51
|
Effects of dapagliflozin and statins attenuate renal injury and liver steatosis in high-fat/high-fructose diet-induced insulin resistant rats. Toxicol Appl Pharmacol 2020; 396:114997. [DOI: 10.1016/j.taap.2020.114997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
|
52
|
Avogaro A, Fadini GP, Del Prato S. Reinterpreting Cardiorenal Protection of Renal Sodium-Glucose Cotransporter 2 Inhibitors via Cellular Life History Programming. Diabetes Care 2020; 43:501-507. [PMID: 31843950 DOI: 10.2337/dc19-1410] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/03/2019] [Indexed: 02/03/2023]
Abstract
Cardiovascular outcome trials have provided evidence that sodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment is associated with remarkably favorable cardiovascular outcomes. Here, we offer a novel hypothesis that may encompass many of these hypothetical mechanisms, i.e., the ability of SGLT2i to modify the trajectory of cell response to a toxic environment through modifications of cellular life history programs, either the defense program or the dormancy program. The choice between these programs is mainly determined by the environment. Hyperglycemia can be considered a toxic determinant able to interfere with the basic programs of cell evolution. While the defense program is characterized by activation of the immune response and anabolic metabolism, the dormancy program is an energy-preserving state with high resistance to environmental stressors, and it has strong analogy with animal hibernation where fuel is stored, metabolic rate is suppressed, and insulin secretion is reduced. The metabolic changes that follow treatment with SGLT2i are reminiscent of the metabolic picture characteristic of the dormancy program. Therefore, we hypothesize that the beneficial cardioprotective effects of SGLT2i may be related to their ability to switch cell life programming from a defense to a dormancy state, thus lending additional benefit.
Collapse
Affiliation(s)
- Angelo Avogaro
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
53
|
Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H, Sanajou D. Sodium-glucose co-transporters and diabetic nephropathy: Is there a link with toll-like receptors? Clin Exp Pharmacol Physiol 2020; 47:919-926. [PMID: 31968131 DOI: 10.1111/1440-1681.13261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/08/2019] [Accepted: 01/16/2020] [Indexed: 12/25/2022]
Abstract
The incidence of diabetes mellitus (DM) has increased alarmingly over the last decades. Despite taking measures aimed at controlling hyperglycaemia and blood pressure, the rate of end-stage renal disease (ESRD) is continually growing. Upon increased amounts of advanced glycation end products (AGEs) and their correspondent receptors (RAGEs), AGE-RAGE axis is over-activated in DM, being the first step in the initiation and propagation of inflammatory cascades. Meanwhile, HMGB1, released from damaged cells in the diabetic kidneys, is the most notable ligand for the highly expressed toll-like receptors (TLRs) and RAGEs. TLRs play an indispensable role in the pathogenesis of diabetic nephropathy. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors are hypoglycaemic agents acting on the renal proximal tubules to prevent glucose reabsorption and therefore increase urinary glucose excretion. Besides improving glycaemic control, these hypoglycaemic agents possess direct renoprotective properties. Here, therefore, we review the most recent findings regarding interrelationship between SGLT2 inhibitors and HMGB1-TLR4 axis.
Collapse
Affiliation(s)
- Zahra Ashrafi Jigheh
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbani Haghjo
- Biotechnology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Argani
- Urology and Nephrology Research Centre, Beheshti University of Medical Sciences, Tehran, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
54
|
Chung YR, Ha KH, Lee K, Kim DJ. Effects of sodium-glucose cotransporter-2 inhibitors and dipeptidyl peptidase-4 inhibitors on diabetic retinopathy and its progression: A real-world Korean study. PLoS One 2019; 14:e0224549. [PMID: 31658289 PMCID: PMC6816558 DOI: 10.1371/journal.pone.0224549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
The sodium-glucose cotransporter-2 inhibitors (SGLT2is) reduce the incidence of macrovascular complications of diabetes, while their effect on diabetic retinopathy has not been clarified. We compared the effects of SGLT2is with those of dipeptidyl peptidase-4 inhibitors (DPP4is) on the risk of diabetic retinopathy and its progression in people with type 2 diabetes. We performed a retrospective cohort study among people with type 2 diabetes who started on a SGLT2i or DPP4i from 2014 to 2016 according to the Korean National Health Insurance Service database. Subjects initiated on a SGLT2i or DPP4i were matched on a 1:1 basis according to their propensity scores, and Cox proportional hazards regression models were used to calculate the hazard ratios for the risk of diabetic retinopathy and its progression. After propensity score-matching, 41,430 patients without a history of diabetic retinopathy were identified as new users of a SGLT2i (n = 20,175) or DPP4i (n = 20,175). The hazard ratio (95% CI) for diabetic retinopathy was 0.89 (0.83–0.97) for SGLT2i initiators compared with DPP4i initiators. In patients with a history of diabetic retinopathy (n = 4,663 pairs), there was no significant difference in diabetic retinopathy progression between SGLT2i initiators and DPP4i initiators (hazard ratio 0.94, 95% CI 0.78–1.13). This real-world cohort study showed that SGLT2is might be associated with lower risk of diabetic retinopathy compared with DPP4is. Randomized controlled trials are needed to investigate the long-term effect of SGLT2is in diabetic retinopathy in people with diabetes.
Collapse
Affiliation(s)
- Yoo-Ri Chung
- Department of Ophthalmology, Ajou University School of Medicine, Suwon, Korea
| | - Kyoung Hwa Ha
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Kihwang Lee
- Department of Ophthalmology, Ajou University School of Medicine, Suwon, Korea
- * E-mail: (KL); (DJK)
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
- Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, Korea
- * E-mail: (KL); (DJK)
| |
Collapse
|
55
|
Volarevic V, Markovic BS, Jankovic MG, Djokovic B, Jovicic N, Harrell CR, Fellabaum C, Djonov V, Arsenijevic N, Lukic ML. Galectin 3 protects from cisplatin-induced acute kidney injury by promoting TLR-2-dependent activation of IDO1/Kynurenine pathway in renal DCs. Theranostics 2019; 9:5976-6001. [PMID: 31534532 PMCID: PMC6735380 DOI: 10.7150/thno.33959] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
Strategies targeting cross-talk between immunosuppressive renal dendritic cells (DCs) and T regulatory cells (Tregs) may be effective in treating cisplatin (CDDP)-induced acute kidney injury (AKI). Galectin 3 (Gal-3), expressed on renal DCs, is known as a crucial regulator of immune response in the kidneys. In this study, we investigated the role of Gal-3 for DCs-mediated expansion of Tregs in the attenuation of CDDP-induced AKI. Methods: AKI was induced in CDDP-treated wild type (WT) C57BL/6 and Gal-3 deficient (Gal-3-/-) mice. Biochemical, histological analysis, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, real-time PCR, magnetic cell sorting, flow cytometry and intracellular staining of renal-infiltrated immune cells were used to determine the differences between CDDP-treated WT and Gal-3-/- mice. Newly synthesized selective inhibitor of Gal-3 (Davanat) was used for pharmacological inhibition of Gal-3. Recombinant Gal-3 was used to demonstrate the effects of exogenously administered soluble Gal-3 on AKI progression. Pam3CSK4 was used for activation of Toll-like receptor (TLR)-2 in DCs. Cyclophosphamide or anti-CD25 antibody were used for the depletion of Tregs. 1-Methyl Tryptophan (1-MT) was used for pharmacological inhibition of Indoleamine 2,3-dioxygenase-1 (IDO1) in TLR-2-primed DCs which were afterwards used in passive transfer experiments. Results: CDDP-induced nephrotoxicity was significantly more aggravated in Gal-3-/- mice. Significantly reduced number of immunosuppressive TLR-2 and IDO1-expressing renal DCs, lower serum levels of KYN, decreased presence of IL-10-producing Tregs and significantly higher number of inflammatory IFN-γ and IL-17-producing neutrophils, Th1 and Th17 cells were observed in the CDDP-injured kidneys of Gal-3-/- mice. Pharmacological inhibitor of Gal-3 aggravated CDDP-induced AKI in WT animals while recombinant Gal-3 attenuated renal injury and inflammation in CDDP-treated Gal-3-/- mice. CDDP-induced apoptosis, driven by Bax and caspase-3, was aggravated in Gal-3-/- animals and in WT mice that received Gal-3 inhibitor (CDDP+Davanat-treated mice). Recombinant Gal-3 managed to completely attenuate CDDP-induced apoptosis in CDDP-injured kidneys of Gal-3-/- mice. Genetic deletion as well as pharmacological inhibition of Gal-3 in renal DCs remarkably reduced TLR-2-dependent activation of IDO1/KYN pathway in these cells diminishing their capacity to prevent transdifferentiation of Tregs in inflammatory Th1 and Th17 cells. Additionally, Tregs generated by Gal-3 deficient DCs were not able to suppress production of IFN-γ and IL-17 in activated neutrophils. TLR-2-primed DCs significantly enhanced capacity of Tregs for attenuation of CDDP-induced AKI and inflammation and expression of Gal-3 on TLR-2-primed DCs was crucially important for their capacity to enhance nephroprotective and immunosuppressive properties of Tregs. Adoptive transfer of TLR-2-primed WTDCs significantly expanded Tregs in the kidneys of CDDP-treated WT and Gal-3-/- recipients resulting in the suppression of IFN-γ and IL-17-driven inflammation and alleviation of AKI. Importantly, this phenomenon was not observed in CDDP-treated WT and Gal-3-/- recipients of TLR-2-primed Gal-3-/-DCs. Gal-3-dependent nephroprotective and immunosuppressive effects of renal DCs was due to the IDO1-induced expansion of renal Tregs since either inhibition of IDO1 activity in TLR-2-primed DCs or depletion of Tregs completely diminished DCs-mediated attenuation of CDDP-induced AKI. Conclusions: Gal-3 protects from CDDP-induced AKI by promoting TLR-2-dependent activation of IDO1/KYN pathway in renal DCs resulting in increased expansion of immunosuppressive Tregs in injured kidneys. Activation of Gal-3:TLR-2:IDO1 pathway in renal DCs should be further explored as new therapeutic approach for DC-based immunosuppression of inflammatory renal diseases.
Collapse
|
56
|
Abstract
Obesity is a severe worldwide epidemic. Obesity comorbidities, such as type 2 diabetes mellitus, hypertension, and atherosclerosis, are costly for patients and governments. The treatment of obesity involves several facets, including lifestyle changes, bariatric surgery, and pharmacotherapy. As changes in lifestyle require considerable patient commitment that is sometimes unachievable, and surgery is expensive and invasive, pharmacotherapy is the primary option for most patients. This review describes the pharmacotherapy currently available in the USA, Europe, and Brazil, focusing on its limitations. We then analyze the results from clinical trials of new drug candidates. Most drugs cause weight loss of < 4 kg compared with controls, and severe adverse effects have caused a number of drugs to be withdrawn from the market in several countries. Drugs under development have not shown more significant weight loss or reduced adverse effects. We conclude that a significant portion of obese patients have few treatment options because of the adverse effects and minimal weight loss associated with current pharmacotherapy. However, drugs currently under development appear unable to change this scenario in the near future. Thus, it is essential that new compounds are developed and new molecular targets studied so obesity can be efficiently treated in all patients in the future.
Collapse
|
57
|
Dokmak A, Almeqdadi M, Trivedi H, Krishnan S. Rise of sodium-glucose cotransporter 2 inhibitors in the management of nonalcoholic fatty liver disease. World J Hepatol 2019; 11:562-573. [PMID: 31388398 PMCID: PMC6669193 DOI: 10.4254/wjh.v11.i7.562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in the Western world. It is more prevalent in male gender, and with increasing age, obesity, and insulin resistance. Besides weight loss, there are limited treatment options. The use of anti-diabetic medications has been studied with mixed results. In this review, we discuss the use of anti-diabetic medications in the management of NAFLD with a specific focus on sodium-glucose cotransporter 2 inhibitors. We shed light on the evidence supporting their use in detail and discuss limitations and future directions.
Collapse
Affiliation(s)
- Amr Dokmak
- Division of Medicine, St. Elizabeth’s Medical Center, Brighton, MA 02135, United States
- Tufts University School of Medicine, Boston, MA 02111, United States
| | - Mohammad Almeqdadi
- Division of Medicine, St. Elizabeth’s Medical Center, Brighton, MA 02135, United States
- Tufts University School of Medicine, Boston, MA 02111, United States
| | - Hirsh Trivedi
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States
| | - Sandeep Krishnan
- Tufts University School of Medicine, Boston, MA 02111, United States
- Division of Gastroenterology, St. Elizabeth’s Medical Center, Brighton, MA 02135, United States
| |
Collapse
|
58
|
Raj H, Durgia H, Palui R, Kamalanathan S, Selvarajan S, Kar SS, Sahoo J. SGLT-2 inhibitors in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: A systematic review. World J Diabetes 2019; 10:114-132. [PMID: 30788048 PMCID: PMC6379733 DOI: 10.4239/wjd.v10.i2.114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common comorbidity with type 2 diabetes. The existing therapeutic options for NAFLD are not adequate. Hypocaloric diet and exercise is the cornerstone of therapy in NAFLD. Pioglitazone is the only drug recommended in diabetes patients with biopsy proven non-alcoholic steatohepatitis. The frequent coexistence of NAFLD and type 2 diabetes with their combined adverse health consequences and inadequate therapeutic options makes it necessary to search for newer alternatives. AIM To assess the effect of sodium glucose cotransporter-2 (SGLT-2) inhibitors on liver enzymes in type 2 diabetes patients with NAFLD. METHODS We searched PubMed/MEDLINE, Cochrane library, Google scholar, and Clinicaltrials.gov for the relevant articles to be included in this systematic review. Human studies done in type 2 diabetes patients with NAFLD treated with SGLT-2 inhibitors for at least 12 wk were included. Data from eight studies (four randomised controlled trials and four observational studies) were extracted and a narrative synthesis was done. A total of 214 patients were treated with SGLT-2 inhibitors in these studies (94 in randomised controlled trials and 120 in observational studies). RESULTS The primary outcome measure was change in serum alanine aminotransferase level. Out of eight studies, seven studies showed a significant decrease in serum alanine aminotransferase level. Most of the studies revealed reduction in serum level of other liver enzymes like aspartate aminotransferase and gamma glutamyl transferase. Five studies that reported a change in hepatic fat exhibited a significant reduction in hepatic fat content in those treated with SGLT-2 inhibitors. Likewise, among the three studies that evaluated a change in indices of hepatic fibrosis, two studies revealed a significant improvement in liver fibrosis. Moreover, there was an improvement in obesity, insulin resistance, glycaemia, and lipid parameters in those subjects taking SGLT-2 inhibitors. The studies disclosed that about 17% (30/176) of the subjects taking SGLT-2 inhibitors developed adverse events and more than 40% (10/23) of them had genitourinary tract infections. CONCLUSION Based on low to moderate quality of evidence, SGLT-2 inhibitors improve the serum level of liver enzymes, decrease liver fat, and fibrosis with additional beneficial effects on various metabolic parameters in type 2 diabetes patients with NAFLD.
Collapse
Affiliation(s)
- Henith Raj
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Harsh Durgia
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Rajan Palui
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sadishkumar Kamalanathan
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sandhiya Selvarajan
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Sitanshu Sekhar Kar
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| |
Collapse
|
59
|
Gharaibeh NE, Rahhal MN, Rahimi L, Ismail-Beigi F. SGLT-2 inhibitors as promising therapeutics for non-alcoholic fatty liver disease: pathophysiology, clinical outcomes, and future directions. Diabetes Metab Syndr Obes 2019; 12:1001-1012. [PMID: 31308716 PMCID: PMC6613609 DOI: 10.2147/dmso.s212715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly recognized as a major expanding national and international health problem. Despite numerous investigations using a variety of therapeutic agents, the positive result on any single medication has not been established enough to gain widespread approval. This is in part related to concerns regarding side effects of agents, but is also related to the complex etiology of NAFLD. An often discussed question has been whether insulin resistance that is frequently present in those with NAFLD is a cause of NAFLD or is merely associated with the condition. Nevertheless, it is clear that a very high proportion of patients with NAFLD are obese, have elements of metabolic syndrome, or have type 2 diabetes (T2DM). Also, much progress has been made toward a better understanding of the pathophysiology of NAFLD. Life-style interventions resulting in weight loss remain the foundation for the prevention and treatment of NAFLD. In addition, agents such as Vitamin E and pioglitazone as well as other glycemia-lowering agents including Glucagon Like Peptide-1 (GLP-1) receptor agonists and Sodium Glucose Contransporter-2 inhibitors (SGLT-2i(s)) exhibit positive effects on the clinical course of NAFLD. This narrative review summarizes the current understanding of the diagnosis, epidemiology, and pathophysiology of NAFLD and specifically focuses on the efficacy of SGLT2i(s) as a potentially promising group of agents for the management of patients with NAFLD.
Collapse
Affiliation(s)
- Naser Eddin Gharaibeh
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Correspondence: Naser Eddin GharaibehDepartment of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, 10900 Euclid Ave., Cleveland, OH44106-4951, USATel +1 443 983 8045Fax +1 216 844 3120Email
| | - Marie-Noel Rahhal
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| |
Collapse
|
60
|
Shintani H, Shintani T, Ashida H, Sato M. Calorie Restriction Mimetics: Upstream-Type Compounds for Modulating Glucose Metabolism. Nutrients 2018; 10:E1821. [PMID: 30469486 PMCID: PMC6316630 DOI: 10.3390/nu10121821] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022] Open
Abstract
Calorie restriction (CR) can prolong the human lifespan, but enforcing long-term CR is difficult. Therefore, a compound that reproduces the effect of CR without CR is needed. In this review, we summarize the current knowledge on compounds with CR mimetic (CRM) effects. More than 10 compounds have been listed as CRMs, some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, while the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Among these, we focus on upstream-type CRMs and propose their classification as compounds with energy metabolism inhibition effects, particularly glucose metabolism modulation effects. The upstream-type CRMs reviewed include chitosan, acarbose, sodium-glucose cotransporter 2 inhibitors, and hexose analogs such as 2-deoxy-d-glucose, d-glucosamine, and d-allulose, which show antiaging and longevity effects. Finally, we discuss the molecular definition of upstream-type CRMs.
Collapse
Affiliation(s)
- Hideya Shintani
- Department of Internal Medicine, Saiseikai Izuo Hospital, Osaka 551-0032, Japan.
| | - Tomoya Shintani
- United Graduate School of Agricultural Science, Ehime University, Matsuyama 790-8577, Japan.
| | - Hisashi Ashida
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.
| | - Masashi Sato
- Faculty of Agriculture, Kagawa University, Kagawa 761-0701, Japan.
| |
Collapse
|
61
|
Dubbu S, Vankar YD. Reaction of 1,2-Anhydrosugars with Arynes: An Approach to 1,2-Dihydrobenzofuran-Fused C
-Aryl Glycosides and C2-O
-Phenolic Glycals. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sateesh Dubbu
- Department of chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| | - Yashwant D. Vankar
- Department of chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur India
| |
Collapse
|
62
|
Stereoselective synthesis of 1,2-annulated-C-Aryl glycosides from carbohydrate-derived terminally unsubstituted dienes and arynes: Application towards synthesis of sugar-fused- or branched- naphthalenes, and C-Aryl glycosides. Carbohydr Res 2018; 465:29-34. [DOI: 10.1016/j.carres.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/03/2023]
|
63
|
Sugiyama S, Jinnouchi H, Kurinami N, Hieshima K, Yoshida A, Jinnouchi K, Tanaka M, Nishimura H, Suzuki T, Miyamoto F, Kajiwara K, Jinnouchi T. Impact of Dapagliflozin Therapy on Renal Protection and Kidney Morphology in Patients With Uncontrolled Type 2 Diabetes Mellitus. J Clin Med Res 2018; 10:466-477. [PMID: 29707088 PMCID: PMC5916535 DOI: 10.14740/jocmr3419w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background We examined whether the sodium-glucose cotransporter-2 inhibitor (SGLT2i) dapagliflozin can improve urine albumin-to-creatinine ratio (UACR) associated with a reduction in body weight or body fat in patients with type 2 diabetes mellitus (T2DM). Methods We prospectively recruited T2DM patients having inadequate glycemic control (hemoglobin A1c (HbA1c) > 7.0%) not on SGLT2i therapy. We treated the patients with add-on dapagliflozin treatment or intensification of non-SGLT2 inhibitor therapies for 6 months. We measured UACR, urine N-acetyl-β-glucosaminidase (uNAG), and body composition including total body fat mass (TBFM) as assessed by bioelectrical impedance analysis. We also investigated changes in length and radiation attenuation properties of the kidneys and abdominal fat area using computed tomography. Results We enrolled 62 patients with a mean HbA1c of 8.0%. The HbA1c and fasting blood glucose were significantly decreased in both the dapagliflozin-group and non-SGLT2i-group, with no significant difference between the two groups. Dapagliflozin treatment, but not non-SGLT2i treatment, significantly decreased UACR and uNAG. The changes in UACR and uNAG were significantly greater in the dapagliflozin group compared with the non-SGLT2i group. Dapagliflozin treatment, but not non-SGLT2i treatment, significantly decreased the body weight, TBFM, and abdominal fat area and significantly increased kidney length and radiation attenuation. The percentage change in UACR was significantly correlated with changes in TBFM, but not with body weight. By multivariate logistic regression analysis, dapagliflozin treatment was significantly associated with the improvement of UACR. Conclusions Add-on treatment with dapagliflozin exhibited significant renoprotective effects, with improvement of UACR and uNAG and increased kidney length and radiation attenuation in patients with uncontrolled T2DM.
Collapse
Affiliation(s)
- Seigo Sugiyama
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan.,Cardiovascular Division, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan.,These authors contributed equally to this study
| | - Hideaki Jinnouchi
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan.,Cardiovascular Division, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan.,Division of Preventive Cardiology, Department of Cardiovascular Medicine, Kumamoto University Hospital, Kumamoto, Japan.,These authors contributed equally to this study
| | | | - Kunio Hieshima
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Akira Yoshida
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | | | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto, Japan
| | | | - Tomoko Suzuki
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Fumio Miyamoto
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Keizo Kajiwara
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan.,Cardiovascular Division, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| | - Tomio Jinnouchi
- Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan.,Cardiovascular Division, Diabetes Care Center, Jinnouchi Hospital, Kumamoto, Japan
| |
Collapse
|