51
|
Hayakawa D, Watanabe Y, Gouda H. Unpolarizable molecular model describing electron distribution for treating halogen bonds. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
52
|
Bondarenko MA, Novikov AS, Korolkov IV, Sokolov MN, Adonin SA. Cu(II) 2-iodobenzoates: precursor-dependent formation of paddlewheel-like [Cu2(OOCR)4L2] or [Cu2L4(OOCR)2Cl2] binuclear complexes. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
53
|
Oliveira VP, Marcial BL, Machado FBC, Kraka E. Relating Bond Strength and Nature to the Thermodynamic Stability of Hypervalent Togni-Type Iodine Compounds. Chempluschem 2021; 86:1199-1210. [PMID: 34437775 DOI: 10.1002/cplu.202100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/09/2021] [Indexed: 11/08/2022]
Abstract
The bond strength and nature of a set of 32 Togni-like reagents have been investigated at the M062X/def2-TZVP(D) level of theory in acetonitrile described with the SMD continuum solvent model, to rationalize the main factors responsible for their thermodynamic stability in different conformations, and trifluoromethylation capabilities. For the assessment of bond strength, we utilized local stretching force constants and associated bond strength orders, complemented with local features of the electron density to access the nature of the bonds. Bond dissociation energies varied from 31.6 to 79.9 kcal/mol depending on the polarizing power of the ligand trans to CF3 . Based on the analysis of the Laplacian of the density, we propose that the charge-shift bond character plays an important role in the stability of the molecules studied, especially for those containing I-O bonds. New insights on the trans influence and on possible ways to fine-tune the stability of these reagents are provided.
Collapse
Affiliation(s)
- Vytor Pinheiro Oliveira
- Instituto Tecnológico de Aeronáutica (ITA), Departamento de Química, São José dos Campos, 12228-900, São Paulo, Brazil
| | - Bruna Luana Marcial
- Instituto Federal Goiano (IF Goiano), Núcleo de Química, Campus Morrinhos, Goiás, Brazil
| | - Francisco B C Machado
- Instituto Tecnológico de Aeronáutica (ITA), Departamento de Química, São José dos Campos, 12228-900, São Paulo, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas, 75275-0314, USA
| |
Collapse
|
54
|
Ibrahim MAA, Moussa NAM, Soliman MES, Moustafa MF, Al-Fahemi JH, El-Mageed HRA. On the Potentiality of X-T-X 3 Compounds (T = C, Si, and Ge, and X = F, Cl, and Br) as Tetrel- and Halogen-Bond Donors. ACS OMEGA 2021; 6:19330-19341. [PMID: 34337270 PMCID: PMC8320108 DOI: 10.1021/acsomega.1c03183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 05/08/2023]
Abstract
The versatility of the X-T-X3 compounds (where T = C, Si, and Ge, and X = F, Cl, and Br) to participate in tetrel- and halogen-bonding interactions was settled out, at the MP2/aug-cc-pVTZ level of theory, within a series of configurations for (X-T-X3)2 homodimers. The electrostatic potential computations ensured the remarkable ability of the investigated X-T-X3 monomers to participate in σ-hole halogen and tetrel interactions. The energetic findings significantly unveil the favorability of the tetrel···tetrel directional configuration with considerable negative binding energies over tetrel···halogen, type III halogen···halogen, and type II halogen···halogen analogs. Quantum theory of atoms in molecules and noncovalent interaction analyses were accomplished to disclose the nature of the tetrel- and halogen-bonding interactions within designed configurations, giving good correlations between the total electron densities and binding energies. Further insight into the binding energy physical meanings was invoked through using symmetry-adapted perturbation theory-based energy decomposition analysis, featuring the dispersion term as the most prominent force beyond the examined interactions. The theoretical results were supported by versatile crystal structures which were characterized by the same type of interactions. Presumably, the obtained findings would be considered as a solid underpinning for future supramolecular chemistry, materials science, and crystal engineering studies, as well as a fundamental linchpin for a better understanding of the biological activities of chemicals.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational
Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mahmoud E. S. Soliman
- Molecular
Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Mahmoud F. Moustafa
- Department
of Biology, College of Science, King Khalid
University, Abha 9004, Saudi Arabia
- Department
of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Jabir H. Al-Fahemi
- Chemistry
Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - H. R. Abd El-Mageed
- Micro-Analysis,
Environmental Research and Community Affairs Center (MAESC), Faculty
of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
55
|
Baykov SV, Semenov AV, Katlenok EA, Shetnev AA, Bokach NA. Comparative Structural Study of Three Tetrahalophthalic Anhydrides: Recognition of X···O(anhydride) Halogen Bond and πh···O(anhydride) Interaction. Molecules 2021; 26:3119. [PMID: 34071107 PMCID: PMC8197102 DOI: 10.3390/molecules26113119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/04/2022] Open
Abstract
Structures of three tetrahalophthalic anhydrides (TXPA: halogen = Cl (TCPA), Br (TBPA), I (TIPA)) were studied by X-ray diffraction, and several types of halogen bonds (HaB) and lone pair···π-hole (lp···πh) contacts were revealed in their structures. HaBs involving the central oxygen atom of anhydride group (further X···O(anhydride) were recognized in the structures of TCPA and TBPA. In contrast, for the O(anhydride) atom of TIPA, only interactions with the π system (π-hole) of the anhydride ring (further lp(O)···πh) were observed. Computational studies by a number of theoretical methods (molecular electrostatic potentials, the quantum theory of atoms in molecules, the independent gradient model, natural bond orbital analyses, the electron density difference, and symmetry-adapted perturbation theory) demonstrated that the X···O(anhydride) contacts in TCPA and TBPA and lp(O)···πh in TIPA are caused by the packing effect. The supramolecular architecture of isostructural TCPA and TBPA was mainly affected by X···O(acyl) and X···X HaBs, and, for TIPA, the main contribution provided I···I HaBs.
Collapse
Affiliation(s)
- Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| | - Artem V. Semenov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadskogo Pr, 119571 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Eugene A. Katlenok
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia;
| | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia;
| |
Collapse
|
56
|
Jabłoński M. Study of Beryllium, Magnesium, and Spodium Bonds to Carbenes and Carbodiphosphoranes. Molecules 2021; 26:2275. [PMID: 33920004 PMCID: PMC8071025 DOI: 10.3390/molecules26082275] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this article is to present results of theoretical study on the properties of C⋯M bonds, where C is either a carbene or carbodiphosphorane carbon atom and M is an acidic center of MX2 (M = Be, Mg, Zn). Due to the rarity of theoretical data regarding the C⋯Zn bond (i.e., the zinc bond), the main focus is placed on comparing the characteristics of this interaction with C⋯Be (beryllium bond) and C⋯Mg (magnesium bond). For this purpose, theoretical studies (ωB97X-D/6-311++G(2df,2p)) have been performed for a large group of dimers formed by MX2 (X = H, F, Cl, Br, Me) and either a carbene ((NH2)2C, imidazol-2-ylidene, imidazolidin-2-ylidene, tetrahydropyrymid-2-ylidene, cyclopropenylidene) or carbodiphosphorane ((PH3)2C, (NH3)2C) molecule. The investigated dimers are characterized by a very strong charge transfer effect from either the carbene or carbodiphosphorane molecule to the MX2 one. This may even be over six times as strong as in the water dimer. According to the QTAIM and NCI method, the zinc bond is not very different than the beryllium bond, with both featuring a significant covalent contribution. However, the zinc bond should be definitely stronger if delocalization index is considered.
Collapse
Affiliation(s)
- Mirosław Jabłoński
- Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
| |
Collapse
|
57
|
Abstract
The crystal structure of 1,12-diiodo-ortho-carborane 1,12-I2-1,2-C2B10H10 was determined by single crystal X-ray diffraction. In contrary to earlier studied 1,12-dibromo analogue 1,12-Br2-1,2- C2B10H10, its crystal packing is governed by the presence of the intermolecular I⋯I dihalogen bonds between the iodine atom attached to the carbon atom (acceptor) and the iodine atom attached to the antipodal boron atom (donor) of the carborane cage. The observed dihalogen bonds belong to the II type and are characterized by classical parameters: shortened I⋯I distance of 3.5687(9) Å, C–I⋯I angle of 172.61(11)° and B–I⋯I angle of 92.98(12)°.
Collapse
|
58
|
Abstract
We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes.
Collapse
|
59
|
Zarechnaya OM, Anisimov AA, Belov EY, Burakov NI, Kanibolotsky AL, Mikhailov VA. Polycentric binding in complexes of trimethylamine- N-oxide with dihalogens. RSC Adv 2021; 11:6131-6145. [PMID: 35423161 PMCID: PMC8694807 DOI: 10.1039/d0ra08165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/13/2021] [Indexed: 02/01/2023] Open
Abstract
Dihalogens readily interact with trimethylamine-N-oxide under ambient conditions. Accordingly, herein, stable 1 : 1 adducts were obtained in the case of iodine chloride and iodine bromide. The crystal and molecular structure of the trimethylamine-N-oxide-iodine chloride adduct was solved. Furthermore, the geometry and electronic structure of the trimethylamine-N-oxide-dihalogen complexes were studied computationally. Only molecular ensembles were found in the global minimum for the 1 : 1 stoichiometry. The O⋯X-Y halogen bond is the main factor for the thermodynamic stability of these complexes. Arguments for electrostatic interactions as the driving force for this noncovalent interaction were discussed. Also, the equilibrium structures are additionally stabilised by weak C-H⋯X hydrogen bonds. Consequently, formally monodentate ligands are bound in a polycentric manner.
Collapse
Affiliation(s)
- Olga M Zarechnaya
- L.M. Litvinenko Institute of Physical Organic and Coal Chemistry R. Luxemburg St., 70 Donetsk Ukraine
| | - Aleksei A Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 28 Vavilov St. 119991 Moscow Russia
- D.I. Mendeleev Russian Chemical Technological University 9 Miusskaya Sq. 125047 Moscow Russia
| | - Eugenii Yu Belov
- L.M. Litvinenko Institute of Physical Organic and Coal Chemistry R. Luxemburg St., 70 Donetsk Ukraine
| | - Nikolai I Burakov
- L.M. Litvinenko Institute of Physical Organic and Coal Chemistry R. Luxemburg St., 70 Donetsk Ukraine
| | | | - Vasilii A Mikhailov
- L.M. Litvinenko Institute of Physical Organic and Coal Chemistry R. Luxemburg St., 70 Donetsk Ukraine
| |
Collapse
|
60
|
Ishigaki Y, Asai K, Rouville HJ, Shimajiri T, Heitz V, Fujii‐Shinomiya H, Suzuki T. Molecular Recognition by Chalcogen Bond: Selective Charge‐Transfer Crystal Formation of Dimethylnaphthalene with Selenadiazolotetracyanonaphthoquinodimethane. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yusuke Ishigaki
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Kota Asai
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Henri‐Pierre Jacquot Rouville
- Institut de Chimie de Strasbourg CNRS UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Takuya Shimajiri
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| | - Valérie Heitz
- Institut de Chimie de Strasbourg CNRS UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Hiroshi Fujii‐Shinomiya
- Department of Chemistry Faculty of Science Tohoku University Sendai 980-8578 Japan
- On leave from Mitsubishi Oil Company, Co. Ltd
| | - Takanori Suzuki
- Department of Chemistry Faculty of Science Hokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
61
|
Deepa P, Thirumeignanam D. Understanding the impact of anticancer halogenated inhibitors and various functional groups (X = Cl, F, CF 3, CH 3, NH 2, OH, H) of casein kinase 2 (CK2). J Biomol Struct Dyn 2020; 40:5036-5052. [PMID: 33375908 DOI: 10.1080/07391102.2020.1866075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Main focus of study is to understand potency of halogen (X = Br) atom that exists in tetrabromobenzotriazole (TBB) derivatives of crystal CK2 ligand along with hinge region amino acids (VAL45, PHE113, GLU114, VAL116, ASN118) through interaction energy analysis. In turn to attain profound insight on nature of stabilization of core CK2 ligands: 1ZOE-L1, 1ZOG-L2, 1ZOH-L3, 2OXX-L4, 2OXY-L5, 3KXG-L6, 3KXH-L7 -L7 and 3KXM-L8, having four bromine atoms, we attempted to mutate all bromine (X = Br) atoms by various functional groups (X = Cl, F, CF3, CH3, NH2, OH, H) and binding strength along with amino acids was calculated. Most stable ligands exist in mutated NH2 functional groups: 1ZOG-L2, 1ZOH-L3, 2OXX-L4, 3KXM-L8 having interaction energy as -5.21, -14.87, -6.69 and -11.72 kcal/mol respectively, revealing strong binding strength. Second most stable mutated Cl functional group ligands also play a major role in 1ZOH-L3, 2OXX-L4 and 3KXM-L8 having interaction energy as -6.89, -5.37, and -10.48 kcal/mol respectively. Overall, this study will pave way for crystal growth and medicinal chemist to have cleared perceptive about structural properties of CK2 halogenated ligands with new insight on CK2 mutated functional group ligands. Further, it insists us to reuse existing CK2 crystal ligand with more preferable suggested binding contacts in course of new functional groups that lead to anticancer affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Deepa
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Duraisamy Thirumeignanam
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Tirunelveli, India
| |
Collapse
|
62
|
Kitzmiller NL, Wolf ME, Turney JM, Schaefer HF. The HOX⋯SO 2 (X=F, Cl, Br, I) Binary Complexes: Implications for Atmospheric Chemistry. Chemphyschem 2020; 22:112-126. [PMID: 33090675 DOI: 10.1002/cphc.202000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/16/2020] [Indexed: 11/07/2022]
Abstract
Sulfur dioxide and hypohalous acids (HOX, X=F, Cl, Br, I) are ubiquitous molecules in the atmosphere that are central to important processes like seasonal ozone depletion, acid rain, and cloud nucleation. We present the first theoretical examination of the HOX⋯SO2 binary complexes and the associated trends due to halogen substitution. Reliable geometries were optimized at the CCSD(T)/aug-cc-pV(T+d)Z level of theory for HOF and HOCl complexes. The HOBr and HOI complexes were optimized at the CCSD(T)/aug-cc-pV(D+d)Z level of theory with the exception of the Br and I atoms which were modeled with an aug-cc-pwCVDZ-PP pseudopotential. 27 HOX⋯SO2 complexes were characterized and the focal point method was employed to produce CCSDT(Q)/CBS interaction energies. Natural Bond Orbital analysis and Symmetry Adapted Perturbation Theory were used to classify the nature of each principle interaction. The interaction energies of all HOX⋯SO2 complexes in this study ranged from 1.35 to 3.81 kcal mol-1 . The single-interaction hydrogen bonded complexes spanned a range of 2.62 to 3.07 kcal mol-1 , while the single-interaction halogen bonded complexes were far more sensitive to halogen substitution ranging from 1.35 to 3.06 kcal mol-1 , indicating that the two types of interactions are extremely competitive for heavier halogens. Our results provide insight into the interactions between HOX and SO2 which may guide further research of related systems.
Collapse
Affiliation(s)
- Nathaniel L Kitzmiller
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Mark E Wolf
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Justin M Turney
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
63
|
Prokudina YV, Davydova EI, Virovets A, Stöger B, Peresypkina E, Pomogaeva AV, Timoshkin AY. Structures and Chemical Bonding in Antimony(III) Bromide Complexes with Pyridine. Chemistry 2020; 26:16338-16348. [PMID: 32672367 DOI: 10.1002/chem.202002261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/13/2020] [Indexed: 12/21/2022]
Abstract
Weakly or "partially" bonded molecules are an important link between the chemical and van der Waals interactions. Molecular structures of six new SbBr3 -Py complexes in the solid state have been determined by single-crystal X-ray diffraction analysis. In all complexes all Sb atoms adopt a pseudo-octahedral coordination geometry which is completed by additional Sb⋅⋅⋅Br contacts shorter than the sum of the van der Waals radii, with Br-Sb⋅⋅⋅Br angles close to 180°. To reveal the nature of Sb-Br and Sb-N interactions, the DFT calculations were performed followed by the analysis of the electrostatic potentials, the orbital interactions and the topological analysis. Based on Natural Bond Orbital (NBO) analysis, the Sb-Br interactions range from the covalent bonds to the pnictogen bonds. A simple structural parameter, non-covalence criterion (NCC) is defined as a ratio of the atom-atom distance to the linear combination of sums of covalent and van der Waals radii. NCC correlates with E(2) values for Sb-N, Sb-Cl and Sb-Br bonds, and appears to be useful criterion for a preliminary evaluation of the bonding situation.
Collapse
Affiliation(s)
- Yana V Prokudina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Elena I Davydova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Alexander Virovets
- University of Regensburg, Universitaetsstr. 31, 93053, Regensburg, Germany
| | - Berthold Stöger
- X-Ray Center, TU Wien, Getreidemarkt, 9, 1060, Vienna, Austria
| | | | - Anna V Pomogaeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St. Petersburg, Russia
| |
Collapse
|
64
|
Usoltsev AN, Korobeynikov NA, Novikov AS, Plyusnin PE, Kolesov BA, Fedin VP, Sokolov MN, Adonin SA. One-Dimensional Diiodine-Iodobismuthate(III) Hybrids Cat 3{[Bi 2I 9](I 2) 3}: Syntheses, Stability, and Optical Properties. Inorg Chem 2020; 59:17320-17325. [PMID: 33202124 DOI: 10.1021/acs.inorgchem.0c02599] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One-dimensional iodine-rich iodobismuthates(III), Cat3{[Bi2I9](I2)3} [Cat = 1,4-MePy (1) and 1-EtBMAP (2)], feature the highest amount of "trapped" diiodine units in polyhalogen-halometalates of p-block elements. Both complexes have narrow optical band gaps (1.55 and 1.63 eV, respectively) and moderate thermal stability.
Collapse
Affiliation(s)
- Andrey N Usoltsev
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentieva Street, Novosibirsk 630090, Russia
| | | | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky Street 26, Peterhof, Saint Petersburg 198504, Russia
| | - Pavel E Plyusnin
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentieva Street, Novosibirsk 630090, Russia
| | - Boris A Kolesov
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentieva Street, Novosibirsk 630090, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentieva Street, Novosibirsk 630090, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentieva Street, Novosibirsk 630090, Russia
| | - Sergey A Adonin
- Nikolaev Institute of Inorganic Chemistry (NIIC), Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentieva Street, Novosibirsk 630090, Russia.,South Ural State University, Lenina Street 76, Chelyabinsk 454080, Russia
| |
Collapse
|
65
|
Chen Y, Wang F. Intermolecular Interactions Involving Heavy Alkenes H 2Si=TH 2 (T = C, Si, Ge, Sn, Pb) with H 2O and HCl: Tetrel Bond and Hydrogen Bond. ACS OMEGA 2020; 5:30210-30225. [PMID: 33251455 PMCID: PMC7689927 DOI: 10.1021/acsomega.0c04682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The intermolecular interactions between the heavy alkenes H2Si=TH2 (T = C, Si, Ge, Sn, Pb) and H2O or HCl have been explored at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level. The various hydrogen bond (HB) and tetrel bond (TB) complexes can be located on the basis of molecular electrostatic potential maps of the isolated monomers. The competition between TB and HB interactions has been investigated through the relaxed potential energy surface scan. The results indicate that the HB complexes become more and more unstable relative to the TB complexes with the increase of the T atomic number, and cannot even retain as a minimum in some cases, for H2Si=TH2···H2O systems. In contrast, the HB complexes are generally more stable than TB complexes, and the TB complexes exhibit rather weak binding strength, for H2Si=TH2···HCl systems. The majority of the TB complexes formed between H2Si=TH2 and H2O possesses very strong binding strength with covalent characteristics. The noncovalent TB complexes can be divided into two types on the basis of the orbital interactions: π-hole complexes, with binding angles ranging from 91 to 111°, and hybrid σ/π-hole complexes, with binding angles ranging from 130 to 165°. The interplay between different molecular interactions has been explored, and an interesting result is that the covalent TB interaction is significantly abated and becomes noncovalent because of the competitive effect.
Collapse
|
66
|
Abstract
Chloroform (CHCl3) and dichloromethane (CH2Cl2) are model systems for the study of intermolecular interactions, such as hydrogen bonds and halogen–halogen interactions. Here we report a joint computational (density-functional perturbation theory (DFPT) modelling) and experimental (Raman scattering) study on the behaviour of the crystals of these compounds up to a pressure of 32 GPa. Comparing the experimental information on the Raman band positions and intensities with the results of calculations enabled us to characterize the pressure-induced evolution of the crystal structure of both compounds. We find that the previously proposed P63 phase of CHCl3 is in fact a metastable structure, and that up to 32 GPa the ambient-pressure Pnma structure is the ground state polymorph of this compound. For CH2Cl2 we confirm the stability of the ambient-pressure Pbcn structure up to 32 GPa. We show that the high-pressure evolution of the crystal geometry of CHCl3 in the Pnma structure is a result of the subtle balance between dipole–dipole interactions, hydrogen bonds and Cl···Cl contacts. For CH2Cl2 (Pbcn structure) the dipole–dipole interactions and hydrogen bonds are the main factors influencing the pressure-induced changes in the geometry.
Collapse
|
67
|
Yu D, Wu D, Liu JY, Li SY, Li Y. On single-electron magnesium bonding formation and the effect of methyl substitution. RSC Adv 2020; 10:34413-34420. [PMID: 35514394 PMCID: PMC9056782 DOI: 10.1039/d0ra06591a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
The complexes formed between MgX2 (X = F, H) molecules and alkyl radicals Y [Y = CH3, CH2CH3, CH(CH3)2, and C(CH3)3] have been characterized by using quantum chemical methods. The binding distance in all cases is less than the sum of vdW radii of Mg and C, indicating the formation of a non-covalent interaction, namely single-electron magnesium bond. Energy decomposition analysis reveals that electrostatic and polarization contributions are the major components responsible for the stability of the studied complexes. According to interaction energy, atoms in molecules, and independent gradient model analyses, methyl substitution on electron donor Y imposes a positive effect on its complexation with MgX2. When compared with other nonbonded interactions, the single-electron magnesium bond is found to have strength comparable to those of the single-electron beryllium bond and π-magnesium bond. The complexes formed between MgX2 (X = F, H) molecules and alkyl radicals Y [Y = CH3, CH2CH3, CH(CH3)2, and C(CH3)3] have been characterized by using quantum chemical methods.![]()
Collapse
Affiliation(s)
- Dan Yu
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University Changchun 130023 P. R. China
| | - Di Wu
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University Changchun 130023 P. R. China
| | - Jing-Yao Liu
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University Changchun 130023 P. R. China
| | - Si-Yi Li
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro Tokyo 152-8551 Japan
| | - Ying Li
- Institute of Theoretical Chemistry, Laboratory of Theoretical and Computational Chemistry, College of Chemistry, Jilin University Changchun 130023 P. R. China
| |
Collapse
|
68
|
Deepa P, Thirumeignanam D. Rising trend on the halogen and non-halogen derivatives (Br, Cl, CF 3, F, CH 3 and NH 2) in ruminal β-d-Xylopyranose - a quantum chemical perspective. J Biomol Struct Dyn 2020; 40:449-467. [PMID: 32880211 DOI: 10.1080/07391102.2020.1815577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The utmost aim of the current study is to find significance of the binding affinity in the halogen and non-halogen derivatives: Br, Cl, CF3, F, CH3 and NH2 of β-d-Xylopyranose with the hinge region amino acids of ruminant-β-glycosidase. The interaction energy analysis was carried out in detail through various density functional studies as M062X/def2-QZVP, M062X/LANL2DZ, B3LYP/LANL2DZ and M06HF/LANL2DZ level of theories. The total interaction energy of halogen derivatives: Br, Cl, F and CF3 are -618.21, -599.00, -720.45 and -553.08 kcal/mol respectively, and non-halogen derivative: amine group (NH2) is -87.96 kcal/mol at M062X/def2-QZVP level of theory, which exist with strong binding affinity. Ligand properties: dipole moment, polarizability, volume, molecular mass, electrostatic potential map was evaluated to understand its electrostatic and structural behavior. The nature of the bonds was inferred from the electrostatic potential map for all the halogen and non-halogen derivatives ligand. The stabilization energy from NBO analysis reveals the stability of single hydrogen and halogen bonds (N-H…Br, C-Br…O, N-H…Cl, C-Cl…O, O-H…F, C-H…F, N-H…F, C-F…O, N-H…O, O-H…O, N-H…N, O-H…N) in β-d-Xylopyranose and its derivatives. Overall, this study paves way for scientist and medicinal chemist in modelling new drugs. Further, it suggests mutations that increase the binding and may enhance the catalytic action and strengthen the complex diet in animals and hence recommended for experimental synthesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Deepa
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Duraisamy Thirumeignanam
- Department of Animal Nutrition, Veterinary College and Research Institute, TamilNadu Veterinary and Animal Sciences University, Tirunelveli, India
| |
Collapse
|
69
|
Ibrahim MAA, Moussa NAM. Unconventional Type III Halogen···Halogen Interactions: A Quantum Mechanical Elucidation of σ-Hole···σ-Hole and Di-σ-Hole Interactions. ACS OMEGA 2020; 5:21824-21835. [PMID: 32905309 PMCID: PMC7469378 DOI: 10.1021/acsomega.0c02887] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Herein, two unconventional type III halogen···halogen interactions, namely, σ-hole···σ-hole and di-σ-hole interactions, were reported in a series of halogenated complexes. In type III, the A-halogen···halogen angles are typically equal to 180°, and the occurrence of σ-hole on halogen atoms is mandatory. Using diverse quantum mechanical calculations, it was demonstrated that the occurrence of such interactions with binding energies varied from -0.35 to -1.30 kcal/mol. Symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) revealed that type III interactions are dominated by dispersion forces, while electrostatic forces are unfavorable. Cambridge Structure Database (CSD) survey unveiled the experimental evidence for the manifestation of σ-hole···σ-hole interactions in crystal structures. This work might be deemed as a foundation for a vast number of forthcoming crystal engineering and materials science studies.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
70
|
Matsuo K, Yamaguchi E, Itoh A. In Situ-Generated Halogen-Bonding Complex Enables Atom Transfer Radical Addition (ATRA) Reactions of Olefins. J Org Chem 2020; 85:10574-10583. [DOI: 10.1021/acs.joc.0c01135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuki Matsuo
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| |
Collapse
|
71
|
Danilkina NA, D'yachenko AS, Govdi AI, Khlebnikov AF, Kornyakov IV, Bräse S, Balova IA. Intramolecular Nicholas Reactions in the Synthesis of Heteroenediynes Fused to Indole, Triazole, and Isocoumarin. J Org Chem 2020; 85:9001-9014. [PMID: 32506914 DOI: 10.1021/acs.joc.0c00930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applicability of an intramolecular Nicholas reaction for the preparation of 10-membered O- and N-enediynes fused to indole, 1,2,3-triazole, and isocoumarin was investigated. The general approach to acyclic enediyne precursors fused to heterocycles includes inter- and intramolecular buta-1,3-diyne cyclizations with the formation of iodoethynylheterocycles, followed by Sonogashira coupling. The nature of both a heterocycle and a nucleophilic group affects the possibility of a 10-membered ring closure by the Nicholas reaction. Among oxacycles, an isocoumarin-fused enediyne was obtained. In the case of O-enediyne annulated with indole, instead of the formation of a 10-membered cycle, BF3-promoted addition of an OH-group to the proximal triple bond at the C3 position afforded dihydrofuryl-substituted indole. For 1,2,3-triazole-fused analogues, using NH-Ts as a nucleophilic functional group allowed obtaining 10-membered azaenediyne, while the substrate with a hydroxyl group gave only traces of the desired 10-membered oxacycle. An improved method for the deprotection of Co-complexes of cyclic enediynes using tetrabutylammonium fluoride in an acetone/water mixture and the investigation of the 10-membered enediynes' reactivity in the Bergman cyclization are also reported. In the solid state, all synthesized iodoethynylheterocycles were found to be involved in halogen bond (XB) formation with either O or N atoms as XB acceptors.
Collapse
Affiliation(s)
- Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander S D'yachenko
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Ilya V Kornyakov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.,Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
72
|
The differences and cooperativity between Ge (Sn)…O tetrel bonds and X (X = F, Cl, Br, and I) …O halogen bonds. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
73
|
Varadwaj PR. Combined Molecular Dynamics and DFT Simulation Study of the Molecular and Polymer Properties of a Catechol-Based Cyclic Oligomer of Polyether Ether Ketone. Polymers (Basel) 2020; 12:polym12051054. [PMID: 32375392 PMCID: PMC7285100 DOI: 10.3390/polym12051054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 01/03/2023] Open
Abstract
The geometrical, energetic, noncovalent, and material properties of a catechol-based cyclic oligomer of Polyether Ether Ketone (PEEK) called o-PEEK were investigated using Molecular Dynamics (MD) and Density Functional Theory (DFT) simulations. The DFT (and MD) calculation performed with the PBEsol functional (and COMPASS II force field) gave a density of 1.39 (and 1.36) gcm−3 and a volume of 2744.5 (and 2808.5) cm3 for o-PEEK and are comparable with the corresponding experimental values of 1.328 gcm−3 and 2884.6 cm3, respectively. The absolute values of the glass transition temperature (Tg) MD simulated using the unit-cell and 2 × 2 × 2 supercell geometries of the o-PEEK system were 424.4 and 428.6 K, respectively. Although these values slightly differ from each other, both are close to the experiment (Tg = 418.2 K). The results of the (charge) density gradient analysis suggest that the supramolecular assembly between the o-PEEK oligomers in the experimentally observed infinite semi-crystal is driven by a wide range of noncovalent interactions. While the individual local interactions between the oligomers were recognized to be weak-to-medium in strength and are theoretically difficult to quantify, the B97-D3/cc-pVTZ level stabilization energy responsible for the formation of each of the five binary complex configurations extracted from the PBEsol relaxed 2 × 2 × 2 supercell geometry of the o-PEEK system was calculated to vary between –3.5 and –33.0 kcal mol−1.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 1 Chome-1-1 Umezono, Tsukuba 305-8560, Ibaraki Prefecture, Japan
| |
Collapse
|
74
|
Crystal Structure and Supramolecular Architecture of Inorganic Ligand-Coordinated Salen-Type Schiff Base Complex: Insights into Halogen Bond from Theoretical Analysis and 3D Energy Framework Calculations. CRYSTALS 2020. [DOI: 10.3390/cryst10040334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To identify the effects of halogen bonding in the architecture of Schiff base complex supramolecular networks, we introduced halogenated Schiff-base 3-Br-5-Cl-salen as ligand and isolated a new salen-type manganese(III) complex [MnIII(Cl)(H2O)(3-Br-5-Cl-salen)] (1) where 3-Br-5-Cl-salen = N,N’-bis(3-bromo-5-chlorosalicylidene)-1,2-diamine. The complex was investigated in the solid-state for halogen bonds (XBs) by single crystal X-ray structure analysis. Meanwhile, theoretical calculations were carried out to rationalize the formation mechanism of different types of XBs in the complex. The analysis result of electronic structure of the halogen bonds indicated that the chlorine atom coordinated to the Mn(III) center possesses the most negative potential and acts as anionic XB acceptor (electron donor) to the adjacent substituted halogens on the ligand, meanwhile the intermolecular Mn-Cl···X-C halogen bonding plays a significant role in directing the packing arrangement of adjacent molecules and linking the 2D layers into a 3D network. In order to verify the above results and acquire detailed information, the title complex was further analyzed by using the Hirshfeld surface analyses.
Collapse
|
75
|
Marsan ES, Bayse CA. Halogen Bonding Interactions of Polychlorinated Biphenyls and the Potential for Thyroid Disruption. Chemistry 2020; 26:5200-5207. [PMID: 31849117 PMCID: PMC8812442 DOI: 10.1002/chem.201903904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/13/2019] [Indexed: 11/21/2023]
Abstract
Polychlorinated biphenyl (PCB) flame retardants are persistent pollutants and inhibit neurodevelopment, particularly in the early stages of life. Halogen bonding (XB) to the iodothyronine deiodinases (Dio) that modulate thyroid hormones (THs) is a potential mechanism for endocrine disruption. Cl⋅⋅⋅Se XB interactions of PCBs with SeMe- , a small model of the Dio active site selenocysteine, are compared with previous results on polybrominated diphenylethers (PBDEs) and THs using density functional theory. PCBs generally display weaker XB interactions compared to PBDEs and THs, consistent with the dependence of XB strength on the size of the halogen (I>Br>Cl). PCBs also do not meet a proposed energy threshold for substrates to undergo dehalogenation, suggesting they may behave as competitive inhibitors of Dio in addition to other mechanisms of endocrine disruption. XB interactions in PCBs are position-dependent, with ortho interactions slightly more favorable than meta and para interactions, suggesting that PCBs may have a greater effect on certain classes of Dio. Flexibility of PCBs around the biphenyl C-C bond is limited by ortho substitutions relative to the biphenyl linkage, which may contribute to the ability to inhibit Dio and other TH-related proteins.
Collapse
Affiliation(s)
- Eric S Marsan
- Department of Chemistry and Biochemistry, Old Dominion University, 1 Old Dominion University, Norfolk, VA, 23529, USA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, 1 Old Dominion University, Norfolk, VA, 23529, USA
| |
Collapse
|
76
|
Critical comparison of R X⋯Y and R H⋯Y directionality in halogen and hydrogen bonds using modern computational chemistry methods. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
77
|
Tao Y, Qiu Y, Zou W, Nanayakkara S, Yannacone S, Kraka E. In Situ Assessment of Intrinsic Strength of X-I⋯OA-Type Halogen Bonds in Molecular Crystals with Periodic Local Vibrational Mode Theory. Molecules 2020; 25:molecules25071589. [PMID: 32235623 PMCID: PMC7181175 DOI: 10.3390/molecules25071589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/03/2022] Open
Abstract
Periodic local vibrational modes were calculated with the rev-vdW-DF2 density functional to quantify the intrinsic strength of the X-I⋯OA-type halogen bonding (X = I or Cl; OA: carbonyl, ether and N-oxide groups) in 32 model systems originating from 20 molecular crystals. We found that the halogen bonding between the donor dihalogen X-I and the wide collection of acceptor molecules OA features considerable variations of the local stretching force constants (0.1–0.8 mdyn/Å) for I⋯O halogen bonds, demonstrating its powerful tunability in bond strength. Strong correlations between bond length and local stretching force constant were observed in crystals for both the donor X-I bonds and I⋯O halogen bonds, extending for the first time the generalized Badger’s rule to crystals. It is demonstrated that the halogen atom X controlling the electrostatic attraction between the σ-hole on atom I and the acceptor atom O dominates the intrinsic strength of I⋯O halogen bonds. Different oxygen-containing acceptor molecules OA and even subtle changes induced by substituents can tweak the n→σ∗(X-I) charge transfer character, which is the second important factor determining the I⋯O bond strength. In addition, the presence of the second halogen bond with atom X of the donor X-I bond in crystals can substantially weaken the target I⋯O halogen bond. In summary, this study performing the in situ measurement of halogen bonding strength in crystalline structures demonstrates the vast potential of the periodic local vibrational mode theory for characterizing and understanding non-covalent interactions in materials.
Collapse
Affiliation(s)
- Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Yue Qiu
- Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China;
| | - Sadisha Nanayakkara
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Seth Yannacone
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
- Correspondence:
| |
Collapse
|
78
|
Adonin SA, Novikov AS, Fedin VP. Heteroleptic Binuclear Iodoacetate Copper(II) Complexes with 3-Bromopyridine and 4-Ethylpyridine: Crystal Structures and Peculiarities of Contacts Halogen···Halogen. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
79
|
Hoffmann G, Tognetti V, Joubert L. Electrophilicity Indices and Halogen Bonds: Some New Alternatives to the Molecular Electrostatic Potential. J Phys Chem A 2020; 124:2090-2101. [DOI: 10.1021/acs.jpca.9b10233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guillaume Hoffmann
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan. Cedex, France
| | - Vincent Tognetti
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan. Cedex, France
| | - Laurent Joubert
- Normandy University, COBRA UMR 6014 & FR 3038, Université de Rouen INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan. Cedex, France
| |
Collapse
|
80
|
Abstract
The CH3Cl molecule has been used in several studies as an example purportedly to demonstrate that while Cl is weakly negative, a positive potential can be induced on its axial surface by the electric field of a reasonably strong Lewis base (such as O=CH2). The induced positive potential then has the ability to attract the negative site of the Lewis base, thus explaining the importance of polarization leading to the formation of the H3C–Cl···O=CH2 complex. By examining the nature of the chlorine’s surface in CH3Cl using the molecular electrostatic surface potential (MESP) approach, with MP2/aug-cc-pVTZ, we show that this view is not correct. The results of our calculations demonstrate that the local potential associated with the axial surface of the Cl atom is inherently positive. Therefore, it should be able to inherently act as a halogen bond donor. This is shown to be the case by examining several halogen-bonded complexes of CH3Cl with a series of negative sites. In addition, it is also shown that the lateral portions of Cl in CH3Cl features a belt of negative electrostatic potential that can participate in forming halogen-, chalcogen-, and hydrogen-bonded interactions. The results of the theoretical models used, viz. the quantum theory of atoms in molecules; the reduced density gradient noncovalent index; the natural bond orbital analysis; and the symmetry adapted perturbation theory show that Cl-centered intermolecular bonding interactions revealed in a series of 18 binary complexes do not involve a polarization-induced potential on the Cl atom.
Collapse
|
81
|
Mirosław B, Mahmoudi G, Ferenc W, Cristóvão B, Osypiuk D, Sarzyński J, Głuchowska H, Franconetti A, Frontera A. Halogen interactions in dinuclear copper(II) 2,4-dibromophenoxyacetate – crystal structure and quantum chemical calculations. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
82
|
X-ray diffraction and QTAIM calculations of the non-covalent intermolecular fluorine-fluorine interactions in tris(trifluoroacetylacetonato)-manganese(III). J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
83
|
Rossi E, De Santis M, Sorbelli D, Storchi L, Belpassi L, Belanzoni P. Spin-orbit coupling is the key to unraveling intriguing features of the halogen bond involving astatine. Phys Chem Chem Phys 2020; 22:1897-1910. [PMID: 31912075 DOI: 10.1039/c9cp06293a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effect of spin-orbit coupling (SOC) on the halogen bond involving astatine has been investigated using state-of-the-art two- and four-component relativistic calculations. Adducts between Cl-X (X = Cl, Br, I and At) and ammonia have been selected to establish a trend on going down the periodic table. The SOC influence has been explored not only on the geometric and energetic features that can be used to characterize the halogen bond strength but also on the three main contributions to it that are the charge transfer, the "σ-hole" (i.e. the localized region with a net positive electrostatic potential at the halogen site) and the "polar flattening" (which is related to the effective shape of the halogen site). A surprisingly large increase of the Cl-At dipole moment, due to the inclusion of SOC, has been worked out using four-component CCSD(T) reference calculations, indicating that this bond is significantly more ionic than one may predict. Due to the SOC effect, which induces a peculiar charge accumulation on the At side in the Cl-At dimer, a weakening of the astatine-mediated halogen bond occurs arising from the (i) reduced amount of charge transfer, (ii) decrease of the polar flattening and (iii) lowering of the short-range Coulomb potential. The analysis of the electronic structure of the Cl-At moiety allows for a rationalization of the SOC effects on all the considered features of the halogen bond, including an unprecedented unsymmetrical charge back-donation from Cl-At to ammonia.
Collapse
Affiliation(s)
- Elisa Rossi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Matteo De Santis
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Diego Sorbelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Loriano Storchi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Dipartimento di Farmacia, Università G. D'Annunzio, via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy. and CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
84
|
Ciancaleoni G, Nunzi F, Belpassi L. Charge Displacement Analysis-A Tool to Theoretically Characterize the Charge Transfer Contribution of Halogen Bonds. Molecules 2020; 25:molecules25020300. [PMID: 31940866 PMCID: PMC7024339 DOI: 10.3390/molecules25020300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
Theoretical bonding analysis is of prime importance for the deep understanding of the various chemical interactions, covalent or not. Among the various methods that have been developed in the last decades, the analysis of the Charge Displacement function (CD) demonstrated to be useful to reveal the charge transfer effects in many contexts, from weak hydrogen bonds, to the characterization of σ hole interactions, as halogen, chalcogen and pnictogen bonding or even in the decomposition of the metal-ligand bond. Quite often, the CD analysis has also been coupled with experimental techniques, in order to give a complete description of the system under study. In this review, we focus on the use of CD analysis on halogen bonded systems, describing the most relevant literature examples about gas phase and condensed phase systems. Chemical insights will be drawn about the nature of halogen bond, its cooperativity and its influence on metal-ligand bond components.
Collapse
Affiliation(s)
- Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-9351
| | - Francesca Nunzi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy;
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” del CNR (SCITEC-CNR), via Elce di Sotto 8, I-06123 Perugia, Italy;
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” del CNR (SCITEC-CNR), via Elce di Sotto 8, I-06123 Perugia, Italy;
| |
Collapse
|
85
|
Wang R, Cheng Z, Li Q, McDowell SA. Regular/abnormal variation in the strength and nature of the halogen bond between H
2
Te and the dihalogens: Prominent effect of methyl substituents. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruijing Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Ziyi Cheng
- Institute of Functional Materials and Molecular Imaging, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and TraumaHainan Medical University Haikou 571199 China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Sean A.C. McDowell
- Department of Biological and Chemical SciencesThe University of the West Indies Cave Hill Campus Barbados
| |
Collapse
|
86
|
Hou M, Zhu Y, Li Q, Scheiner S. Tuning the Competition between Hydrogen and Tetrel Bonds by a Magnesium Bond. Chemphyschem 2020; 21:212-219. [DOI: 10.1002/cphc.201901076] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/04/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Mingchang Hou
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Yifan Zhu
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical EngineeringYantai University Yantai 264005 China
| | - Steve Scheiner
- Department of Chemistry and BiochemistryUtah State University Logan UT 84322-0300 USA
| |
Collapse
|
87
|
Ramírez-Palma DI, García-Jacas CR, Carpio-Martínez P, Cortés-Guzmán F. Predicting reactive sites with quantum chemical topology: carbonyl additions in multicomponent reactions. Phys Chem Chem Phys 2020; 22:9283-9289. [DOI: 10.1039/d0cp00300j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The reactivity of an atom within a molecule depends mostly on the way the electron density polarizes reflected in the quadrupole moment of the reactive atom.
Collapse
Affiliation(s)
| | - Cesar R. García-Jacas
- Cátedras CONACYT – Departamento de Ciencias de la Computación
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)
- Ensenada
- Mexico
| | | | | |
Collapse
|
88
|
Taylor R. Identifying intermolecular atom⋯atom interactions that are not just bonding but also competitive. CrystEngComm 2020. [DOI: 10.1039/d0ce00270d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight criticises the QTAIM method and discusses algorithms for identifying intermolecular interactions that are both bonding and competitive.
Collapse
Affiliation(s)
- Robin Taylor
- Cambridge Crystallographic Data Centre
- Cambridge CB2 1EZ
- UK
| |
Collapse
|
89
|
Roca S, Hok L, Vianello R, Borovina M, Đaković M, Karanović L, Vikić-Topić D, Popović Z. The role of non-covalent intermolecular interactions on the diversity of crystal packing in supramolecular dihalopyridine–silver( i) nitrate complexes. CrystEngComm 2020. [DOI: 10.1039/d0ce01257b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structures of six novel Ag+ complexes with NO3− and dihalopyridines revealed intriguing differences that were interpreted by DFT calculations.
Collapse
Affiliation(s)
| | | | | | - Mladen Borovina
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Zagreb
- Croatia
| | - Marijana Đaković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Zagreb
- Croatia
| | - Ljiljana Karanović
- Laboratory for Crystallography
- Faculty of Mining and Geology
- University of Belgrade
- Belgrade
- Serbia
| | - Dražen Vikić-Topić
- Ruđer Bošković Institute
- Zagreb
- Croatia
- Juraj Dobrila University of Pula
- Pula
| | - Zora Popović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Zagreb
- Croatia
| |
Collapse
|
90
|
Suslonov VV, Eliseeva AA, Novikov AS, Ivanov DM, Dubovtsev AY, Bokach NA, Kukushkin VY. Tetrachloroplatinate(ii) anion as a square-planar tecton for crystal engineering involving halogen bonding. CrystEngComm 2020. [DOI: 10.1039/d0ce00576b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tetrachloroplatinate(ii) anion behaves as a useful XB-accepting tecton toward sigma-hole-donating organohalide species.
Collapse
Affiliation(s)
- Vitalii V. Suslonov
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Anastasiya A. Eliseeva
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Alexey Yu. Dubovtsev
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| |
Collapse
|
91
|
Oliveira VP, Marcial BL, Machado FBC, Kraka E. Metal-Halogen Bonding Seen through the Eyes of Vibrational Spectroscopy. MATERIALS 2019; 13:ma13010055. [PMID: 31861904 PMCID: PMC6982077 DOI: 10.3390/ma13010055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 11/17/2022]
Abstract
Incorporation of a metal center into halogen-bonded materials can efficiently fine-tune the strength of the halogen bonds and introduce new electronic functionalities. The metal atom can adopt two possible roles: serving as halogen acceptor or polarizing the halogen donor and acceptor groups. We investigated both scenarios for 23 metal–halogen dimers trans-M(Y2)(NC5H4X-3)2 with M = Pd(II), Pt(II); Y = F, Cl, Br; X = Cl, Br, I; and NC5H4X-3 = 3-halopyridine. As a new tool for the quantitative assessment of metal–halogen bonding, we introduced our local vibrational mode analysis, complemented by energy and electron density analyses and electrostatic potential studies at the density functional theory (DFT) and coupled-cluster single, double, and perturbative triple excitations (CCSD(T)) levels of theory. We could for the first time quantify the various attractive contacts and their contribution to the dimer stability and clarify the special role of halogen bonding in these systems. The largest contribution to the stability of the dimers is either due to halogen bonding or nonspecific interactions. Hydrogen bonding plays only a secondary role. The metal can only act as halogen acceptor when the monomer adopts a (quasi-)planar geometry. The best strategy to accomplish this is to substitute the halo-pyridine ring with a halo-diazole ring, which considerably strengthens halogen bonding. Our findings based on the local mode analysis provide a solid platform for fine-tuning of existing and for design of new metal–halogen-bonded materials.
Collapse
Affiliation(s)
- Vytor P. Oliveira
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Bruna L. Marcial
- Núcleo de Química, Instituto Federal Goiano (IF Goiano), Campus Morrinhos, 75650-000 Goiás, Brazil;
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA
- Correspondence: ; Tel.: +1-214-768-2611
| |
Collapse
|
92
|
Chiral Chalcogen Bond Donors Based on the 4,4'-Bipyridine Scaffold. Molecules 2019; 24:molecules24244484. [PMID: 31817814 PMCID: PMC6943643 DOI: 10.3390/molecules24244484] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Organocatalysis through chalcogen bonding (ChB) is in its infancy, as its proof-of-principle was only reported in 2016. Herein, we report the design and synthesis of new chiral ChB donors, as well as the catalytic activity evaluation of the 5,5′-dibromo-2,2′-dichloro-3-((perfluorophenyl)selanyl)-4,4′-bipyridine as organocatalyst. The latter is based on the use of two electron-withdrawing groups, a pentafluorophenyl ring and a tetrahalo-4,4′-bipyridine skeleton, as substituents at the selenium center. Atropisomery of the tetrahalo-4,4′-bipyridine motif provides a chiral environment to these new ChB donors. Their synthesis was achieved through either selective lithium exchange and trapping or a site-selective copper-mediated reaction. Pure enantiomers of the 3-selanyl-4,4′-bipyridine were obtained by high performance liquid chromatography enantioseparation on specific chiral stationary phase, and their absolute configuration was assigned by comparison of the measured and calculated electronic circular dichroism spectra. The capability of the selenium compound to participate in σ-hole-based interactions in solution was studied by 19F NMR. Even if no asymmetric induction has been observed so far, the new selenium motif proved to be catalytically active in the reduction of 2-phenylquinoline by Hantzsch ester.
Collapse
|
93
|
Affiliation(s)
- Marco Saccone
- Institut für Organische Chemie, Universität Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze 6, 90128 Palermo, Italy
| | - Luca Catalano
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
94
|
Varadwaj PR. Does Oxygen Feature Chalcogen Bonding? Molecules 2019; 24:E3166. [PMID: 31480378 PMCID: PMC6749412 DOI: 10.3390/molecules24173166] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/29/2023] Open
Abstract
Using the second-order Møller-Plesset perturbation theory (MP2), together with Dunning's all-electron correlation consistent basis set aug-cc-pVTZ, we show that the covalently bound oxygen atom present in a series of 21 prototypical monomer molecules examined does conceive a positive (or a negative) σ-hole. A σ-hole, in general, is an electron density-deficient region on a bound atom M along the outer extension of the R-M covalent bond, where R is the reminder part of the molecule, and M is the main group atom covalently bonded to R. We have also examined some exemplar 1:1 binary complexes that are formed between five randomly chosen monomers of the above series and the nitrogen- and oxygen-containing Lewis bases in N2, PN, NH3, and OH2. We show that the O-centered positive σ-hole in the selected monomers has the ability to form the chalcogen bonding interaction, and this is when the σ-hole on O is placed in the close proximity of the negative site in the partner molecule. Although the interaction energy and the various other 12 characteristics revealed from this study indicate the presence of any weakly bound interaction between the monomers in the six complexes, our result is strongly inconsistent with the general view that oxygen does not form a chalcogen-bonded interaction.
Collapse
Affiliation(s)
- Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan.
- The National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8560, Japan.
| |
Collapse
|
95
|
Varadwaj A, Marques HM, Varadwaj PR. Nature of halogen-centered intermolecular interactions in crystal growth and design: Fluorine-centered interactions in dimers in crystalline hexafluoropropylene as a prototype. J Comput Chem 2019; 40:1836-1860. [PMID: 31017721 DOI: 10.1002/jcc.25836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
The wide occurrence of halogen-centered noncovalent interactions in crystal growth and design prompted this study, which includes a mini review of recent advances in the field. Particular emphasis is placed on providing compelling theoretical evidence of the formation of these interactions between sites of positive electrostatic potential, as well as between sites of negative electrostatic potential, localized on the electrostatic surfaces of the bound fluorine atoms in a prototypical system, hexafluoropropylene (C3 F6 ), upon its interaction with another same molecule to form (C3 F6 )2 dimers. The existence of σ- and π-hole interactions is shown for the stable dimers. Even so, weakly bound interactions locally responsible in holding the molecular fragments together cannot and should not be overlooked since they are partly responsible for determining the overall geometry of the crystal. The results of combined quantum theory of atoms in molecules, molecular electrostatic surface potential, and reduced density gradient noncovalent interaction analyses showed that these latter interactions do indeed play a role in the stability and growth of crystalline C3 F6 itself and the (C3 F6 )2 dimers. A symmetry adapted perturbation theory energy decomposition analysis leads to the conclusion that a great majority of the (C3 F6 )2 dimers examined are the consequence of dispersion (and electrostatics), with nonnegligible contribution from polarization, which together competes with an exchange repulsion component to determine the equilibrium geometries. In a few structures of the (C3 F6 )2 dimer, the fluorine is found to serve as a six-center five-bond donor/acceptor, as found for carbon in other systems (Malischewski and Seppelt, Angew. Chem. Int. Ed. 2017, 56, 368). © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki Prefecture, 305-8560, Japan
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki Prefecture, 305-8560, Japan
| |
Collapse
|
96
|
Varadwaj PR, Varadwaj A, Marques HM, MacDougall PJ. The chalcogen bond: can it be formed by oxygen? Phys Chem Chem Phys 2019; 21:19969-19986. [DOI: 10.1039/c9cp03783g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study theoretically investigates the possibility of oxygen-centered chalcogen bonding in several complexes. Shown in the graph is such a bonding scenario formed between the electrophile on O in OF2 and the nucleophile on O in H2CO.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo 7-3-1
- Tokyo 113-8656
- Japan
| | - Arpita Varadwaj
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo 7-3-1
- Tokyo 113-8656
- Japan
| | - Helder M. Marques
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg 2050
- South Africa
| | | |
Collapse
|