51
|
Mahmud S, Rahman E, Nain Z, Billah M, Karmakar S, Mohanto SC, Paul GK, Amin A, Acharjee UK, Saleh MA. Computational discovery of plant-based inhibitors against human carbonic anhydrase IX and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:2754-2770. [DOI: 10.1080/07391102.2020.1753579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Ekhtiar Rahman
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Zulkar Nain
- Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Khustia, Bangladesh
| | - Mutasim Billah
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Sumon Karmakar
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Gobindo Kumar Paul
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Al Amin
- Institute of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Uzzal Kumar Acharjee
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Abu Saleh
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
52
|
Yu Z, Wang Y, Xu D, Zhu L, Hu M, Liu Q, Lan W, Jiang J, Wang L. G250 Antigen-Targeting Drug-Loaded Nanobubbles Combined with Ultrasound Targeted Nanobubble Destruction: A Potential Novel Treatment for Renal Cell Carcinoma. Int J Nanomedicine 2020; 15:81-95. [PMID: 32021166 PMCID: PMC6956713 DOI: 10.2147/ijn.s230879] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose We intended to design G250 antigen-targeting temsirolimus-loaded nanobubbles (G250-TNBs) based on the targeted drug delivery system and to combine G250-TNBs with ultrasound targeted nanobubble destruction (UTND) to achieve a synergistic treatment for renal cell carcinoma (RCC). Methods The filming-rehydration method was combined with mechanical shock and electrostatic interactions to prepare temsirolimus-loaded nanobubbles (TNBs). G250-TNBs were prepared by attaching anti-G250 nanobodies to the surface of TNBs using the biotin-streptavidin-bridge method. The ability of G250-TNBs to target the G250 antigen of RCC cells and the synergistic efficacy of G250-TNBs and UTND in the treatment of RCC were assessed. Results The average diameter of the prepared G250-TNBs was 368.7 ± 43.4 nm, the encapsulation efficiency was 68.59% ± 5.43%, and the loading efficiency was 5.23% ± 0.91%. In vitro experiments showed that the affinity of G250-TNBs to the human RCC 786-O cells was significantly higher than that of TNBs (P <0.05), and the inhibitory effect on 786-O cell proliferation and the induction of 786-O cell apoptosis was significantly enhanced in the group treated with G250-TNBs and UTND (G250-TNBs+ UTND group) compared with the other groups (P <0.05). In a nude mouse xenograft model, compared with TNBs, G250-TNBs could target the transplanted tumors and thus significantly enhance the ultrasound imaging of the tumors. Compared with all other groups, the G250-TNBs+UTND group exhibited a significantly lower tumor volume, a higher tumor growth inhibition rate, and a higher apoptosis index (P <0.05). Conclusion The combined G250-TNBs and UTND treatment can deliver anti-tumor drugs to local areas of RCC, increase the local effective drug concentration, and enhance anti-tumor efficacy, thus providing a potential novel method for targeted therapy of RCC.
Collapse
Affiliation(s)
- Zhiping Yu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yixuan Wang
- The First Clinical College, Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Xu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Lianhua Zhu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ming Hu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
53
|
Sarhan OM, Jain A, Mutwally HMA, Osman GH, Yun Jung S, Issa T, Elmogy M. Impact Effect of Methyl Tertiary-Butyl Ether "Twelve Months Vapor Inhalation Study in Rats". BIOLOGY 2019; 9:biology9010002. [PMID: 31861902 PMCID: PMC7168921 DOI: 10.3390/biology9010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 12/26/2022]
Abstract
We investigated the early risk of developing cancer by inhalation of low doses (60 µL/day) of methyl tertiary butyl ether (MTBE) vapors using protein SDS-PAGE and LC-MS/MS analysis of rat sera. Furthermore, histological alterations were assessed in the trachea and lungs of 60 adult male Wistar rats. SDS-PAGE of blood sera showed three protein bands corresponding to 29, 28, and 21 kDa. Mass spectroscopy was used to identify these three bands. The upper and middle protein bands showed homology to carbonic anhydrase 2 (CA II), whereas the lower protein band showed homology with peroxiredoxin 2. We found that exposure to MTBE resulted in histopathological alterations in the trachea and the lungs. The histological anomalies of trachea and lung showed that the lumen of trachea, bronchi, and air alveoli packed with free and necrotic epithelial cells (epithelialization). The tracheal lamina propria of lung demonstrated aggregation of lymphoid cells, lymphoid hyperplasia, hemorrhage, adenomas, fibroid degeneration, steatosis, foam cells, severe inflammatory cells with monocytic infiltration, edema, hemorrhage. Occluded, congested, and hypertrophied lung arteries in addition, degenerated thyroid follicles, were observed. The hyaline cartilage displayed degeneration, deformation, and abnormal protrusion. In conclusion, our results suggest that inhalation of very low concentrations of the gasoline additive MTBE could induce an increase in protein levels and resulted in histopathological alterations of the trachea and the lungs.
Collapse
Affiliation(s)
- Osama M. Sarhan
- Biology Department, Faculty of Science, Umm Al-Qura University, Makkah 673, Saudi Arabia; (O.M.S.); (H.M.A.M.)
- Zoology Department, Faculty of Science Fayoum University, Fayoum 63514, Egypt
| | - Antrix Jain
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Hamed M. A. Mutwally
- Biology Department, Faculty of Science, Umm Al-Qura University, Makkah 673, Saudi Arabia; (O.M.S.); (H.M.A.M.)
| | - Gamal H. Osman
- Biology Department, Faculty of Science, Umm Al-Qura University, Makkah 673, Saudi Arabia; (O.M.S.); (H.M.A.M.)
- Microbial Genetics Department, Agricultural Genetic Engineering Research Institute (AGERI), Giza, Cairo 12619, Egypt
- Research Laboratories Center, Faculty of Applied Science, Umm Al-Qura University, Mecca 24381, Saudi Arabia
- Correspondence:
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Tawfik Issa
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Mohamed Elmogy
- Entomology Department, Cairo University, Giza 12613, Egypt;
| |
Collapse
|
54
|
Meenakumari K, Bupesh G, Vasanth S, Vasu C, Pandian K, Prabhu K, Prasath S. Molecular docking based virtual screening of carbonic anhydrase IX with coumarin (a cinnamon compound) derived ligands. Bioinformation 2019; 15:744-749. [PMID: 31831957 PMCID: PMC6900322 DOI: 10.6026/97320630015744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023] Open
Abstract
It is of interest to design carbonic anhydrase IX (CAIX) inhibitors with improved features using molecular docking based virtual high through put screening of ligands. Coumarin (a cinnamon compound with pharmacological activity) is known as a potent phytal compound blocking tumor growth. Hence, a series of 17 coumarin derivatives were designed using the CHEMSKETCH software for docking analysis with CAIX. The catalytic site analysis of CAIX for binding with ligand molecules was completed using the SCHRODINGER package (2009). Thus, 17 ligands with optimal binding features with CAIX were selected following the calculation of ADME/T properties. We report ligands #41, #42, #19 and #15 showed good docking score, glide energy and hydrogen bond interactions without vdW clash. We further show that N-(3,4,5-trimethoxy-phenylcarbamoylmethyl) designated as compound #41 have the highest binding energy (-61.58) with optimal interactions with the catalytic residues (THR 199, PRO 201, HIS 119, HIS 94) of CAIX.
Collapse
Affiliation(s)
- Krishnamoorthy Meenakumari
- Research and Development Wing, Central Research Laboratory, Sree Balaji Medical College and Hospital (SBMCH), BIHER, Chrompet, Chennai-600044, India
| | - Giridharan Bupesh
- Research and Development Wing, Central Research Laboratory, Sree Balaji Medical College and Hospital (SBMCH), BIHER, Chrompet, Chennai-600044, India
- Department of Virology, King Institute of Preventive Medicine and Research, Guindy, Chennai-600032, India
| | - Shakthivel Vasanth
- Research and Development Wing, Central Research Laboratory, Sree Balaji Medical College and Hospital (SBMCH), BIHER, Chrompet, Chennai-600044, India
| | - C.Arul Vasu
- Department of Zoology, University of Madras, Guindy Campus, Tamil Nadu, India
| | - Kanniyan Pandian
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Tamil Nadu, India
| | - Kaliyperumal Prabhu
- Department of Anantomy, Sree Balaji Medical College and Hospital, BIHER, Chromepet, Chennai
| | - S Prasath
- Department of Biomedical Engineering, Bharath Institute of Higher Education and Research, Chennai-605005, Tamil Nadu, India
| |
Collapse
|
55
|
Garousi J, Huizing FJ, Vorobyeva A, Mitran B, Andersson KG, Leitao CD, Frejd FY, Löfblom J, Bussink J, Orlova A, Heskamp S, Tolmachev V. Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts. Sci Rep 2019; 9:14907. [PMID: 31624303 PMCID: PMC6797765 DOI: 10.1038/s41598-019-51445-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Carbonic anhydrase IX (CAIX) is a cancer-associated molecular target for several classes of therapeutics. CAIX is overexpressed in a large fraction of renal cell carcinomas (RCC). Radionuclide molecular imaging of CAIX-expression might offer a non-invasive methodology for stratification of patients with disseminated RCC for CAIX-targeting therapeutics. Radiolabeled monoclonal antibodies and their fragments are actively investigated for imaging of CAIX expression. Promising alternatives are small non-immunoglobulin scaffold proteins, such as affibody molecules. A CAIX-targeting affibody ZCAIX:2 was re-designed with the aim to decrease off-target interactions and increase imaging contrast. The new tracer, DOTA-HE3-ZCAIX:2, was labeled with 111In and characterized in vitro. Tumor-targeting properties of [111In]In-DOTA-HE3-ZCAIX:2 were compared head-to-head with properties of the parental variant, [99mTc]Tc(CO)3-HE3-ZCAIX:2, and the most promising antibody fragment-based tracer, [111In]In-DTPA-G250(Fab’)2, in the same batch of nude mice bearing CAIX-expressing RCC xenografts. Compared to the 99mTc-labeled parental variant, [111In]In-DOTA-HE3-ZCAIX:2 provides significantly higher tumor-to-lung, tumor-to-bone and tumor-to-liver ratios, which is essential for imaging of CAIX expression in the major metastatic sites of RCC. [111In]In-DOTA-HE3-ZCAIX:2 offers significantly higher tumor-to-organ ratios compared with [111In]In-G250(Fab’)2. In conclusion, [111In]In-DOTA-HE3-ZCAIX:2 can be considered as a highly promising tracer for imaging of CAIX expression in RCC metastases based on our results and literature data.
Collapse
Affiliation(s)
- Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Fokko J Huizing
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bogdan Mitran
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ken G Andersson
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Charles Dahlsson Leitao
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Sandra Heskamp
- Department of Radiology and Nuclear medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
56
|
Koruza K, Lafumat B, Nyblom M, Mahon BP, Knecht W, McKenna R, Fisher SZ. Structural comparison of protiated, H/D-exchanged and deuterated human carbonic anhydrase IX. Acta Crystallogr D Struct Biol 2019; 75:895-903. [PMID: 31588921 PMCID: PMC6778848 DOI: 10.1107/s2059798319010027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Human carbonic anhydrase IX (CA IX) expression is upregulated in hypoxic solid tumours, promoting cell survival and metastasis. This observation has made CA IX a target for the development of CA isoform-selective inhibitors. To enable structural studies of CA IX-inhibitor complexes using X-ray and neutron crystallography, a CA IX surface variant (CA IXSV; the catalytic domain with six surface amino-acid substitutions) has been developed that can be routinely crystallized. Here, the preparation of protiated (H/H), H/D-exchanged (H/D) and deuterated (D/D) CA IXSV for crystallographic studies and their structural comparison are described. Four CA IXSV X-ray crystal structures are compared: two H/H crystal forms, an H/D crystal form and a D/D crystal form. The overall active-site organization in each version is essentially the same, with only minor positional changes in active-site solvent, which may be owing to deuteration and/or resolution differences. Analysis of the crystal contacts and packing reveals different arrangements of CA IXSV compared with previous reports. To our knowledge, this is the first report comparing three different deuterium-labelled crystal structures of the same protein, marking an important step in validating the active-site structure of CA IXSV for neutron protein crystallography.
Collapse
Affiliation(s)
- K. Koruza
- Department of Biology and Lund Protein Production Platform, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - B. Lafumat
- Department of Biology and Lund Protein Production Platform, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - M. Nyblom
- Department of Biology and Lund Protein Production Platform, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - B. P. Mahon
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - W. Knecht
- Department of Biology and Lund Protein Production Platform, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
| | - R. McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - S. Z. Fisher
- Department of Biology and Lund Protein Production Platform, Lund University, Sölvegatan 35, 223 62 Lund, Sweden
- Scientific Activities Division, European Spallation Source ERIC, Odarslövsvägen 113, 224 84 Lund, Sweden
| |
Collapse
|
57
|
Kim S, Kim NJ, Hong S, Kim S, Sung J, Jin MS. The structural basis of the low catalytic activities of the two minor β-carbonic anhydrases of the filamentous fungus Aspergillus fumigatus. J Struct Biol 2019; 208:61-68. [PMID: 31376470 DOI: 10.1016/j.jsb.2019.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 11/30/2022]
Abstract
The β-carbonic anhydrases (β-CAs) are widely distributed zinc-metalloenzymes that play essential roles in growth, survival, development and virulence in fungi. The majority of filamentous ascomycetes possess multiple β-CA isoforms among which major and minor forms have been characterized. We examined the catalytic behavior of the two minor β-CAs, CafC and CafD, of Aspergillus fumigatus, and found that both enzymes exhibited low CO2 hydration activities. To understand the structural basis of their low activities, we performed X-ray crystallographic and site-directed mutagenesis studies. Both enzymes exist as homodimers. Like other Type-I β-CAs, the CafC active site has an "open" conformation in which the zinc ion is tetrahedrally coordinated by three residues (C36, H88 and C91) and a water molecule. However, L25 and L78 on the rim of the catalytic entry site protrude into the active site cleft, partially occluding access to it. Single (L25G or L78G) and double mutants provided evidence that widening the entrance to the active site greatly accelerates catalytic activity. By contrast, CafD has a typical Type-II "closed" conformation in which the zinc-bound water molecule is replaced by aspartic acid (D36). The most likely explanation for this result is that an arginine that is largely conserved within the β-CA family is replaced by glycine (G38), so that D36 cannot undergo a conformational change by forming a D-R pair that creates the space for a zinc-bound water molecule and switches the enzyme to the active form. The CafD structure also reveals the presence of a "non-catalytic" zinc ion in the dimer interface, which may contribute to stabilizing the dimeric assembly.
Collapse
Affiliation(s)
- Songwon Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Na Jin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Semi Hong
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Subin Kim
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jongmin Sung
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
58
|
New Monoclonal Antibodies for a Selective Detection of Membrane-Associated and Soluble Forms of Carbonic Anhydrase IX in Human Cell Lines and Biological Samples. Biomolecules 2019; 9:biom9080304. [PMID: 31349673 PMCID: PMC6723738 DOI: 10.3390/biom9080304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023] Open
Abstract
Monoclonal antibodies (MAbs) selectively targeting tumor-associated antigens such as carbonic anhydrase IX (CA IX) can significantly contribute to research, diagnostics, and treatment of CA IX-related cancers. CA IX is overexpressed in numerous hypoxic cancers where it promotes tumor progression. Therefore, it is considered as a promising tumor biomarker. A novel collection of MAbs against recombinant CA IX was developed and evaluated in different immunoassays for studying CA IX expression. The reactivity of MAbs with native cell surface protein was confirmed by flow cytometry and the presence of hypoxia-inducible CA IX was investigated in several human cancer cell lines. In addition, the applicability of MAbs for visualization of CA IX-positive tumor cells by immunofluorescence microscopy was demonstrated. MAb H7 was identified as the most promising MAb for different immunoassays. It recognized a linear epitope covering CA IX sequence of 12 amino acid residues 55-GEDDPLGEEDLP-66 within the proteoglycan domain. The MAb H7 was the only one of the collection to immunoprecipitate CA IX protein from cell lysates and detect the denatured CA IX with near-infrared fluorescence Western blot. It was also employed in sandwich enzyme-linked immunosorbent assay to detect a soluble form of CA IX in growth medium of tumor cells and blood plasma samples. The diagnostic potential of the MAb H7 was confirmed on formalin-fixed and paraffin-embedded tissue specimen of cervical carcinoma in situ by immunohistochemistry. The generated MAbs, in particularly clone H7, have great potential in diagnostics and research of CA IX-related cancers.
Collapse
|
59
|
Dual-drug loaded micelle for combinatorial therapy targeting HIF and mTOR signaling pathways for ovarian cancer treatment. J Control Release 2019; 307:272-281. [PMID: 31260753 DOI: 10.1016/j.jconrel.2019.06.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the tumor protein (TP53) and the mammalian target of rapamycin (mTOR) pathway have been elucidated as driver mutations in ovarian carcinomas that transform into an invasive phenotype under hypoxic conditions. Chetomin (CHE) targets the hypoxic pathway while Everolimus (EVR) acts on the mTOR pathway. Poor aqueous solubilities of both compounds limit their clinical applications. Diblock copolymer nanoplatforms of methoxy poly(ethylene glycol)2000-block-poly (lactic acid)1800 (mPEG2000-b-PLA1800) and (mPEG4000-b-PLA2200) were used to formulate individual and dual drug loaded micelles (DDM) using the solvent evaporation method. The CHE micelles (CHE-M) had a size of 21 nm with CHE loading of 0.5 mg/mL while the EVR micelles (EVR-M) and the DDM had a size around 35 and 39 nm, respectively, with EVR loading up to 2.3 mg/mL. The anti-proliferative effects of these micelles have been tested in vitro in three ovarian cell lines (ES2, OVCAR3 and TOV21G) with the DDM exhibiting a strong synergistic anti-proliferative effect in the ES2 and the TOV21G cells. The DDM were able to significantly induce tumor regression in ES2 ovarian xenograft mouse models by inhibiting angiogenesis and inducing apoptosis when compared to the individual micelles. The inhibition of hypoxia inducible factor (HIF) and the mTOR pathways has been elucidated using immunohistochemistry studies. In conclusion, we have developed a mPEG-b-PLA based micellar nanoplatform that could prevent drug resistance by delivering multiple drugs at therapeutically relevant concentrations for effectively treating ovarian carcinomas.
Collapse
|
60
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
61
|
Baig MH, Adil M, Khan R, Dhadi S, Ahmad K, Rabbani G, Bashir T, Imran MA, Husain FM, Lee EJ, Kamal MA, Choi I. Enzyme targeting strategies for prevention and treatment of cancer: Implications for cancer therapy. Semin Cancer Biol 2019; 56:1-11. [DOI: 10.1016/j.semcancer.2017.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
|
62
|
A non-catalytic function of carbonic anhydrase IX contributes to the glycolytic phenotype and pH regulation in human breast cancer cells. Biochem J 2019; 476:1497-1513. [PMID: 31072911 DOI: 10.1042/bcj20190177] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
The most aggressive and invasive tumor cells often reside in hypoxic microenvironments and rely heavily on rapid anaerobic glycolysis for energy production. This switch from oxidative phosphorylation to glycolysis, along with up-regulation of the glucose transport system, significantly increases the release of lactic acid from cells into the tumor microenvironment. Excess lactate and proton excretion exacerbate extracellular acidification to which cancer cells, but not normal cells, adapt. We have hypothesized that carbonic anhydrases (CAs) play a role in stabilizing both intracellular and extracellular pH to favor cancer progression and metastasis. Here, we show that proton efflux (acidification) using the glycolytic rate assay is dependent on both extracellular pH (pHe) and CA IX expression. Yet, isoform-selective sulfonamide-based inhibitors of CA IX did not alter proton flux, which suggests that the catalytic activity of CA IX is not necessary for this regulation. Other investigators have suggested the CA IX co-operates with the MCT transport family to excrete protons. To test this possibility, we examined the expression patterns of selected ion transporters and show that members of this family are differentially expressed within the molecular subtypes of breast cancer. The most aggressive form of breast cancer, triple-negative breast cancer, appears to co-ordinately express the monocarboxylate transporter 4 (MCT4) and carbonic anhydrase IX (CA IX). This supports a possible mechanism that utilizes the intramolecular H+ shuttle system in CA IX to facilitate proton efflux through MCT4.
Collapse
|
63
|
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. ACTA ACUST UNITED AC 2019; 71:1185-1198. [PMID: 31049986 DOI: 10.1111/jphp.13098] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/07/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This review highlights both the physicochemical characteristics of the nanocarriers (NCs) and the physiological features of tumour microenvironment (TME) to outline what strategies undertaken to deliver the molecules of interest specifically to certain lesions. This review discusses these properties describing the convenient choice between passive and active targeting mechanisms with details, illustrated with examples of targeting agents up to preclinical research or clinical advances. KEY FINDINGS Targeted delivery approaches for anticancers have shown a steep rise over the past few decades. Though many successful preclinical trials, only few passive targeted nanocarriers are approved for clinical use and none of the active targeted nanoparticles. Herein, we review the principles and for both processes and the correlation with the tumour microenvironment. We also focus on the limitation and advantages of each systems regarding laboratory and industrial scale. SUMMARY The current literature discusses how the NCs and the enhanced permeation and retention effect impact the passive targeting. Whereas the active targeting relies on the ligand-receptor binding, which improves selective accumulation to targeted sites and thus discriminates between the diseased and healthy tissues. The latter could be achieved by targeting the endothelial cells, tumour cells, the acidic environment of cancers and nucleus.
Collapse
Affiliation(s)
- Mohamed F Attia
- CNRS, CAMB, UMR 7199, Université de Strasbourg, Strasbourg, France.,Department of Bioengineering, Clemson University, Clemson, SC, USA.,National Research Centre, Cairo, Egypt
| | - Nicolas Anton
- CNRS, CAMB, UMR 7199, Université de Strasbourg, Strasbourg, France
| | - Justine Wallyn
- CNRS, CAMB, UMR 7199, Université de Strasbourg, Strasbourg, France
| | - Ziad Omran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Umm Al-Qura, Kingdom of Saudi Arabia
| | | |
Collapse
|
64
|
Tupá V, Drahošová S, Grendár M, Adamkov M. Expression and association of carbonic anhydrase IX and cyclooxygenase-2 in colorectal cancer. Pathol Res Pract 2019; 215:705-711. [DOI: 10.1016/j.prp.2019.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 12/24/2022]
|
65
|
Vaškevičienė I, Paketurytė V, Pajanok N, Žukauskas Š, Sapijanskaitė B, Kantminienė K, Mickevičius V, Zubrienė A, Matulis D. Pyrrolidinone-bearing methylated and halogenated benzenesulfonamides as inhibitors of carbonic anhydrases. Bioorg Med Chem 2018; 27:322-337. [PMID: 30553625 DOI: 10.1016/j.bmc.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Two series of benzenesulfonamides bearing methyl groups at ortho/ortho or meta/ortho positions and a pyrrolidinone moiety at para position were synthesized and tested as inhibitors of the twelve catalytically active human carbonic anhydrase (CA) isoforms. Observed binding affinities were determined by fluorescent thermal shift assay and intrinsic binding affinities representing the binding of benzenesulfonamide anion to the Zn(II)-bound water form of CA were calculated. Introduction of dimethyl groups into benzenesulfonamide ring decreased the binding affinity to almost all CA isoforms, but gained in selectivity towards one CA isoform. A chloro group at the meta position of 2,6-dimethylbenzenesulfonamide derivatives did not influence the binding to CA I, but it increased the affinity to all other CAs, especially, CA VII and CA XIII (up to 500 fold). The compounds may be used for further development of CA inhibitors with higher selectivity to particular CA isoforms.
Collapse
Affiliation(s)
- Irena Vaškevičienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Vaida Paketurytė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Nikita Pajanok
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Šarūnas Žukauskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Birutė Sapijanskaitė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania.
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
66
|
Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018; 9:1230. [PMID: 30429787 PMCID: PMC6220447 DOI: 10.3389/fphar.2018.01230] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect promotes nano-chemotherapeutics extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of nano-chemotherapeutics and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of nano-chemotherapeutics in non-tumor-stroma cells damages the non-tumor cells, and interferes with tumor-stroma crosstalk. This can lead not only to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a vital role in regulating nano-chemotherapeutics distribution and their biological effects. In this review, the barriers in tumor microenvironment, its consequential effects on nano-chemotherapeutics, considerations to improve nano-chemotherapeutics delivery and combinatory strategies to overcome acquired resistance induced by tumor microenvironment have been summarized. The various strategies viz., nanotechnology based approach as well as ligand-mediated, redox-responsive, and enzyme-mediated based combinatorial nanoapproaches have been discussed in this review.
Collapse
Affiliation(s)
| | | | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies - NMIMS, Mumbai, India
| |
Collapse
|
67
|
Cichorek M, Ronowska A, Gensicka-Kowalewska M, Deptula M, Pelikant-Malecka I, Dzierzbicka K. Novel therapeutic compound acridine-retrotuftsin action on biological forms of melanoma and neuroblastoma. J Cancer Res Clin Oncol 2018; 145:165-179. [PMID: 30367436 PMCID: PMC6326014 DOI: 10.1007/s00432-018-2776-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE As a continuation of our search for anticancer agents, we have synthesized a new acridine-retrotuftsin analog HClx9-[Arg(NO2)-Pro-Lys-Thr-OCH3]-1-nitroacridine (named ART) and have evaluated its activity against melanoma and neuroblastoma lines. Both tumors develop from cells (melanocytes, neurons) of neuroectodermal origin, and both are tumors with high heterogeneity and unsatisfactory susceptibility to chemotherapies. Thus, we analyzed the action of ART on pairs of biological forms of melanoma (amelanotic and melanotic) and neuroblastoma (dopaminergic and cholinergic) with regard to proliferation, mechanism of cell death, and effect on the activity of tricarboxylic acid cycle (TAC) enzymes. METHODS The cytotoxicity of ART was evaluated by XTT and trypan blue tests. Cell death was estimated by plasma membrane structure changes (phosphatidylserine and calreticulin externalization), caspase activation, presence of ROS (reactive oxygen species), activity of tricarboxylic acid cycle enzymes (pyruvate dehydrogenase complex, aconitase, and isocitrate dehydrogenase), NAD level, and ATP level. RESULTS ART influences the biological forms of melanoma and neuroblastoma in different ways. Amelanotic (Ab) melanoma (with the inhibited melanogenesis, higher malignancy) and SHSY5Y neuroblastoma (with cholinergic DC cells) were especially sensitive to ART action. The Ab melanoma cells died through apoptosis, while, with SH-SY5Y-DC neuroblastoma, the number of cells decreased but not as a result of apoptosis. With Ab melanoma and SH-SY5Y-DC cells, a diminished activity of TAC enzymes was noticed, along with ATP/NAD depletion. CONCLUSION Our data show that the biological forms of certain tumors responded in different ways to the action of ART. As a combination of retrotuftsin and acridine, the compound can be an inducer of apoptotic cell death of melanoma, especially the amelanotic form. Although the mechanism of the interrelationships between energy metabolism and cell death is not fully understood, interference of ART with TAC enzymes could encourage the further investigation of its anticancer action.
Collapse
Affiliation(s)
- Miroslawa Cichorek
- Department of Embryology, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland.
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdansk, Debinki 7 St, 80-211, Gdansk, PL, Poland
| | - Monika Gensicka-Kowalewska
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, PL, Poland
| | - Milena Deptula
- Department of Embryology, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland
| | - Iwona Pelikant-Malecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, PL, Poland
| |
Collapse
|
68
|
Lomelino CL, Andring JT, McKenna R. Crystallography and Its Impact on Carbonic Anhydrase Research. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:9419521. [PMID: 30302289 PMCID: PMC6158936 DOI: 10.1155/2018/9419521] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
X-ray and neutron crystallography are powerful techniques utilized to study the structures of biomolecules. Visualization of enzymes in complex with substrate/product and the capture of intermediate states can be related to activity to facilitate understanding of the catalytic mechanism. Subsequent analysis of small molecule binding within the enzyme active site provides insight into mechanisms of inhibition, supporting the design of novel inhibitors using a structure-guided approach. The first X-ray crystal structures were determined for small, ubiquitous enzymes such as carbonic anhydrase (CA). CAs are a family of zinc metalloenzymes that catalyze the hydration of CO2, producing HCO3 - and a proton. The CA structure and ping-pong mechanism have been extensively studied and are well understood. Though the function of CA plays an important role in a variety of physiological functions, CA has also been associated with diseases such as glaucoma, edema, epilepsy, obesity, and cancer and is therefore recognized as a drug target. In this review, a brief history of crystallography and its impact on CA research is discussed.
Collapse
Affiliation(s)
- Carrie L. Lomelino
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Jacob T. Andring
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| | - Robert McKenna
- University of Florida College of Medicine, Department of Biochemistry and Molecular Biology, Gainesville, FL 32610, USA
| |
Collapse
|
69
|
Biophysical, Biochemical, and Cell Based Approaches Used to Decipher the Role of Carbonic Anhydrases in Cancer and to Evaluate the Potency of Targeted Inhibitors. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2018; 2018:2906519. [PMID: 30112206 PMCID: PMC6077552 DOI: 10.1155/2018/2906519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
Carbonic anhydrases (CAs) are thought to be important for regulating pH in the tumor microenvironment. A few of the CA isoforms are upregulated in cancer cells, with only limited expression in normal cells. For these reasons, there is interest in developing inhibitors that target these tumor-associated CA isoforms, with increased efficacy but limited nonspecific cytotoxicity. Here we present some of the biophysical, biochemical, and cell based techniques and approaches that can be used to evaluate the potency of CA targeted inhibitors and decipher the role of CAs in tumorigenesis, cancer progression, and metastatic processes. These techniques include esterase activity assays, stop flow kinetics, and mass inlet mass spectroscopy (MIMS), all of which measure enzymatic activity of purified protein, in the presence or absence of inhibitors. Also discussed is the application of X-ray crystallography and Cryo-EM as well as other structure-based techniques and thermal shift assays to the studies of CA structure and function. Further, large-scale genomic and proteomic analytical methods, as well as cell based techniques like those that measure cell growth, apoptosis, clonogenicity, and cell migration and invasion, are discussed. We conclude by reviewing approaches that test the metastatic potential of CAs and how the aforementioned techniques have contributed to the field of CA cancer research.
Collapse
|
70
|
Lomelino CL, Murray AB, Supuran CT, McKenna R. Sweet Binders: Carbonic Anhydrase IX in Complex with Sucralose. ACS Med Chem Lett 2018; 9:657-661. [PMID: 30034596 PMCID: PMC6047028 DOI: 10.1021/acsmedchemlett.8b00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Carbonic anhydrase IX (CA IX) expression is important for the regulation of pH in hypoxic tumors and is emerging as a therapeutic target for the treatment of various cancers. Recent studies have demonstrated the selectivity of sucrose, saccharin, and acesulfame potassium for CA IX over other CA isoforms. Reported here is the X-ray crystal structure of CA IX-mimic in complex with sucralose determined to ∼1.5 Å resolution. Furthermore, this structure is compared to the aforementioned sweetener/carbohydrate structural studies in order to determine active site properties of CA IX that promote selective binding. This structural analysis provides a further understanding of CA IX isoform specific inhibition to facilitate the design of new inhibitors and anticancer drugs.
Collapse
Affiliation(s)
- Carrie L. Lomelino
- Department of Biochemistry and Molecular Biology, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Akilah B. Murray
- Department of Biochemistry and Molecular Biology, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Claudiu T. Supuran
- University of Florence, NEUROFARBA Department,
Sezione di Farmaceutica e Nutraceutica, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College
of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
71
|
Xu G, Fang Z, Clark LH, Sun W, Yin Y, Zhang R, Sullivan SA, Tran AQ, Kong W, Wang J, Zhou C, Bae-Jump VL. Topiramate exhibits anti-tumorigenic and metastatic effects in ovarian cancer cells. Am J Transl Res 2018; 10:1663-1676. [PMID: 30018708 PMCID: PMC6038080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Ovarian cancer is one of the leading causes of cancer related deaths among women worldwide, with an overall 5-year survival of only 30-40%. Carbonic anhydrases are up-regulated in many types of cancer and play an important role in tumor progression and metastasis. Carbonic anhydrase 9 has been implicated as a potential anti-tumorigenic target. Topiramate (TPM) is a potent inhibitor of carbonic anhydrase isozymes, including carbonic anhydrase 9, and has been shown to have anti-tumorigenic activity in several cancer types. Our goal was to evaluate the effect of TPM on cell proliferation and to identify possible mechanisms by which TPM inhibits cell growth in ovarian cancer. TPM significantly inhibited ovarian cancer cell proliferation and induced cell cycle G1 arrest, cellular stress and apoptosis through the AKT/mTOR and MAPK pathways. TPM also exerted anti-metastatic effects by decreasing the adhesion and invasion of ovarian cancer cells and affecting the expression of critical regulators of the epithelial-mesenchymal transition (EMT). Our findings demonstrate that TPM has anti-tumorigenic effects in ovarian cancer and is worthy of further exploration in clinical trials.
Collapse
Affiliation(s)
- Guangxu Xu
- Department of Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai, P. R. China
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Ziwei Fang
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Leslie H Clark
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Rong Zhang
- Department of Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai, P. R. China
| | - Stephanie A Sullivan
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Arthur-Quan Tran
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical UniversityBeijing, P. R. China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
72
|
Selby PJ, Banks RE, Gregory W, Hewison J, Rosenberg W, Altman DG, Deeks JJ, McCabe C, Parkes J, Sturgeon C, Thompson D, Twiddy M, Bestall J, Bedlington J, Hale T, Dinnes J, Jones M, Lewington A, Messenger MP, Napp V, Sitch A, Tanwar S, Vasudev NS, Baxter P, Bell S, Cairns DA, Calder N, Corrigan N, Del Galdo F, Heudtlass P, Hornigold N, Hulme C, Hutchinson M, Lippiatt C, Livingstone T, Longo R, Potton M, Roberts S, Sim S, Trainor S, Welberry Smith M, Neuberger J, Thorburn D, Richardson P, Christie J, Sheerin N, McKane W, Gibbs P, Edwards A, Soomro N, Adeyoju A, Stewart GD, Hrouda D. Methods for the evaluation of biomarkers in patients with kidney and liver diseases: multicentre research programme including ELUCIDATE RCT. PROGRAMME GRANTS FOR APPLIED RESEARCH 2018. [DOI: 10.3310/pgfar06030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BackgroundProtein biomarkers with associations with the activity and outcomes of diseases are being identified by modern proteomic technologies. They may be simple, accessible, cheap and safe tests that can inform diagnosis, prognosis, treatment selection, monitoring of disease activity and therapy and may substitute for complex, invasive and expensive tests. However, their potential is not yet being realised.Design and methodsThe study consisted of three workstreams to create a framework for research: workstream 1, methodology – to define current practice and explore methodology innovations for biomarkers for monitoring disease; workstream 2, clinical translation – to create a framework of research practice, high-quality samples and related clinical data to evaluate the validity and clinical utility of protein biomarkers; and workstream 3, the ELF to Uncover Cirrhosis as an Indication for Diagnosis and Action for Treatable Event (ELUCIDATE) randomised controlled trial (RCT) – an exemplar RCT of an established test, the ADVIA Centaur® Enhanced Liver Fibrosis (ELF) test (Siemens Healthcare Diagnostics Ltd, Camberley, UK) [consisting of a panel of three markers – (1) serum hyaluronic acid, (2) amino-terminal propeptide of type III procollagen and (3) tissue inhibitor of metalloproteinase 1], for liver cirrhosis to determine its impact on diagnostic timing and the management of cirrhosis and the process of care and improving outcomes.ResultsThe methodology workstream evaluated the quality of recommendations for using prostate-specific antigen to monitor patients, systematically reviewed RCTs of monitoring strategies and reviewed the monitoring biomarker literature and how monitoring can have an impact on outcomes. Simulation studies were conducted to evaluate monitoring and improve the merits of health care. The monitoring biomarker literature is modest and robust conclusions are infrequent. We recommend improvements in research practice. Patients strongly endorsed the need for robust and conclusive research in this area. The clinical translation workstream focused on analytical and clinical validity. Cohorts were established for renal cell carcinoma (RCC) and renal transplantation (RT), with samples and patient data from multiple centres, as a rapid-access resource to evaluate the validity of biomarkers. Candidate biomarkers for RCC and RT were identified from the literature and their quality was evaluated and selected biomarkers were prioritised. The duration of follow-up was a limitation but biomarkers were identified that may be taken forward for clinical utility. In the third workstream, the ELUCIDATE trial registered 1303 patients and randomised 878 patients out of a target of 1000. The trial started late and recruited slowly initially but ultimately recruited with good statistical power to answer the key questions. ELF monitoring altered the patient process of care and may show benefits from the early introduction of interventions with further follow-up. The ELUCIDATE trial was an ‘exemplar’ trial that has demonstrated the challenges of evaluating biomarker strategies in ‘end-to-end’ RCTs and will inform future study designs.ConclusionsThe limitations in the programme were principally that, during the collection and curation of the cohorts of patients with RCC and RT, the pace of discovery of new biomarkers in commercial and non-commercial research was slower than anticipated and so conclusive evaluations using the cohorts are few; however, access to the cohorts will be sustained for future new biomarkers. The ELUCIDATE trial was slow to start and recruit to, with a late surge of recruitment, and so final conclusions about the impact of the ELF test on long-term outcomes await further follow-up. The findings from the three workstreams were used to synthesise a strategy and framework for future biomarker evaluations incorporating innovations in study design, health economics and health informatics.Trial registrationCurrent Controlled Trials ISRCTN74815110, UKCRN ID 9954 and UKCRN ID 11930.FundingThis project was funded by the NIHR Programme Grants for Applied Research programme and will be published in full inProgramme Grants for Applied Research; Vol. 6, No. 3. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Peter J Selby
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rosamonde E Banks
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Walter Gregory
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Jenny Hewison
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - William Rosenberg
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Douglas G Altman
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Jonathan J Deeks
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Christopher McCabe
- Department of Emergency Medicine, University of Alberta Hospital, Edmonton, AB, Canada
| | - Julie Parkes
- Primary Care and Population Sciences Academic Unit, University of Southampton, Southampton, UK
| | | | | | - Maureen Twiddy
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Janine Bestall
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | | | - Tilly Hale
- LIVErNORTH Liver Patient Support, Newcastle upon Tyne, UK
| | - Jacqueline Dinnes
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Marc Jones
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | | | | | - Vicky Napp
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Alice Sitch
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Sudeep Tanwar
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, UK
| | - Naveen S Vasudev
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Baxter
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sue Bell
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - David A Cairns
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | | | - Neil Corrigan
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Peter Heudtlass
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Nick Hornigold
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Claire Hulme
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Michelle Hutchinson
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Carys Lippiatt
- Department of Specialist Laboratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | - Roberta Longo
- Leeds Institute of Health Sciences, University of Leeds, Leeds, UK
| | - Matthew Potton
- Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, UK
| | - Stephanie Roberts
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sheryl Sim
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Sebastian Trainor
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Matthew Welberry Smith
- Clinical and Biomedical Proteomics Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James Neuberger
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Paul Richardson
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - John Christie
- Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Neil Sheerin
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - William McKane
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Gibbs
- Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | | | - Naeem Soomro
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Grant D Stewart
- NHS Lothian, Edinburgh, UK
- Academic Urology Group, University of Cambridge, Cambridge, UK
| | - David Hrouda
- Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
73
|
Singh S, Lomelino CL, Mboge MY, Frost SC, McKenna R. Cancer Drug Development of Carbonic Anhydrase Inhibitors beyond the Active Site. Molecules 2018; 23:E1045. [PMID: 29710858 PMCID: PMC6099549 DOI: 10.3390/molecules23051045] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/29/2023] Open
Abstract
Carbonic anhydrases (CAs) catalyze the reversible hydration of carbon dioxide to produce bicarbonate and a proton. Multiple CA isoforms are implicated in a range of diseases, including cancer. In solid tumors, continuously dividing cells create hypoxic conditions that eventually lead to an acidic microenvironment. Hypoxic tumor cells have different mechanisms in place to regulate and adjust the surrounding microenvironment for survival. These mechanisms include expression of CA isoform IX (CA IX) and XII (CA XII). These enzymes help maintain a physiological intracellular pH while simultaneously contributing to an acidic extracellular pH, leading to tumor cell survival. Expression of CA IX and CA XII has also been shown to promote tumor cell invasion and metastasis. This review discusses the characteristics of CA IX and CA XII, their mechanism of action, and validates their prospective use as anticancer targets. We discuss the current status of small inhibitors that target these isoforms, both classical and non-classical, and their future design in order to obtain isoform-specificity for CA IX and CA XII. Biologics, such as monoclonal antibodies, monoclonal-radionuclide conjugated chimeric antibodies, and antibody-small molecule conjugates are also discussed.
Collapse
Affiliation(s)
- Srishti Singh
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Mam Y Mboge
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Susan C Frost
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
74
|
Li T, Liu X, Riederer B, Nikolovska K, Singh AK, Mäkelä KA, Seidler A, Liu Y, Gros G, Bartels H, Herzig KH, Seidler U. Genetic ablation of carbonic anhydrase IX disrupts gastric barrier function via claudin-18 downregulation and acid backflux. Acta Physiol (Oxf) 2018; 222:e12923. [PMID: 28748627 PMCID: PMC5901031 DOI: 10.1111/apha.12923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 11/21/2016] [Accepted: 07/24/2017] [Indexed: 12/28/2022]
Abstract
Aim This study aimed to explore the molecular mechanisms for the parietal cell loss and fundic hyperplasia observed in gastric mucosa of mice lacking the carbonic anhydrase 9 (CAIX). Methods We assessed the ability of CAIX‐knockout and WT gastric surface epithelial cells to withstand a luminal acid load by measuring the pHi of exteriorized gastric mucosa in vivo using two‐photon confocal laser scanning microscopy. Cytokines and claudin‐18A2 expression was analysed by RT‐PCR. Results CAIX‐knockout gastric surface epithelial cells showed significantly faster pHi decline after luminal acid load compared to WT. Increased gastric mucosal IL‐1β and iNOS, but decreased claudin‐18A2 expression (which confer acid resistance) was observed shortly after weaning, prior to the loss of parietal and chief cells. At birth, neither inflammatory cytokines nor claudin‐18 expression were altered between CAIX and WT gastric mucosa. The gradual loss of acid secretory capacity was paralleled by an increase in serum gastrin, IL‐11 and foveolar hyperplasia. Mild chronic proton pump inhibition from the time of weaning did not prevent the claudin‐18 decrease nor the increase in inflammatory markers at 1 month of age, except for IL‐1β. However, the treatment reduced the parietal cell loss in CAIX‐KO mice in the subsequent months. Conclusions We propose that CAIX converts protons that either backflux or are extruded from the cells rapidly to CO2 and H2O, contributing to tight junction protection and gastric epithelial pHi regulation. Lack of CAIX results in persistent acid backflux via claudin‐18 downregulation, causing loss of parietal cells, hypergastrinaemia and foveolar hyperplasia.
Collapse
Affiliation(s)
- T. Li
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - X. Liu
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
- Department of Department of Gastroenterology; Affiliated Hospital of Zunyi Medical College; Zunyi China
| | - B. Riederer
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - K. Nikolovska
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - A. K. Singh
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - K. A. Mäkelä
- Institute of Biomedicine and Biocenter of Oulu; Oulu University; Finland
| | - A. Seidler
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - Y. Liu
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| | - G. Gros
- Department of Physiology; Hannover Medical School; Hannover Germany
| | - H. Bartels
- Department of Anatomy; Hannover Medical School; Hannover Germany
| | - K. H. Herzig
- Institute of Biomedicine and Biocenter of Oulu; Oulu University; Finland
| | - U. Seidler
- Department of Gastroenterology; Hannover Medical School; Hannover Germany
| |
Collapse
|
75
|
Sahoo PC, Kumar M, Puri S, Ramakumar S. Enzyme inspired complexes for industrial CO2 capture: Opportunities and challenges. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
76
|
Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites 2018; 8:E19. [PMID: 29495652 PMCID: PMC5876008 DOI: 10.3390/metabo8010019] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023] Open
Abstract
The pH of the tumor microenvironment drives the metastatic phenotype and chemotherapeutic resistance of tumors. Understanding the mechanisms underlying this pH-dependent phenomenon will lead to improved drug delivery and allow the identification of new therapeutic targets. This includes an understanding of the role pH plays in primary tumor cells, and the regulatory factors that permit cancer cells to thrive. Over the last decade, carbonic anhydrases (CAs) have been shown to be important mediators of tumor cell pH by modulating the bicarbonate and proton concentrations for cell survival and proliferation. This has prompted an effort to inhibit specific CA isoforms, as an anti-cancer therapeutic strategy. Of the 12 active CA isoforms, two, CA IX and XII, have been considered anti-cancer targets. However, other CA isoforms also show similar activity and tissue distribution in cancers and have not been considered as therapeutic targets for cancer treatment. In this review, we consider all the CA isoforms and their possible role in tumors and their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Mam Y Mboge
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Brian P Mahon
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Robert McKenna
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| | - Susan C Frost
- University of Florida, College of Medicine, Department of Biochemistry and Molecular Biology, P.O. Box 100245, Gainesville, FL 32610, USA.
| |
Collapse
|
77
|
Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Int J Mol Sci 2018; 19:E195. [PMID: 29315231 PMCID: PMC5796144 DOI: 10.3390/ijms19010195] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 12/23/2022] Open
Abstract
Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.
Collapse
Affiliation(s)
- Muhammad Kashif Riaz
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Muhammad Adil Riaz
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Xue Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Congcong Lin
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Ka Hong Wong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
78
|
Kato Y, Maeda T, Suzuki A, Baba Y. Cancer metabolism: New insights into classic characteristics. JAPANESE DENTAL SCIENCE REVIEW 2017; 54:8-21. [PMID: 29628997 PMCID: PMC5884251 DOI: 10.1016/j.jdsr.2017.08.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Initial studies of cancer metabolism in the early 1920s found that cancer cells were phenotypically characterized by aerobic glycolysis, in that these cells favor glucose uptake and lactate production, even in the presence of oxygen. This property, called the Warburg effect, is considered a hallmark of cancer. The mechanism by which these cells acquire aerobic glycolysis has been uncovered. Acidic extracellular fluid, secreted by cancer cells, induces a malignant phenotype, including invasion and metastasis. Cancer cells survival depends on a critical balance of redox status, which is regulated by amino acid metabolism. Glutamine is extremely important for oxidative phosphorylation and redox regulation. Cells highly dependent on glutamine and that cannot survive with glutamine are called glutamine-addicted cells. Metabolic reprogramming has been observed in cancer stem cells, which have the property of self-renewal and are resistant to chemotherapy and radiotherapy. These findings suggest that studies of cancer metabolism can reveal methods of preventing cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
- Corresponding author. Fax: +81 249328978.
| | - Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| | - Atsuko Suzuki
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| | - Yuh Baba
- Department of General Clinical Medicine, Ohu University School of Dentistry, 31-1 Misumido, Tomita-machi, Koriyama 963-8611, Japan
| |
Collapse
|
79
|
Zhu L, Guo Y, Wang L, Fan X, Xiong X, Fang K, Xu D. Construction of ultrasonic nanobubbles carrying CAIX polypeptides to target carcinoma cells derived from various organs. J Nanobiotechnology 2017; 15:63. [PMID: 28962657 PMCID: PMC5622542 DOI: 10.1186/s12951-017-0307-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/23/2017] [Indexed: 01/01/2023] Open
Abstract
Background Ultrasound molecular imaging is a novel diagnostic approach for tumors, whose key link is the construction of targeted ultrasound contrast agents. However, available targeted ultrasound contrast agents for molecular imaging of tumors are only achieving imaging in blood pool or one type tumor. No targeted ultrasound contrast agents have realized targeted ultrasound molecular imaging of tumor parenchymal cells in a variety of solid tumors so far. Carbonic anhydrase IX (CAIX) is highly expressed on cell membranes of various malignant solid tumors, so it’s a good target for ultrasound molecular imaging. Here, targeted nanobubbles carrying CAIX polypeptides for targeted binding to a variety of malignant tumors were constructed, and targeted binding ability and ultrasound imaging effect in different types of tumors were evaluated. Results The mean diameter of lipid targeted nanobubbles was (503.7 ± 78.47) nm, and the polypeptides evenly distributed on the surfaces of targeted nanobubbles, which possessed the advantages of homogenous particle size, high stability, and good safety. Targeted nanobubbles could gather around CAIX-positive cells (786-O and Hela cells), while they cannot gather around CAIX-negative cells (BxPC-3 cells) in vitro, and the affinity of targeted nanobubbles to CAIX-positive cells were significantly higher than that to CAIX-negative cells (P < 0.05). Peak intensity and duration time of targeted nanobubbles and blank nanobubbles were different in CAIX-positive transplanted tumor tissues in vivo (P < 0.05). Moreover, targeted nanobubbles in CAIX-positive transplanted tumor tissues produced higher peak intensity and longer duration time than those in CAIX-negative transplanted tumor tissues (P < 0.05). Finally, immunofluorescence not only confirmed targeted nanobubbles could pass through blood vessels to enter in tumor tissue spaces, but also clarified imaging differences of targeted nanobubbles in different types of transplanted tumor tissues. Conclusions Targeted nanobubbles carrying CAIX polypeptides can specifically enhance ultrasound imaging in CAIX-positive transplanted tumor tissues and could potentially be used in early diagnosis of a variety of solid tumors derived from various organs. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0307-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lianhua Zhu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Luofu Wang
- Department of Urology, Daping Hospital, Third Military Medical University, 10 Changjiang Zhi Road, Yuzhong District, Chongqing, 400038, China
| | - Xiaozhou Fan
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xingyu Xiong
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Kejing Fang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dan Xu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
80
|
Lau J, Lin KS, Bénard F. Past, Present, and Future: Development of Theranostic Agents Targeting Carbonic Anhydrase IX. Am J Cancer Res 2017; 7:4322-4339. [PMID: 29158829 PMCID: PMC5695016 DOI: 10.7150/thno.21848] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022] Open
Abstract
Theranostics is the integration of diagnostic information with pharmaceuticals to increase effectiveness and safety of cancer treatments. Nuclear medicine provides a non-invasive means to visualize drug target expression across primary and metastatic sites, and assess pharmacokinetics and efficacy of companion therapeutic agents. This is significant given the increasing recognition of the importance of clonal heterogeneity in treatment response and resistance. Carbonic anhydrase IX (CA-IX) has been advocated as an attractive diagnostic and therapeutic biomarker for targeting hypoxia in solid malignancies. CA-IX confers cancer cell survival under low oxygen tension, and is associated with increased propensity for metastasis. As such, CA-IX is overexpressed in a broad spectrum of cancers. Different classes of antigen recognition molecules targeting CA-IX including monoclonal antibodies, peptides, small molecule inhibitors, and antibody mimetics have been radiolabeled for imaging and therapeutic applications. cG250, a chimeric monoclonal antibody, has been labeled with an assortment of radionuclides (124I, 111In, 89Zr, 131I, 90Y, and 177Lu) and is the most extensively investigated CA-IX radiopharmaceutical. In recent years, there have been tremendous advancements made by the research community in developing alternatives to cG250. Although still in preclinical settings, several small molecule inhibitors and antibody mimetics hold great promise in improving the management of aggressive and resistant cancers.
Collapse
|
81
|
Angapelly S, Sri Ramya PV, Angeli A, Supuran CT, Arifuddin M. Sulfocoumarin-, Coumarin-, 4-Sulfamoylphenyl-Bearing Indazole-3-carboxamide Hybrids: Synthesis and Selective Inhibition of Tumor-Associated Carbonic Anhydrase Isozymes IX and XII. ChemMedChem 2017; 12:1578-1584. [DOI: 10.1002/cmdc.201700446] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/20/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Srinivas Angapelly
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| | - P. V. Sri Ramya
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| | - Andrea Angeli
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Claudiu T. Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino Florence Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education & Research (NIPER); Hyderabad 500037 India
| |
Collapse
|
82
|
Al-Garawi ZS, McIntosh BA, Neill-Hall D, Hatimy AA, Sweet SM, Bagley MC, Serpell LC. The amyloid architecture provides a scaffold for enzyme-like catalysts. NANOSCALE 2017; 9:10773-10783. [PMID: 28722055 DOI: 10.1039/c7nr02675g] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural biological enzymes possess catalytic sites that are generally surrounded by a large three-dimensional scaffold. However, the proportion of the protein molecule that participates in the catalytic reaction is relatively small. The generation of artificial or miniature enzymes has long been a focus of research because enzyme mimetics can be produced with high activity at low cost. These enzymes aim to mimic the active sites without the additional architecture contributed by the protein chain. Previous work has shown that amyloidogenic peptides are able to self-assemble to create an active site that is capable of binding zinc and catalysing an esterase reaction. Here, we describe the structural characterisation of a set of designed peptides that form an amyloid-like architecture and reveal that their capability to mimic carbonic anhydrase and serve as enzyme-like catalysts is related to their ability to self-assemble. These amyloid fibril structures can bind the metal ion Zn2+via a three-dimensional arrangement of His residues created by the amyloid architecture. Our results suggest that the catalytic efficiency of amyloid-like assembly is not only zinc-dependent but also depends on an active centre created by the peptides which is, in turn, dependent on the ordered architecture. These fibrils have good esterase activity, and they may serve as good models for the evolution of modern-day enzymes. Furthermore, they may be useful in designing self-assembling fibrils for applications as metal ion catalysts. This study also demonstrates that the ligands surrounding the catalytic site affect the affinity of the zinc-binding site to bind the substrate contributing to the enzymatic activity of the assembled peptides.
Collapse
Affiliation(s)
- Z S Al-Garawi
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK.
| | | | | | | | | | | | | |
Collapse
|
83
|
Riemann A, Güttler A, Haupt V, Wichmann H, Reime S, Bache M, Vordermark D, Thews O. Inhibition of Carbonic Anhydrase IX by Ureidosulfonamide Inhibitor U104 Reduces Prostate Cancer Cell Growth, But Does Not Modulate Daunorubicin or Cisplatin Cytotoxicity. Oncol Res 2017. [PMID: 28631600 PMCID: PMC7844713 DOI: 10.3727/096504017x14965111926391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Carbonic anhydrase (CA) IX has emerged as a promising target for cancer therapy. It is highly upregulated in hypoxic regions and mediates pH regulation critical for tumor cell survival as well as extracellular acidification of the tumor microenvironment, which promotes tumor aggressiveness via various mechanisms, such as augmenting metastatic potential. Therefore, the aim of this study was to analyze the complex interdependency between CA IX and the tumor microenvironment in prostate tumor cells with regard to potential therapeutic implications. CA IX was upregulated by hypoxia as well as acidosis in prostate cancer cells. This induction did not modulate intracellular pH but led to extracellular acidification. Pharmacological inhibition of CA IX activity by U104 (SLC-0111) resulted in a reduction in tumor cell growth and an increase in apoptotic cell death. Intracellular pH was reduced under normoxic and even more so under hypoxic conditions when CA IX level was high. However, although intracellular pH regulation was disturbed, targeting CA IX in combination with daunorubicin or cisplatin did not intensify apoptotic tumor cell death. Hence, targeting CA IX in prostate cancer cells can lead to intracellular pH dysregulation and, consequently, can reduce cellular growth and elevate apoptotic cell death. Attenuation of extracellular acidification by blocking CA IX might additionally impede tumor progression and metastasis. However, no beneficial effect was seen when targeting CA IX in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Anne Riemann
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| | - Antje Güttler
- Klinik und Poliklinik für Strahlentherapie, Universität Halle-Wittenberg, Halle, Germany
| | - Verena Haupt
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| | - Henri Wichmann
- Klinik und Poliklinik für Strahlentherapie, Universität Halle-Wittenberg, Halle, Germany
| | - Sarah Reime
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| | - Matthias Bache
- Klinik und Poliklinik für Strahlentherapie, Universität Halle-Wittenberg, Halle, Germany
| | - Dirk Vordermark
- Klinik und Poliklinik für Strahlentherapie, Universität Halle-Wittenberg, Halle, Germany
| | - Oliver Thews
- Julius-Bernstein-Institut für Physiologie, Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
84
|
Abstract
One of the differences between normal and cancer cells is lower pH of the extracellular space in tumors. Low pH in the extracellular space activates proteases and stimulates tumor invasion and metastasis. Tumor cells display higher level of the HIF1α transcription factor that promotes cell switch from mitochondrial respiration to glycolysis. The terminal product of glycolysis is lactate. Lactate formation from pyruvate is catalyzed by the specific HIF1α-dependent isoform of lactate dehydrogenase A. Because lactate accumulation is deleterious for the cell, it is actively exported by monocarboxylate transporters. Lactate is cotransported with proton, which acidifies the extracellular space. Another protein that contributes to proton concentration increase in the extracellular space is tumor-specific HIF1α-dependent carbonic anhydrase IX, which generates a proton in the reaction between carbon dioxide and water. The activity of Na+/H+ exchanger (another protein pump) is stimulated by stress factors (e.g. osmotic shock) and proliferation stimuli. This review describes the mechanisms of proton pump activation and reviews results of studies on effects of various proton pump inhibitors on tumor functioning and growth in cell culture and in vivo. The prospects of combined application of proton pump inhibitors and cytostatics in cancer therapy are discussed.
Collapse
Affiliation(s)
- V A Kobliakov
- Blokhin Russian Cancer Research Center, Russian Ministry of Health, Moscow, 115478, Russia.
| |
Collapse
|
85
|
Li FR, Fan ZF, Qi SJ, Wang YS, Wang J, Liu Y, Cheng MS. Design, Synthesis, Molecular Docking Analysis, and Carbonic Anhydrase IX Inhibitory Evaluations of Novel N-Substituted-β-d-Glucosamine Derivatives that Incorporate Benzenesulfonamides. Molecules 2017; 22:E785. [PMID: 28498332 PMCID: PMC6154466 DOI: 10.3390/molecules22050785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/16/2022] Open
Abstract
A series of novel N-substituted-β-d-glucosamine derivatives that incorporate benzenesulfonamides were designed using a fragment-based drug design strategy. Each derivative was synthesized and evaluated in vitro for its inhibitory activity against human carbonic anhydrase (hCA) IX; several derivatives displayed desirable potency profiles against this enzyme. The molecular docking studies provided the design rationale and predicted potential binding modes for carbonic anhydrase (CA) IX and three target compounds, including the most potent inhibitor, compound 7f (IC50 = 10.01 nM). Moreover, the calculated Log P (cLog P) values showed that all the compounds tended to be hydrophilic. In addition, topological polar surface area (TPSA) value-based predictions highlighted the selectivity of these carbohydrate-based inhibitors for membrane-associated CA IX.
Collapse
Affiliation(s)
- Feng-Ran Li
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Zhan-Fang Fan
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Su-Jiao Qi
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yan-Shi Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jian Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yang Liu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
86
|
Janoniene A, Liu Z, Baranauskiene L, Mäkilä E, Ma M, Salonen J, Hirvonen J, Zhang H, Petrikaite V, Santos HA. A Versatile Carbonic Anhydrase IX Targeting Ligand-Functionalized Porous Silicon Nanoplatform for Dual Hypoxia Cancer Therapy and Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13976-13987. [PMID: 28383881 DOI: 10.1021/acsami.7b04038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxia occurs in most solid tumors, and it has been shown to be an independent prognostic indicator of a poor clinical outcome for patients with various cancers. Therefore, constructing a nanosystem specifically targeting cancer cells under hypoxia conditions is a promising approach for cancer therapy. Herein, we develop a porous silicon (PSi)-based nanosystem for targeted cancer therapy. VD11-4-2, a novel inhibitor for carbonic anhydrase IX (CA IX), is anchored on PSi particles (VD-PSi). As CA IX is mainly expressed on the cancer cell membrane under hypoxia condition, this nanocomplex inherits a strong affinity toward hypoxic human breast adenocarcinoma (MCF-7) cells; thus, a better killing efficiency for the hypoxia-induced drug resistance cancer cell is observed. Furthermore, the release of doxorubicin (DOX) from VD-PSi showed pH dependence, which is possibly due to the hydrogen-bonding interaction between DOX and VD11-4-2. The fluorescence resonance energy transfer effect between DOX and VD11-4-2 is observed and applied for monitoring the DOX release intracellularly. Protein inhibition and binding assays showed that VD-PSi binds and inhibits CA IX. Overall, we developed a novel nanosystem inheriting several advantageous properties, which has great potential for targeted treatment of cancer cells under hypoxic conditions.
Collapse
Affiliation(s)
- Agne Janoniene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University , LT-10257 Vilnius, Lithuania
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Zehua Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University , LT-10257 Vilnius, Lithuania
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku , FI-20014 Turku, Finland
| | - Ming Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku , FI-20014 Turku, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Department of Pharmaceutical Science, Åbo Akademi University , FI-20520 Turku, Finland
| | - Vilma Petrikaite
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University , LT-10257 Vilnius, Lithuania
- Department of Drug chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences , LT-44307 Kaunas, Lithuania
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| |
Collapse
|
87
|
Lin C, Wong BCK, Chen H, Bian Z, Zhang G, Zhang X, Kashif Riaz M, Tyagi D, Lin G, Zhang Y, Wang J, Lu A, Yang Z. Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy. Sci Rep 2017; 7:1097. [PMID: 28428618 PMCID: PMC5430522 DOI: 10.1038/s41598-017-00957-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022] Open
Abstract
Antibody-decorated liposomes can facilitate the precise delivery of chemotherapeutic drugs to the lung by targeting a recognition factor present on the surface of lung tumor cells. Carbonic anhydrase IX (CA IX) is an enzyme expressed on the surface of lung cancer cells with a restricted expression in normal lungs. Here, we explored the utility of anti-carbonic anhydrase IX (CA IX) antibody, conjugated to the surface of triptolide (TPL)-loaded liposomes (CA IX-TPL-Lips), to promote the therapeutic effects for lung cancer via pulmonary administration. It was found that the CA IX-TPL-Lips significantly improved the cellular uptake efficiency in both CA IX-positive human non-small cell lung cancer cells (A549) and A549 tumor spheroids, resulting in the efficient cell killing compared with free TPL and non-targeted TPL-Lips. In vivo, CA IX-Lips via pulmonary delivery showed specificity and a sustained release property resided up to 96 h in the lung, both of which improved the efficiency of TPL formulations in restraining tumor growth and significantly prolonged the lifespan of mice with orthotopic lung tumors. The results suggest that CA IX-decorated liposomes can potentially be used as an effective therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Congcong Lin
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Blenda Chi Kwan Wong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Xue Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Muhammad Kashif Riaz
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Deependra Tyagi
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China
| | - Ge Lin
- School of Biomedical Sciences, Chinese University of Hong Kong, Area 39, CUHK, Shatin, NT, Hong Kong, China
| | - Yanbo Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jinjin Wang
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu, 215500, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China. .,Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu, 215500, China.
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong, China. .,Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu, 215500, China.
| |
Collapse
|
88
|
Anticancer and radio-sensitizing evaluation of some new sulfonamide derivatives bearing pyridone, thiophene, and hydrazone moieties. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2903-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
89
|
Proteomic assessment of colorectal cancers and respective resection margins from patients of the Amazon state of Brazil. J Proteomics 2017; 154:59-68. [DOI: 10.1016/j.jprot.2016.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022]
|
90
|
Bhatt A, Mahon BP, Cruzeiro VWD, Cornelio B, Laronze-Cochard M, Ceruso M, Sapi J, Rance GA, Khlobystov AN, Fontana A, Roitberg A, Supuran CT, McKenna R. Structure-Activity Relationships of Benzenesulfonamide-Based Inhibitors towards Carbonic Anhydrase Isoform Specificity. Chembiochem 2017; 18:213-222. [PMID: 27860128 DOI: 10.1002/cbic.201600513] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Carbonic anhydrases (CAs) are implicated in a wide range of diseases, including the upregulation of isoforms CA IX and XII in many aggressive cancers. However, effective inhibition of disease-implicated CAs should minimally affect the ubiquitously expressed isoforms, including CA I and II, to improve directed distribution of the inhibitors to the cancer-associated isoforms and reduce side effects. Four benzenesulfonamide-based inhibitors were synthesized by using the tail approach and displayed nanomolar affinities for several CA isoforms. The crystal structures of the inhibitors bound to a CA IX mimic and CA II are presented. Further in silico modeling was performed with the inhibitors docked into CA I and XII to identify residues that contributed to or hindered their binding interactions. These structural studies demonstrated that active-site residues lining the hydrophobic pocket, especially positions 92 and 131, dictate the positional binding and affinity of inhibitors, whereas the tail groups modulate CA isoform specificity. Geometry optimizations were performed on each ligand in the crystal structures and showed that the energetic penalties of the inhibitor conformations were negligible compared to the gains from active-site interactions. These studies further our understanding of obtaining isoform specificity when designing small molecule CA inhibitors.
Collapse
Affiliation(s)
- Avni Bhatt
- Department of, Biochemistry and Molecular Biology, College of Medicine, University of Florida, P. O. Box 100245, Gainesville, FL, 32610, USA
| | - Brian P Mahon
- Department of, Biochemistry and Molecular Biology, College of Medicine, University of Florida, P. O. Box 100245, Gainesville, FL, 32610, USA
| | - Vinicius Wilian D Cruzeiro
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, P. O. Box 117200, Gainesville, FL postCode/>32610, USA
- CAPES Foundation, Ministry of Education of Brazil, Brasília DF, 70040-020, Brazil
| | - Benedetta Cornelio
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, 51096, Reims Cedex, France
- Dipartimento di Farmacia, Università "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Marie Laronze-Cochard
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, 51096, Reims Cedex, France
| | - Mariangela Ceruso
- Laboratorio de Chimica Bioinorganica, Room 188, Universita degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Janos Sapi
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, UFR Pharmacie, 51 Rue Cognacq-Jay, 51096, Reims Cedex, France
| | - Graham A Rance
- School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Andrei N Khlobystov
- School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Antonella Fontana
- Dipartimento di Farmacia, Università "G. d'Annunzio", Via dei Vestini, 66100, Chieti, Italy
| | - Adrian Roitberg
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, P. O. Box 117200, Gainesville, FL postCode/>32610, USA
| | - Claudiu T Supuran
- Laboratorio de Chimica Bioinorganica, Room 188, Universita degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Robert McKenna
- Department of, Biochemistry and Molecular Biology, College of Medicine, University of Florida, P. O. Box 100245, Gainesville, FL, 32610, USA
| |
Collapse
|
91
|
Abstract
The highly regulated pH of cells and the less-regulated pH of the surrounding extracellular matrix (ECM) is the result of a delicate balance between metabolic processes and proton production, proton transportation, chemical buffering, and vascular removal of waste products. Malignant cells show a pronounced increase in metabolic processes where the 10- to 15-fold rise in glucose consumption is only the tip of the iceberg. Aerobic glycolysis (Warburg effect) is one of the hallmarks of cancer metabolism that implies excessive production of protons, which if stayed inside the cells would result in fatal intracellular acidosis (maintaining a strict acid-base balance is essential for the survival of eukaryotic cells). Malignant cells solve this problem by increasing mechanisms of proton transportation which expel the excess acidity. This allows cancer cells to keep a normal intracellular pH, or even overshooting this mechanism permits a slightly alkaline intracellular tendency. The proton excess expelled from malignant cells accumulates in the ECM, where chronic hypoxia and relative lack of enough blood vessels impede adequate proton clearance, thus creating an acidic microenvironment. This microenvironment is quite heterogeneous due to the tumor's metabolic heterogeneity and variable degrees of hypoxia inside the tumor mass. The acidic environment (plus other necessary cellular modifications) stimulates migration and invasion and finally intravasation of malignant cells which eventually may result in metastasis. Targeting tumor pH may go in two directions: 1) increasing extracellular pH which should result in less migration, invasion, and metastasis; and 2) decreasing intracellular pH which may result in acidic stress and apoptosis. Both objectives seem achievable at the present state of the art with repurposed drugs. This hypothesis analyzes the altered pH of tumors and its implications for progression and metastasis and also possible repurposed drug combinations targeting this vulnerable side of cancer development. It also analyzes the double-edged approach, which consists in pharmacologically increasing intracellular proton production and simultaneously decreasing proton extrusion creating intracellular acidity, acid stress, and eventual apoptosis.
Collapse
Affiliation(s)
- Tomas Koltai
- Obra Social del Personal de la, Industria Alimenticia, Filial Capital Federal, Republic of Argentina
| |
Collapse
|
92
|
Lomelino C, McKenna R. Carbonic anhydrase inhibitors: a review on the progress of patent literature (2011-2016). Expert Opin Ther Pat 2016; 26:947-56. [PMID: 27387065 DOI: 10.1080/13543776.2016.1203904] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION A large area of carbonic anhydrase (CA) research focuses on the inhibition of human CA IX and CA XII, as these isoforms have been designated as biomarkers and therapeutic targets for various cancer types. AREAS COVERED Recently, the majority of CA inhibitor (CAI) patents cover compound design, synthesis, and delivery methods for the treatment of glaucoma and cancer. The analysis of included patents highlights the need for isoform specific inhibitors. This review covers the patents of medically relevant carbonic anhydrase inhibitors between 2011-2016. EXPERT OPINION The improvement of structure-based drug design methods and access to the crystal structures of human CA isoforms have improved inhibitor development. This progress can be observed in relation to the selective inhibition of CA IX for cancer treatments, with one inhibitor in clinical trials. However, the design of nonclassical CAIs is essential to further improve isoform specificity and prevent sulfur allergies.
Collapse
Affiliation(s)
- Carrie Lomelino
- a Department of Biochemistry and Molecular Biology , College of Medicine, University of Florida , Gainesville , FL , USA
| | - Robert McKenna
- a Department of Biochemistry and Molecular Biology , College of Medicine, University of Florida , Gainesville , FL , USA
| |
Collapse
|
93
|
Intrinsic thermodynamics of inhibitor binding to human carbonic anhydrase IX. Biochim Biophys Acta Gen Subj 2016; 1860:708-18. [DOI: 10.1016/j.bbagen.2016.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/30/2015] [Accepted: 01/12/2016] [Indexed: 12/26/2022]
|
94
|
The Complex Relationship between Metals and Carbonic Anhydrase: New Insights and Perspectives. Int J Mol Sci 2016; 17:ijms17010127. [PMID: 26797606 PMCID: PMC4730368 DOI: 10.3390/ijms17010127] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/01/2016] [Indexed: 12/22/2022] Open
Abstract
Carbonic anhydrase is a ubiquitous metalloenzyme, which catalyzes the reversible hydration of CO2 to HCO3− and H+. Metals play a key role in the bioactivity of this metalloenzyme, although their relationships with CA have not been completely clarified to date. The aim of this review is to explore the complexity and multi-aspect nature of these relationships, since metals can be cofactors of CA, but also inhibitors of CA activity and modulators of CA expression. Moreover, this work analyzes new insights and perspectives that allow translating new advances in basic science on the interaction between CA and metals to applications in several fields of research, ranging from biotechnology to environmental sciences.
Collapse
|
95
|
Mahon BP, Díaz-Torres NA, Pinard MA, Tu C, Silverman DN, Scott KM, McKenna R. Activity and anion inhibition studies of the α-carbonic anhydrase from Thiomicrospira crunogena XCL-2 Gammaproteobacterium. Bioorg Med Chem Lett 2015; 25:4937-4940. [PMID: 25998503 PMCID: PMC5358508 DOI: 10.1016/j.bmcl.2015.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 11/29/2022]
Abstract
Thiomicrospira crunogena XCL-2 expresses an α-carbonic anhydrase (TcruCA). Sequence alignments reveal that TcruCA displays a high sequence identity (>30%) relative to other α-CAs. This includes three conserved histidines that coordinate the active site zinc, a histidine proton shuttling residue, and opposing hydrophilic and hydrophobic sides that line the active site. The catalytic efficiency of TcruCA is considered moderate relative to other α-CAs (k(cat)/K(M)=1.1×10(7) M(-1) s(-1)), being a factor of ten less efficient than the most active α-CAs. TcruCA is also inhibited by anions with Cl(-), Br(-), and I(-), all showing Ki values in the millimolar range (53-361 mM). Hydrogen sulfide (HS(-)) revealed the highest affinity for TcruCA with a Ki of 1.1 μM. It is predicted that inhibition of TcruCA by HS(-) (an anion commonly found in the environment where Thiomicrospira crunogena is located) is a way for Thiomicrospira crunogena to regulate its carbon-concentrating mechanism (CCM) and thus the organism's metabolic functions. Results from this study provide preliminary insights into the role of TcruCA in the general metabolism of Thiomicrospira crunogena.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Natalia A Díaz-Torres
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - Chingkuang Tu
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States
| | - David N Silverman
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, FL 32610, United States
| | - Kathleen M Scott
- Department of Integrated Biology, University of South Florida, Tampa, FL 33620, United States
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, 100 Newell Dr LG-171, Gainesville, FL 32610, United States.
| |
Collapse
|
96
|
Pinard MA, Aggarwal M, Mahon BP, Tu C, McKenna R. A sucrose-binding site provides a lead towards an isoform-specific inhibitor of the cancer-associated enzyme carbonic anhydrase IX. Acta Crystallogr F Struct Biol Commun 2015; 71:1352-8. [PMID: 26457530 PMCID: PMC4601603 DOI: 10.1107/s2053230x1501239x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/27/2015] [Indexed: 11/10/2022] Open
Abstract
Human carbonic anhydrase (CA; EC 4.2.1.1) isoform IX (CA IX) is an extracellular zinc metalloenzyme that catalyzes the reversible hydration of CO2 to HCO3(-), thereby playing a role in pH regulation. The majority of normal functioning cells exhibit low-level expression of CA IX. However, in cancer cells CA IX is upregulated as a consequence of a metabolic transition known as the Warburg effect. The upregulation of CA IX for cancer progression has drawn interest in it being a potential therapeutic target. CA IX is a transmembrane protein, and its purification, yield and crystallization have proven challenging to structure-based drug design, whereas the closely related cytosolic soluble isoform CA II can be expressed and crystallized with ease. Therefore, we have utilized structural alignments and site-directed mutagenesis to engineer a CA II that mimics the active site of CA IX. In this paper, the X-ray crystal structure of this CA IX mimic in complex with sucrose is presented and has been refined to a resolution of 1.5 Å, an Rcryst of 18.0% and an Rfree of 21.2%. The binding of sucrose at the entrance to the active site of the CA IX mimic, and not CA II, in a non-inhibitory mechanism provides a novel carbohydrate moiety binding site that could be further exploited to design isoform-specific inhibitors of CA IX.
Collapse
Affiliation(s)
- Melissa A. Pinard
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mayank Aggarwal
- Division of Biology and Soft Matter, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brian P. Mahon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chingkuang Tu
- Department of Pharmacology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
97
|
Mahon BP, Lomelino CL, Salguero AL, Driscoll JM, Pinard MA, McKenna R. Observed surface lysine acetylation of human carbonic anhydrase II expressed in Escherichia coli. Protein Sci 2015; 24:1800-7. [PMID: 26266677 DOI: 10.1002/pro.2771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 11/06/2022]
Abstract
Acetylation of surface lysine residues of proteins has been observed in Escherichia coli (E. coli), an organism that has been extensively utilized for recombinant protein expression. This post-translational modification is shown to be important in various processes such as metabolism, stress-response, transcription, and translation. As such, utilization of E. coli expression systems for protein production may yield non-native acetylation events of surface lysine residues. Here we present the crystal structures of wild-type and a variant of human carbonic anhydrase II (hCA II) that have been expressed in E. coli and exhibit surface lysine acetylation and we speculate on the effect this has on the conformational stability of each enzyme. Both structures were determined to 1.6 Å resolution and show clear electron density for lysine acetylation. The lysine acetylation does not distort the structure and the surface lysine acetylation events most likely do not interfere with the biological interpretation. However, there is a reduction in conformational stability in the hCA II variant compared to wild type (∼ 4°C decrease). This may be due to other lysine acetylation events that have occurred but are not visible in the crystal structure due to intrinsic disorder. Therefore, surface lysine acetylation events may affect overall protein stability and crystallization, and should be considered when using E. coli expression systems.
Collapse
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Antonieta L Salguero
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Jenna M Driscoll
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, 32610
| |
Collapse
|
98
|
Walsh M, Fais S, Spugnini EP, Harguindey S, Abu Izneid T, Scacco L, Williams P, Allegrucci C, Rauch C, Omran Z. Proton pump inhibitors for the treatment of cancer in companion animals. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:93. [PMID: 26337905 PMCID: PMC4559889 DOI: 10.1186/s13046-015-0204-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
The treatment of cancer presents a clinical challenge both in human and veterinary medicine. Chemotherapy protocols require the use of toxic drugs that are not always specific, do not selectively target cancerous cells thus resulting in many side effects. A recent therapeutic approach takes advantage of the altered acidity of the tumour microenvironment by using proton pump inhibitors (PPIs) to block the hydrogen transport out of the cell. The alteration of the extracellular pH kills tumour cells, reverses drug resistance, and reduces cancer metastasis. Human clinical trials have prompted to consider this as a viable and safe option for the treatment of cancer in companion animals. Preliminary animal studies suggest that the same positive outcome could be achievable. The purpose of this review is to support investigations into the use of PPIs for cancer treatment cancer in companion animals by considering the evidence available in both human and veterinary medicine.
Collapse
Affiliation(s)
- Megan Walsh
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy.
| | | | - Salvador Harguindey
- Institute for Clinical Biology and Metabolism, c) Postas 13, 01004, Vitoria, Spain.
| | - Tareq Abu Izneid
- College of Pharmacy, Umm Al-Qura University, Al-Abidiyya, 21955, Makkah, Kingdom of Saudi Arabia.
| | - Licia Scacco
- Equivet Roma Hospital, Equine Veterinary Clinic, Via di Torre di Sant'Anastasia 83, 00134, Rome, Italy
| | - Paula Williams
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Al-Abidiyya, 21955, Makkah, Kingdom of Saudi Arabia.
| |
Collapse
|
99
|
Mahon BP, Lomelino CL, Ladwig J, Rankin GM, Driscoll JM, Salguero AL, Pinard MA, Vullo D, Supuran CT, Poulsen SA, McKenna R. Mapping Selective Inhibition of the Cancer-Related Carbonic Anhydrase IX Using Structure–Activity Relationships of Glucosyl-Based Sulfamates. J Med Chem 2015. [DOI: 10.1021/acs.jmedchem.5b00845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Brian P. Mahon
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Carrie L. Lomelino
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Janina Ladwig
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Gregory M. Rankin
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Jenna M. Driscoll
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Antonieta L. Salguero
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Melissa A. Pinard
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| | - Daniela Vullo
- Polo
Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Polo
Scientifico, Neurofarba Department and Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Rm. 188, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Sally-Ann Poulsen
- Eskitis
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Robert McKenna
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100245, Gainesville, Florida 32610, United States
| |
Collapse
|
100
|
Mahon BP, Okoh CO, McKenna R. Targeting aggressive cancers with an artificial sweetener: could saccharin be a lead compound in anticancer therapy? Future Oncol 2015; 11:2117-9. [DOI: 10.2217/fon.15.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Brian P Mahon
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA
| | - Cynthia O Okoh
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|