080 DOI: 10.1038/jp.2014.186] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Melatonin has been shown to be neuroprotective in animal models. The objective of this study is to examine the effect of melatonin on clinical, biochemical, neurophysiological and radiological outcomes of neonates with hypoxic-ischemic encephalopathy (HIE). STUDY DESIGN We conducted a prospective trial on 45 newborns, 30 with HIE and 15 healthy controls. HIE infants were randomized into: hypothermia group (N=15; received 72-h whole-body cooling) and melatonin/hypothermia group (N=15; received hypothermia and five daily enteral doses of melatonin 10 mg kg(-1)). Serum melatonin, plasma superoxide dismutase (SOD) and serum nitric oxide (NO) were measured at enrollment for all infants (N=45) and at 5 days for the HIE groups (N=30). In addition to electroencephalography (EEG) at enrollment, all surviving HIE infants were studied with brain magnetic resonance imaging (MRI) and repeated EEG at 2 weeks of life. Neurologic evaluations and Denver Developmental Screening Test II were performed at 6 months. RESULT Compared with healthy neonates, the two HIE groups had increased melatonin, SOD and NO. At enrollment, the two HIE groups did not differ in clinical, laboratory or EEG findings. At 5 days, the melatonin/hypothermia group had greater increase in melatonin (P<0.001) and decline in NO (P<0.001), but less decline in SOD (P=0.004). The melatonin/hypothermia group had fewer seizures on follow-up EEG and less white matter abnormalities on MRI. At 6 months, the melatonin/hypothermia group had improved survival without neurological or developmental abnormalities (P<0.001). CONCLUSION Early administration of melatonin to asphyxiated term neonates is feasible and may ameliorate brain injury.
Collapse
|
70
|
Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G, Reiter RJ, Qu Y. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res 2015; 58:61-70. [PMID: 25401748 DOI: 10.1111/jpi.12193] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 02/06/2023]
Abstract
Silent information regulator 1 (SIRT1), a type of histone deacetylase, is a highly effective therapeutic target for protection against ischemia reperfusion (IR) injury (IRI). Previous studies showed that melatonin preserves SIRT1 expression in neuronal cells of newborn rats after hypoxia-ischemia. However, the definite role of SIRT1 in the protective effect of melatonin against cerebral IRI in adult has not been explored. In this study, the brain of adult mice was subjected to IRI. Prior to this procedure, the mice were given intraperitoneal with or without the SIRT1 inhibitor, EX527. Melatonin conferred a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema, and increased neurological scores. The melatonin-induced upregulation of SIRT1 was also associated with an increase in the anti-apoptotic factor, Bcl2, and a reduction in the pro-apoptotic factor Bax. Moreover, melatonin resulted in a well-preserved mitochondrial membrane potential, mitochondrial Complex I activity, and mitochondrial cytochrome c level while it reduced cytosolic cytochrome c level. However, the melatonin-elevated mitochondrial function was reversed by EX527 treatment. In summary, our results demonstrate that melatonin treatment attenuates cerebral IRI by reducing IR-induced mitochondrial dysfunction through the activation of SIRT1 signaling.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China; Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Pechanova O, Paulis L, Simko F. Peripheral and central effects of melatonin on blood pressure regulation. Int J Mol Sci 2014; 15:17920-37. [PMID: 25299692 PMCID: PMC4227197 DOI: 10.3390/ijms151017920] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023] Open
Abstract
The pineal hormone, melatonin (N-acetyl-5-methoxytryptamine), shows potent receptor-dependent and -independent actions, which participate in blood pressure regulation. The antihypertensive effect of melatonin was demonstrated in experimental and clinical hypertension. Receptor-dependent effects are mediated predominantly through MT1 and MT2 G-protein coupled receptors. The pleiotropic receptor-independent effects of melatonin with a possible impact on blood pressure involve the reactive oxygen species (ROS) scavenging nature, activation and over-expression of several antioxidant enzymes or their protection from oxidative damage and the ability to increase the efficiency of the mitochondrial electron transport chain. Besides the interaction with the vascular system, this indolamine may exert part of its antihypertensive action through its interaction with the central nervous system (CNS). The imbalance between the sympathetic and parasympathetic vegetative system is an important pathophysiological disorder and therapeutic target in hypertension. Melatonin is protective in CNS on several different levels: It reduces free radical burden, improves endothelial dysfunction, reduces inflammation and shifts the balance between the sympathetic and parasympathetic system in favor of the parasympathetic system. The increased level of serum melatonin observed in some types of hypertension may be a counter-regulatory adaptive mechanism against the sympathetic overstimulation. Since melatonin acts favorably on different levels of hypertension, including organ protection and with minimal side effects, it could become regularly involved in the struggle against this widespread cardiovascular pathology.
Collapse
Affiliation(s)
- Olga Pechanova
- Institute of Normal and Pathological Physiology and Centre of Excellence for Nitric Oxide Research, Slovak Academy of Sciences, Bratislava 81371, Slovak Republic.
| | - Ludovit Paulis
- Institute of Normal and Pathological Physiology and Centre of Excellence for Nitric Oxide Research, Slovak Academy of Sciences, Bratislava 81371, Slovak Republic.
| | - Fedor Simko
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava 81371, Slovak Republic.
| |
Collapse
|
72
|
Herrera EA, Macchiavello R, Montt C, Ebensperger G, Díaz M, Ramírez S, Parer JT, Serón-Ferré M, Reyes RV, Llanos AJ. Melatonin improves cerebrovascular function and decreases oxidative stress in chronically hypoxic lambs. J Pineal Res 2014; 57:33-42. [PMID: 24811332 DOI: 10.1111/jpi.12141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
Abstract
Chronic hypoxia during gestation and delivery results in oxidative stress and cerebrovascular dysfunction in the neonate. We assessed whether melatonin, a potent antioxidant and potential vasodilator, improves the cerebral vascular function in chronically hypoxic neonatal lambs gestated and born in the highlands (3600 m). Six lambs received melatonin (1 mg/kg per day oral) and six received vehicle, once a day for 8 days. During treatment, biometry and hemodynamic variables were recorded. After treatment, lambs were submitted to a graded FiO2 protocol to assess cardiovascular responses to oxygenation changes. At 12 days old, middle cerebral arteries (MCA) were collected for vascular reactivity, morphostructural, and immunostaining evaluation. Melatonin increased fractional growth at the beginning and improved carotid blood flow at all arterial PO2 levels by the end of the treatment (P < 0.05). Further, melatonin treatment improved vascular responses to potassium, serotonin, methacholine, and melatonin itself (P < 0.05). In addition, melatonin enhanced the endothelial response via nitric oxide-independent mechanisms in isolated arteries (162 ± 26 versus 266 ± 34 AUC, P < 0.05). Finally, nitrotyrosine staining as an oxidative stress marker decreased in the MCA media layer of melatonin-treated animals (0.01357 ± 0.00089 versus 0.00837 ± 0.00164 pixels/μm2 , P < 0.05). All the melatonin-induced changes were associated with no systemic cardiovascular alterations in vivo. In conclusion, oral treatment with melatonin modulates cerebral vascular function, resulting in a better cerebral perfusion and reduced oxidative stress in the neonatal period in chronically hypoxic lambs. Melatonin is a potential therapeutic agent for treating cerebrovascular dysfunction associated with oxidative stress and developmental hypoxia in neonates.
Collapse
Affiliation(s)
- Emilio A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ahmed MAE, Ahmed HI, El-Morsy EM. Melatonin protects against diazinon-induced neurobehavioral changes in rats. Neurochem Res 2013; 38:2227-36. [PMID: 23979727 DOI: 10.1007/s11064-013-1134-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 12/29/2022]
Abstract
Diazinon is an organophosphorous pesticide with a prominent toxicity on many body organs. Multiple mechanisms contribute to diazinon-induced deleterious effects. Inhibition of acetyl-cholinesterase, cholinergic hyperstimulation, and formation of reactive oxygen species may play a role. On the other hand, melatonin is a pineal hormone with a well-known potent antioxidant activity and a remarkable modulatory effect on many behavioral processes. The present study revealed that oral diazinon administration (25 mg/kg) increased anxiety behavior in rats subjected to elevated plus maze and open-field tests possibly via the induction of changes in brain monoamines levels (dopamine, norepinephrine, and serotonin). Additionally, brain lipid peroxides measured as malondialdehyde (MDA) and tumor necrosis factor alpha (TNF-α) levels were elevated, while the activity of brain glutathione peroxidase enzyme was reduced by diazinon. Co-administration of oral melatonin (10 mg/kg) significantly attenuated the anxiogenic activity of diazinon, rebalanced brain monoamines levels, decreased brain MDA and TNF-α levels, and increased the activity of brain glutathione peroxidase enzyme.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Egypt,
| | | | | |
Collapse
|