51
|
Vila C, Cernicharo‐Toledo F, Blay G, Pedro JR. Nitroenynes as Electrophiles in Organocatalysis and their Application in the Synthesis of Chiral Heterocycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Carlos Vila
- Departament de Química Orgànica, Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - Francisco Cernicharo‐Toledo
- Departament de Química Orgànica, Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica, Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| | - José R. Pedro
- Departament de Química Orgànica, Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot València Spain
| |
Collapse
|
52
|
Mahato CK, Mukherjee S, Kundu M, Vallapure VP, Pramanik A. Asymmetric 1,4-Michael Addition in Aqueous Medium Using Hydrophobic Chiral Organocatalysts. J Org Chem 2021; 86:5213-5226. [PMID: 33764066 DOI: 10.1021/acs.joc.1c00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic transformations exclusively in water as an environmentally friendly and safe medium have drawn significant interest in the recent years. Moreover, transition metal-free synthesis of enantiopure molecules in water will have a great deal of attention as the system will mimic the natural enzymatic reactions. In this work, a new set of proline-derived hydrophobic organocatalysts have been synthesized and utilized for asymmetric Michael reactions in water as the sole reaction medium. Among the various catalysts screened, the catalyst 1 is indeed efficient for stereoselective 1,4-conjugated Michael additions (dr: >97:3, ee up to >99.9%) resulting in high chemical yields (up to 95%) in a very short reaction time (1 h) at room temperature. This methodology provides a robust, green, and convenient protocol and can thus be an important addition to the arsenal of the asymmetric Michael addition reaction. Upon successful implementation, the present strategy also led to the formation of an optically active octahydroindole, the key component found in many natural products.
Collapse
Affiliation(s)
- Chandan K Mahato
- TCG Lifesciences Pvt. Limited, BN-7, Sector V, Salt Lake City, Kolkata 700091, India.,Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sayan Mukherjee
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Mrinalkanti Kundu
- TCG Lifesciences Pvt. Limited, BN-7, Sector V, Salt Lake City, Kolkata 700091, India
| | - Virbhadra P Vallapure
- TCG Lifesciences Pvt. Limited, BN-7, Sector V, Salt Lake City, Kolkata 700091, India
| | - Animesh Pramanik
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
53
|
García-Urricelqui A, de Cózar A, Mielgo A, Palomo C. Probing α-Amino Aldehydes as Weakly Acidic Pronucleophiles: Direct Access to Quaternary α-Amino Aldehydes by an Enantioselective Michael Addition Catalyzed by Brønsted Bases. Chemistry 2021; 27:2483-2492. [PMID: 33034390 DOI: 10.1002/chem.202004468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/20/2022]
Abstract
The high tendency of α-amino aldehydes to undergo 1,2-additions and their relatively low stability under basic conditions have largely prevented their use as pronucleophiles in the realm of asymmetric catalysis, particularly for the production of quaternary α-amino aldehydes. Herein, it is demonstrated that the chemistry of α-amino aldehydes may be expanded beyond these limits by documenting the first direct α-alkylation of α-branched α-amino aldehydes with nitroolefins. The reaction produces densely functionalized products bearing up to two, quaternary and tertiary, vicinal stereocenters with high diastereo- and enantioselectivity. DFT modeling leads to the proposal that intramolecular hydrogen bonding between the NH group and the carbonyl oxygen atom in the starting α-amino aldehyde is key for reaction stereocontrol.
Collapse
Affiliation(s)
- Ane García-Urricelqui
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Abel de Cózar
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Antonia Mielgo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| | - Claudio Palomo
- Departamento de Química Orgánica I, Universidad del País Vasco UPV/EHU, Manuel Lardizábal 3, 20018, San Sebastián, Spain
| |
Collapse
|
54
|
Díaz-Salazar H, Jiménez EI, Vallejo Narváez WE, Rocha-Rinza T, Hernández-Rodríguez M. Bifunctional squaramides with benzyl-like fragments: analysis of CH⋯π interactions by a multivariate linear regression model and quantum chemical topology. Org Chem Front 2021. [DOI: 10.1039/d0qo01610a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A multivariate linear regression model and quantum chemical topology are used for the quantitative description of non-covalent interactions in the transition state of the Michael addition catalyzed by bifunctional squaramides.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Eddy I. Jiménez
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Wilmer E. Vallejo Narváez
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | - Tomás Rocha-Rinza
- Instituto de Química
- Universidad Nacional Autónoma de México
- Circuito Exterior
- Ciudad Universitaria
- Mexico
| | | |
Collapse
|
55
|
Möhler JS, Schnitzer T, Wennemers H. Amine Catalysis with Substrates Bearing N-Heterocyclic Moieties Enabled by Control over the Enamine Pyramidalization Direction. Chemistry 2020; 26:15623-15628. [PMID: 32573875 DOI: 10.1002/chem.202002966] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Indexed: 02/06/2023]
Abstract
Stereoselective organocatalytic C-C bond formations that tolerate N-heterocycles are valuable since these moieties are common motifs in numerous chiral bioactive compounds. Such transformations are, however, challenging since N-heterocyclic moieties can interfere with the catalytic reaction. Here, we present a peptide that catalyzes conjugate addition reactions between aldehydes and nitroolefins bearing a broad range of different N-heterocyclic moieties with basic and/or H-bonding sites in excellent yields and stereoselectivities. Tuning of the pyramidalization direction of the enamine intermediate enabled the high stereoselectivity.
Collapse
Affiliation(s)
- Jasper S Möhler
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Tobias Schnitzer
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| |
Collapse
|
56
|
Stentzel MR, Klumpp DA. Michael Addition with an Olefinic Pyridine: Organometallic Nucleophiles and Carbon Electrophiles. J Org Chem 2020; 85:12740-12746. [PMID: 32883082 DOI: 10.1021/acs.joc.0c00823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conjugate addition reactions of trans-1,2-di(2-pyridyl)ethylene have been studied. This substrate reacts with organolithium nucleophiles, and the resulting anionic intermediates may be trapped by proton or various carbonyl-based electrophiles. It is suggested that the dipyridyl structure stabilizes the intermediate carbanion, allowing the Michael adduct to be captured by an added electrophile.
Collapse
Affiliation(s)
- Michael R Stentzel
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb, Illinois 60115, United States
| | - Douglas A Klumpp
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb, Illinois 60115, United States
| |
Collapse
|
57
|
Werth J, Sigman MS. Connecting and Analyzing Enantioselective Bifunctional Hydrogen Bond Donor Catalysis Using Data Science Tools. J Am Chem Soc 2020; 142:16382-16391. [PMID: 32844647 DOI: 10.1021/jacs.0c06905] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generalization of related asymmetric processes in organocatalyzed reactions is an ongoing challenge due to subtle, noncovalent interactions that drive selectivity. The lack of transferability is often met with a largely empirical approach to optimizing catalyst structure and reaction conditions. This has led to the development of diverse structural catalyst motifs and inspired unique design principles in this field. Bifunctional hydrogen bond donor (HBD) catalysis exemplifies this in which a broad collection of enantioselective transformations has been successfully developed. Herein, we describe the use of data science methods to connect catalyst and substrate structural features of an array of reported enantioselective bifunctional HBD catalysis through an iterative statistical modeling process. The computational parameters used to build the correlations are mechanism-specific based on the proposed transition states, which allows for analysis into the noncovalent interactions responsible for asymmetric induction. The resulting statistical models also allow for extrapolation to out-of-sample examples to provide a prediction platform that can be used for future applications of bifunctional hydrogen bond donor catalysis. Finally, this multireaction workflow presents an opportunity to build statistical models unifying various modes of activation relevant to asymmetric organocatalysis.
Collapse
Affiliation(s)
- Jacob Werth
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
58
|
Assessment of the organocatalytic activity of chiral l-Proline-based Deep Eutectic Solvents based on their structural features. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
59
|
Cera G, Balestri D, Bazzoni M, Marchiò L, Secchi A, Arduini A. Trisulfonamide calix[6]arene-catalysed Michael addition to nitroalkenes. Org Biomol Chem 2020; 18:6241-6246. [PMID: 32735000 DOI: 10.1039/d0ob01319f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We describe the application of a novel family of trisulfonamide (TSA) calix[6]arenes in general acid catalysis. Hydrogen-bonding interactions between acidic TSA and methanol boosted the reactivity of the Michael addition of indoles to nitroalkene derivatives. The transformation occurs at a low catalyst loading of 5 mol%, allowing for the synthesis of nitroalkanes with good yields and functional group tolerance.
Collapse
Affiliation(s)
- Gianpiero Cera
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Davide Balestri
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Margherita Bazzoni
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Luciano Marchiò
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Andrea Secchi
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Arturo Arduini
- Università di Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
60
|
Han W, Oriyama T. Asymmetric Michael Addition of Isobutyraldehyde to Nitroolefins Using an α,α-Diphenyl-(S)-prolinol-Derived Chiral Diamine Catalyst. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Han
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Takeshi Oriyama
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
61
|
Asahara H, Hiraishi M, Nishiwaki N. One-pot and metal-free synthesis of 3-arylated-4-nitrophenols via polyfunctionalized cyclohexanones from β-nitrostyrenes. Beilstein J Org Chem 2020; 16:1830-1836. [PMID: 32765798 PMCID: PMC7385393 DOI: 10.3762/bjoc.16.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/15/2020] [Indexed: 12/28/2022] Open
Abstract
β-Nitrostyrenes underwent a Diels-Alder reaction with Danishefsky's diene to afford cyclohexenes together with the corresponding hydrolyzed products, 3-arylated-5-methoxy-4-nitrocyclohexanones. When the reaction was conducted in the presence of water, the cyclohexenes were efficiently hydrolyzed into cyclohexanones. Subsequent aromatization by heating the cyclohexanone with a catalytic amount of iodine in dimethyl sulfoxide gave 3-arylated-4-nitrophenols. The reaction of nitrostyrenes with Danishefsky's diene could be conducted in one pot to directly afford the corresponding nitrophenols. Moreover, a heteroaryl group, e.g., a thienyl group could be introduced into the nitrophenol framework.
Collapse
Affiliation(s)
- Haruyasu Asahara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Minami Hiraishi
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
62
|
Novel carbohydrate-based thioureas as organocatalysts for asymmetric michael addition of 1,3-dicarbonyl compounds to nitroolefins. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
63
|
Schnitzer T, Wennemers H. Deactivation of Secondary Amine Catalysts via Aldol Reaction-Amine Catalysis under Solvent-Free Conditions. J Org Chem 2020; 85:7633-7640. [PMID: 32329616 DOI: 10.1021/acs.joc.0c00665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite intense interest in amine-catalyzed stereoselective reactions, high catalyst loadings of ≥10 mol % are still common and either due to low reactivity or catalyst deactivation. Yet, few deactivation pathways are well understood. Here, we unraveled the deactivation of secondary amines by undesired aldol reaction. Mechanistic studies with peptide and prolinol silyl ether catalysts showed the generality of this so-far underappreciated catalyst deactivation pathway. The insights enabled conjugate addition reactions between aldehydes and nitroolefins on a multigram scale in the absence of solvent-conditions that are attractive as environmentally benign processes-with excellent product yields and stereoselectivities in the presence of as little as 0.1 mol % of a chemoselective peptidic catalyst.
Collapse
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zurich, D-CHAB, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
64
|
Girvin ZC, Lampkin PP, Liu X, Gellman SH. Catalytic Intramolecular Conjugate Additions of Aldehyde-Derived Enamines to α,β-Unsaturated Esters. Org Lett 2020; 22:4568-4573. [PMID: 32460501 DOI: 10.1021/acs.orglett.0c01666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a pairing of known catalysts that enables intramolecular conjugate additions of aldehyde-derived enamines to α,β-unsaturated esters. Despite extensive prior exploration of conjugate additions of aldehyde-derived enamines, catalytic conjugate additions to unactivated enoate esters are unprecedented. Achieving enantioselective and diastereoselective six-membered ring formation requires the coordinated action of a chiral pyrrolidine, for nucleophilic activation of the aldehyde via enamine formation, and a hydrogen bond donor, for electrophilic activation of the enoate ester. Proper selection of the hydrogen bond donor is essential for chemoselectivity, which requires minimizing competition from homoaldol reaction. Utility is demonstrated in a six-step synthesis of (-)-yohimbane from cycloheptene.
Collapse
Affiliation(s)
- Zebediah C Girvin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Philip P Lampkin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Xinyu Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
65
|
Jain I, Malik P. Advances in urea and thiourea catalyzed ring opening polymerization: A brief overview. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
66
|
Kozma V, Fülöp F, Szőllősi G. 1,2‐Diamine‐Derived (thio)Phosphoramide Organocatalysts in Asymmetric Michael Additions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Viktória Kozma
- Department of Organic ChemistryUniversity of Szeged 6720 Szeged Dóm tér 8 Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical ChemistryUniversity of Szeged 6720 Szeged Eötvös utca 6 Hungary
- MTA-SZTE Stereochemistry Research GroupUniversity of Szeged 6720 Szeged Eötvös utca 6 Hungary
- University of Szeged, Interdisciplinary Excellence CentreInstitute of Pharmaceutical Chemistry 6720 Szeged Eötvös utca 6 Hungary
| | - György Szőllősi
- MTA-SZTE Stereochemistry Research GroupUniversity of Szeged 6720 Szeged Eötvös utca 6 Hungary
| |
Collapse
|
67
|
Rodriguez L, Fišera R, Gaálová B, Koči K, Bujdáková H, Mečiarová M, Górová R, Jurdáková H, Šebesta R. Synthesis of Chiral 3,4-Disubstituted Pyrrolidines with Antibacterial Properties. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Roman Fišera
- SYNKOLA Ltd.; Ilkovičova 6 84215 Bratislava Slovakia
| | - Barbora Gaálová
- Comenius University in Bratislava; 84215 Bratislava Slovakia
| | - Kamila Koči
- Comenius University in Bratislava; 84215 Bratislava Slovakia
| | | | - Mária Mečiarová
- Department of Organic Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; Mlynská dolina, Ilkovičova 6 84215 Bratislava Slovakia
| | - Renáta Górová
- Institute of Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; 84215 Bratislava Slovakia
| | - Helena Jurdáková
- Institute of Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; 84215 Bratislava Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry; Faculty of Natural Sciences; Comenius University in Bratislava; Mlynská dolina, Ilkovičova 6 84215 Bratislava Slovakia
| |
Collapse
|
68
|
Sukhorukov AY. Catalytic Reductive Amination of Aldehydes and Ketones With Nitro Compounds: New Light on an Old Reaction. Front Chem 2020; 8:215. [PMID: 32351929 PMCID: PMC7174751 DOI: 10.3389/fchem.2020.00215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
Reductive amination of carbonyl compounds with primary amines is a well-established synthetic methodology for the selective production of unsymmetrically substituted secondary and tertiary amines. From the industrial and green chemistry perspective, it is attractive to combine reductive amination with the synthesis of primary amines in a single one-pot catalytic process. In this regard, nitro compounds, which are readily available and inexpensive feedstocks, received much attention as convenient precursors to primary amines in such processes. Although the direct reductive coupling of nitro compounds with aldehydes/ketones to give secondary and tertiary amines has been known since the 1940's, due to the development of highly efficient and selective non-noble metal-based catalysts a breakthrough in this area was made in the last decade. In this short overview, recent progress in the methodology of the reductive amination with nitro compounds is summarized together with applications to the synthesis of bioactive amines and heterocycles. Remaining challenges in this field are also analyzed.
Collapse
Affiliation(s)
- Alexey Yu Sukhorukov
- Laboratory of Organic and Metal-organic Nitrogen-Oxygen Systems, N. D. Zelinsky Institute of Organic Chemistry, Moscow, Russia.,Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, Moscow, Russia
| |
Collapse
|
69
|
Calles M, Puigcerver J, Alonso DA, Alajarin M, Martinez-Cuezva A, Berna J. Enhancing the selectivity of prolinamide organocatalysts using the mechanical bond in [2]rotaxanes. Chem Sci 2020; 11:3629-3635. [PMID: 34094051 PMCID: PMC8152698 DOI: 10.1039/d0sc00444h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022] Open
Abstract
The synthesis of a pair of switchable interlocked prolinamides and their use as organocatalysts in three different enamine-activated processes are reported. A diacylaminopyridine moiety was incorporated into the thread for directing [2]rotaxane formation further allowing the association of complementary small molecules. The rotaxane-based systems were tested as organocatalysts in asymmetric enamine-mediated processes, revealing a significantly improved catalytic ability if compared with the non-interlocked thread. The presence of an electron-withdrawing nitro group at the macrocycle helps to achieve high conversions and enantioselectivities. These systems are able to interact with N-hexylthymine as a cofactor to form supramolecular catalysts displaying a divergent catalytic behaviour. The presence or absence of the cofactor controls the chemoselectivity in competitive reactions.
Collapse
Affiliation(s)
- María Calles
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| | - Julio Puigcerver
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| | - Diego A Alonso
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante E-03080 Alicante Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia E-30100 Murcia Spain
| |
Collapse
|
70
|
Zhu FP, Guo X, Zhang FM, Zhang XM, Wang H, Tu YQ. Construction of Polyfunctionalized 6-5-5 Fused Tricyclic Carbocycles via One-Pot Sequential Semipinacol Rearrangement/Michael Addition/Henry Reaction. Org Lett 2020; 22:2076-2080. [PMID: 32096637 DOI: 10.1021/acs.orglett.0c00565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel one-pot semipinacol rearrangement/Michael addition/Henry reaction of vinylogous α-ketols with nitroolefins has been achieved through the promotion of two Lewis acids, namely, TMSOTf and TiCl4, at temperatures between 0 and -78 °C. A range of synthetically challenging polyfunctionalized 6-5-5 and 7-5-5 fused tricyclic carbocycles bearing up to five continuous stereocenters, including one quaternary carbon center, are rapidly constructed in moderate to good yields with good to high diastereoselectivities in most cases.
Collapse
Affiliation(s)
- Fu-Ping Zhu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Guo
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
71
|
Rani D, Bhargava M, Agarwal J. Asymmetric Michael Addition of Unactivated Ketones with β‐Nitrostyrenes Mediated by Bifunctional L‐Prolinamide Organocatalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202000136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dixita Rani
- Department of Chemistry and Center of Advanced Studies Panjab University Chandigarh 160014 India
| | - Meha Bhargava
- Department of Chemistry and Center of Advanced Studies Panjab University Chandigarh 160014 India
| | - Jyoti Agarwal
- Department of Chemistry and Center of Advanced Studies Panjab University Chandigarh 160014 India
| |
Collapse
|
72
|
Smajlagic I, Guest M, Durán R, Herrera B, Dudding T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. J Org Chem 2020; 85:585-593. [PMID: 31790584 DOI: 10.1021/acs.joc.9b02682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranylation and glycosylation are pivotal for accessing a myriad of natural products, pharmaceuticals, and drug candidates. Catalytic approaches for enabling these transformations are of utmost importance and integral to advancing this area of synthesis. In exploring this chemical space, a combined experimental and computational mechanistic study of pyranylation and 2-deoxygalactosylation catalyzed by a cationic thiourea organocatalyst is reported. To this end, a thiourea-cyclopropenium organocatalyst was employed as a model system in combination with an arsenal of mechanistic techniques, including 13C kinetic isotope effect experiments, deuterated labeling studies, variable-temperature 1H NMR spectroscopy, and density functional theory calculations. From these studies, two distinct reaction pathways were identified for this transformation corresponding to either dual hydrogen bond (H-bond) activation or Brønsted acid catalysis. The former involving thiourea orchestrated bifurcated hydrogen bonding proceeded in an asynchronous concerted fashion. In contrast, the latter stepwise mechanism involving Brønsted acid catalysis hinged upon the formation of an oxocarbenium intermediate accompanied by subsequent alcohol addition.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Matt Guest
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Rocío Durán
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Barbara Herrera
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| |
Collapse
|
73
|
Organocatalysed conjugate addition reactions of aldehydes to nitroolefins with anti selectivity. Nat Catal 2020. [DOI: 10.1038/s41929-019-0406-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Schnitzer T, Möhler JS, Wennemers H. Effect of the enamine pyramidalization direction on the reactivity of secondary amine organocatalysts. Chem Sci 2020; 11:1943-1947. [PMID: 34123288 PMCID: PMC8148379 DOI: 10.1039/c9sc05410c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chiral secondary amines are valuable catalysts for reactions that proceed through an enamine intermediate. Here, we explored the importance of the pyramidalization direction of the enamine-N on the reactivity of chiral enamines with a combination of computational, NMR spectroscopic, and kinetic experiments. Studies with peptidic catalysts that bear cyclic amines with different ring sizes revealed that endo-pyramidalized enamines are significantly more reactive compared to exo-pyramidalized analogs. The results show that the pyramidalization direction can have a greater effect than n→π* orbital overlap on the reactivity of chiral enamines. The data enabled the development of a catalyst with higher reactivity compared to the parent catalyst. Endo-pyramidalisation at nitrogen bestows enamines derived from α-substituted amines with higher reactivity compared to exo-pyramidalisation.![]()
Collapse
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jasper S Möhler
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
75
|
Jao TJ, Akula PS, Hong BC, Lee GH. Catalytic 1,2-Rearrangements: Organocatalyzed Michael/Semi-Pinacol-like Rearrangement Cascade of 1,3-Diones and Nitroolefins. Org Lett 2020; 22:62-67. [PMID: 31829018 DOI: 10.1021/acs.orglett.9b03912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
New types of organocatalytic 1,2-rearrangements, which resemble the Smiles-like or semi-pinacol-like rearrangement, of Michael adducts of 1,3-dicarbonyl-2-alkyl compounds and nitroalkenes have been realized. Unlike the well-known conjugate addition, the reaction affords the 1-phenyl-1-nitroalkanes via unprecedented rearrangement and cascade reactions. Structures of the appropriate products were unambiguously characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Tsung-Jung Jao
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Pavan Sudheer Akula
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Bor-Cherng Hong
- Department of Chemistry and Biochemistry , National Chung Cheng University , Chia-Yi 621 , Taiwan, R.O.C
| | - Gene-Hsiang Lee
- Instrumentation Center , National Taiwan University , Taipei 106 , Taiwan, R.O.C
| |
Collapse
|
76
|
Domingo LR, Seif A, Mazarei E, Zahedi E, Ahmadi TS. A molecular electron density theory (MEDT) study of the role of halogens (X 2 = F 2, Cl 2, Br 2 and I 2) on the aza-Michael-addition reactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj04203j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The energy profile for gas phase F2-catalyzed nucleophilic attack of PYR R1 on the β-conjugated carbon of MA R2 marked.
Collapse
Affiliation(s)
- Luis R. Domingo
- Department of Organic Chemistry
- University of Valencia
- 46100 Burjassot
- Spain
| | - Ahmad Seif
- Department of Organic Chemistry
- University of Valencia
- 46100 Burjassot
- Spain
- Department of Chemistry
| | - Elham Mazarei
- Department of Organic Chemistry
- University of Valencia
- 46100 Burjassot
- Spain
| | - Ehasn Zahedi
- Department of Chemistry
- Shahrood Branch
- Islamic Azad University
- Shahrood
- Iran
| | | |
Collapse
|
77
|
Zeng YL, Chen B, Wang YT, He CY, Mu ZY, Du JY, He L, Chu WD, Liu QZ. Copper-catalyzed asymmetric silyl addition to alkenyl-substituted N-heteroarenes. Chem Commun (Camb) 2020; 56:1693-1696. [PMID: 31939945 DOI: 10.1039/c9cc08910a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Asymmetric conjugate addition of PhMe2SiBPin to a wide range of N-heteroaryl alkenes proceeded in the presence of a copper catalyst coordinated with a chiral phosphoramidite ligand to afford useful β-silyl N-heteroarenes in high yields and ees.
Collapse
Affiliation(s)
- Ya-Li Zeng
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Bo Chen
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Ya-Ting Wang
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Zi-Yuan Mu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Long He
- College of Chemistry and Materials Engineering
- Guiyang University
- Guiyang 550005
- China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control
- Key Laboratory of Sichuan Province
- College of Chemistry and Chemical Engineering
- China West Normal University
- Nanchong 637002
| |
Collapse
|
78
|
Li F, Chen X, Liang S, Shi Z, Li P, Li W. Organocatalytic site- and stereoselective 1,6-additions of N-aryl-3-oxobutanamides to propargylic aza-p-quinone methides. Org Chem Front 2020. [DOI: 10.1039/d0qo00888e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A chiral phosphoric acid catalyzed site-selective 1,6-conjugate addition of N-aryl-3-oxobutanamides to in situ formed propargylic aza-p-quinone methides from propargylic alcohols has been established for the first time.
Collapse
Affiliation(s)
- Fushuai Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Xuling Chen
- Shenzhen Grubbs Institute
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
| | - Shuai Liang
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Zhenyan Shi
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| | - Pengfei Li
- Shenzhen Grubbs Institute
- Department of Chemistry
- Guangdong Provincial Key Laboratory of Catalysis
- Southern University of Science and Technology
- Shenzhen
| | - Wenjun Li
- Department of Medicinal Chemistry
- School of Pharmacy
- Qingdao University
- Qingdao
- China
| |
Collapse
|
79
|
Chahal MK, Payne DT, Matsushita Y, Labuta J, Ariga K, Hill JP. Molecular Engineering of β‐Substituted Oxoporphyrinogens for Hydrogen‐Bond Donor Catalysis. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mandeep K. Chahal
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| | - Daniel T. Payne
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| | - Yoshitaka Matsushita
- Research Network and Facility Services Division National Institute for Materials Science (NIMS) 1‐2–1 Sengen, Tsukuba 305‐0047 Ibaraki Japan
| | - Jan Labuta
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
- Department of Advanced Materials Science Graduate School of Frontier Sciences The University of Tokyo 5‐1–5 Kashiwanoha, Kashiwa 277‐8561 Chiba Japan
| | - Jonathan P. Hill
- International Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) Namiki 1‐1, Tsukuba 305‐0044 Ibaraki Japan
| |
Collapse
|
80
|
Karki BS, Devi L, Pokhriyal A, Kant R, Rastogi N. Visible Light‐Induced, Metal‐Free Denitrative [3+2] Cycloaddition for Trisubstituted Pyrrole Synthesis. Chem Asian J 2019; 14:4793-4797. [DOI: 10.1002/asia.201901068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/09/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Bhupal S. Karki
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Lalita Devi
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Ruchir Kant
- Molecular & Structural Biology DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Namrata Rastogi
- Medicinal & Process Chemistry DivisionCSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research New Delhi 110001 India
| |
Collapse
|
81
|
Cui L, Wang Y, Fan Z, Li Z, Zhou Z. Kinetic Resolution of Axially Chiral 2‐Nitrovinyl Biaryls Catalyzed by a Bifunctional Thiophosphinamide. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liying Cui
- Institute and State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityCollaborative Innovation Center of Chemical Science and Engineering Tianjin 300071 People's Republic of China
| | - Youming Wang
- Institute and State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityCollaborative Innovation Center of Chemical Science and Engineering Tianjin 300071 People's Republic of China
| | - Zhijin Fan
- Institute and State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityCollaborative Innovation Center of Chemical Science and Engineering Tianjin 300071 People's Republic of China
| | - Zhengming Li
- Institute and State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityCollaborative Innovation Center of Chemical Science and Engineering Tianjin 300071 People's Republic of China
| | - Zhenghong Zhou
- Institute and State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityCollaborative Innovation Center of Chemical Science and Engineering Tianjin 300071 People's Republic of China
| |
Collapse
|
82
|
Hamlin TA, Fernández I, Bickelhaupt FM. How Dihalogens Catalyze Michael Addition Reactions. Angew Chem Int Ed Engl 2019; 58:8922-8926. [PMID: 31033118 PMCID: PMC6617756 DOI: 10.1002/anie.201903196] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/04/2019] [Indexed: 11/12/2022]
Abstract
We have quantum chemically analyzed the catalytic effect of dihalogen molecules (X2 =F2 , Cl2 , Br2 , and I2 ) on the aza-Michael addition of pyrrolidine and methyl acrylate using relativistic density functional theory and coupled-cluster theory. Our state-of-the-art computations reveal that activation barriers systematically decrease as one goes to heavier dihalogens, from 9.4 kcal mol-1 for F2 to 5.7 kcal mol-1 for I2 . Activation strain and bonding analyses identify an unexpected physical factor that controls the computed reactivity trends, namely, Pauli repulsion between the nucleophile and Michael acceptor. Thus, dihalogens do not accelerate Michael additions by the commonly accepted mechanism of an enhanced donor-acceptor [HOMO(nucleophile)-LUMO(Michael acceptor)] interaction, but instead through a diminished Pauli repulsion between the lone-pair of the nucleophile and the Michael acceptor's π-electron system.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicaUniversidad Complutense de Madrid28040MadridSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute for Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
83
|
Martinez-Cuezva A, Marin-Luna M, Alonso DA, Ros-Ñiguez D, Alajarin M, Berna J. Interlocking the Catalyst: Thread versus Rotaxane-Mediated Enantiodivergent Michael Addition of Ketones to β-Nitrostyrene. Org Lett 2019; 21:5192-5196. [DOI: 10.1021/acs.orglett.9b01791] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alberto Martinez-Cuezva
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Marta Marin-Luna
- Departamento de Química Orgánica, Universidade de Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain
| | - Diego A. Alonso
- Departamento Química Orgánica e Instituto de Síntesis Orgánica, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| | - Diego Ros-Ñiguez
- Departamento Química Orgánica e Instituto de Síntesis Orgánica, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| | - Jose Berna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia, Spain
| |
Collapse
|
84
|
Hamlin TA, Fernández I, Bickelhaupt FM. Wie Dihalogene Michael‐Additionsreaktionen katalysieren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam Niederlande
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de Ciencias QuímicaUniversidad Complutense de Madrid 28040 Madrid Spanien
| | - F. Matthias Bickelhaupt
- Department of Theoretical ChemistryAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam Niederlande
- Institute for Molecules and Materials (IMM)Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
| |
Collapse
|
85
|
Concerted Catalysis by Nanocellulose and Proline in Organocatalytic Michael Additions. Molecules 2019; 24:molecules24071231. [PMID: 30934821 PMCID: PMC6480416 DOI: 10.3390/molecules24071231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Cellulose nanofibers (CNFs) have recently attracted much attention as catalysts in various reactions. Organocatalysts have emerged as sustainable alternatives to metal-based catalysts in green organic synthesis, with concerted systems containing CNFs that are expected to provide next-generation catalysis. Herein, for the first time, we report that a representative organocatalyst comprising an unexpected combination of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-oxidized CNFs and proline shows significantly enhanced catalytic activity in an asymmetric Michael addition.
Collapse
|
86
|
Mahato CK, Mukherjee S, Kundu M, Pramanik A. Pyrrolidine-Oxadiazolone Conjugates as Organocatalysts in Asymmetric Michael Reaction. J Org Chem 2019; 84:1053-1063. [PMID: 30577689 DOI: 10.1021/acs.joc.8b02393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pyrrolidine-oxadiazolone based organocatalysts are envisaged, synthesized, and utilized for asymmetric Michael reactions. Results of the investigations suggest that some of the catalysts are indeed efficient for stereoselective 1,4-conjugated Michael additions (dr: >97:3, ee up to 99%) in high chemical yields (up to 97%) often in short reaction time. As an extension, one enantiopure Michael adduct has been utilized to synthesize optically active octahydroindole.
Collapse
Affiliation(s)
- Chandan K Mahato
- TCG Lifesciences Pvt. Ltd. , BN-7 , Salt Lake City, Kolkata 700091 , India.,Department of Chemistry , University of Calcutta , 92, A. P. C. Road , Kolkata 700009 , India
| | - Sayan Mukherjee
- Department of Chemistry , University of Calcutta , 92, A. P. C. Road , Kolkata 700009 , India
| | - Mrinalkanti Kundu
- TCG Lifesciences Pvt. Ltd. , BN-7 , Salt Lake City, Kolkata 700091 , India
| | - Animesh Pramanik
- Department of Chemistry , University of Calcutta , 92, A. P. C. Road , Kolkata 700009 , India
| |
Collapse
|
87
|
Rexiti R, Zhang ZG, Lu J, Sha F, Wu XY. Regioselective and Enantioselective Cu(II)-Catalyzed 1,4-Conjugate Addition of Diethylzinc Reagent to Nitrodienes. J Org Chem 2019; 84:1330-1338. [DOI: 10.1021/acs.joc.8b02798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rukeya Rexiti
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhen-Guo Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jian Lu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
88
|
Mo Y, Liu S, Liu Y, Ye L, Shi Z, Zhao Z, Li X. Highly stereoselective synthesis of 2,3-dihydrofurans via a cascade Michael addition-alkylation process: a nitro group as the leaving group. Chem Commun (Camb) 2019; 55:6285-6288. [PMID: 31086904 DOI: 10.1039/c9cc01509d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Michael addition-alkylation process between gem-benzoyl-nitrostyrenes and 1,3-dicarbonyl compounds proceeded smoothly in the presence of a bifunctional squaramide, exclusively providing 2,3-dihydrofurans as trans-diastereomers in 33-92% isolated yields and excellent enantioselectivities (29->99% ee).
Collapse
Affiliation(s)
- Yiran Mo
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, China.
| | | | | | | | | | | | | |
Collapse
|
89
|
Valle M, Martín L, Maestro A, Andrés JM, Pedrosa R. Chiral Bifunctional Thioureas and Squaramides Grafted into Old Polymers of Intrinsic Microporosity for Novel Applications. Polymers (Basel) 2018; 11:E13. [PMID: 30959997 PMCID: PMC6401694 DOI: 10.3390/polym11010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
We have prepared different polymeric chiral bifunctional thioureas and squaramides by modification of the very well-known polymers of intrinsic microporosity (PIM), specifically PIM-1 and PIM-CO-1, to be used as recoverable organocatalysts. The installation of the chiral structures into the polymers has been done in two or three steps in high yields. The catalytic activity of the resulting materials has been proved in the stereoselective nitro-Michael addition and in a cascade process, which allows the synthesis of enantioenriched 4H-chromene derivatives. Squaramide II and thiourea III have been used in six cycles maintaining their activity.
Collapse
Affiliation(s)
- María Valle
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Laura Martín
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Alicia Maestro
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - José M Andrés
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| | - Rafael Pedrosa
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén 7, 47011 Valladolid, Spain.
| |
Collapse
|
90
|
Saputra MA, Nepal B, Dange NS, Du P, Fronczek FR, Kumar R, Kartika R. Enantioselective Functionalization of Enamides at the β-Carbon Center with Indoles. Angew Chem Int Ed Engl 2018; 57:15558-15562. [PMID: 30191642 PMCID: PMC6407611 DOI: 10.1002/anie.201808764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/27/2018] [Indexed: 11/05/2022]
Abstract
We report an enantioconvergent approach for the functionalization of enamides at the β-carbon atom, which involves a chiral Brønsted acid induced tautomerization of 2-amidoallyl into 1-amidoallyl cations. These putative reactive intermediates were produced by ionization of racemic α-hydroxy enamides with a chiral Brønsted acid and captured with substituted indoles in a highly regio- and enantioselective manner.
Collapse
Affiliation(s)
- Mirza A. Saputra
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, LA 70803 (USA)
| | - Binod Nepal
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, LA 70803 (USA)
| | - Nitin S. Dange
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, LA 70803 (USA)
| | - Pu Du
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, LA 70803 (USA)
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, LA 70803 (USA)
| | - Revati Kumar
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, LA 70803 (USA)
| | - Rendy Kartika
- Department of Chemistry, Louisiana State University 232 Choppin Hall, Baton Rouge, LA 70803 (USA)
| |
Collapse
|
91
|
Saputra MA, Nepal B, Dange NS, Du P, Fronczek FR, Kumar R, Kartika R. Enantioselective Functionalization of Enamides at the β‐Carbon Center with Indoles. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mirza A. Saputra
- Department of ChemistryLouisiana State University 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Binod Nepal
- Department of ChemistryLouisiana State University 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Nitin S. Dange
- Department of ChemistryLouisiana State University 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Pu Du
- Department of ChemistryLouisiana State University 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Frank R. Fronczek
- Department of ChemistryLouisiana State University 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Revati Kumar
- Department of ChemistryLouisiana State University 232 Choppin Hall Baton Rouge LA 70803 USA
| | - Rendy Kartika
- Department of ChemistryLouisiana State University 232 Choppin Hall Baton Rouge LA 70803 USA
| |
Collapse
|
92
|
Smajlagic I, Durán R, Pilkington M, Dudding T. Cyclopropenium Enhanced Thiourea Catalysis. J Org Chem 2018; 83:13973-13980. [PMID: 30352160 DOI: 10.1021/acs.joc.8b02321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An integral part of modern organocatalysis is the development and application of thiourea catalysts. Here, as part of our program aimed at developing cyclopropenium catalysts, the synthesis of a thiourea-cyclopropenium organocatalyst with both cationic hydrogen-bond donor and electrostatic character is reported. The utility of the this thiourea organocatalyst is showcased in pyranylation reactions employing phenols, primary, secondary, and tertiary alcohols under operationally simple and mild reaction conditions for a broad substrate scope. The addition of benzoic acid as a co-catalyst facilitating cooperative Brønsted acid catalysis was found to be valuable for reactions involving phenols and higher substituted alcohols. Mechanistic investigations, including kinetic and 1H NMR binding studies in conjunction with density function theory calculations, are described that collectively support a Brønsted acid mode of catalysis.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Rocio Durán
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Melanie Pilkington
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| |
Collapse
|
93
|
Pandey R, Anand RV. Base-Catalyzed 1,6-Conjugate Addition of Nitroalkanes to p-Quinone Methides under Continuous Flow. ACS OMEGA 2018; 3:13967-13976. [PMID: 31458092 PMCID: PMC6644449 DOI: 10.1021/acsomega.8b01971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/15/2018] [Indexed: 06/10/2023]
Abstract
A mild base-catalyzed protocol for the synthesis of substituted nitroalkane derivatives has been developed under continuous flow using a microreaction technique. This transformation basically involves the 1,6-conjugate addition of nitroalkanes to p-quinone methides, leading to the substituted nitroalkanes in good to excellent yields.
Collapse
|
94
|
Liu W, Zhang Y, Guo H. Nitration and Cyclization of Arene-Alkynes: An Access to 9-Nitrophenathrenes. J Org Chem 2018; 83:10518-10524. [PMID: 30074780 DOI: 10.1021/acs.joc.8b01201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nitration and cyclization of arene-alkynes has been developed, affording 9-nitrophenathrenes efficiently. This reaction probably proceeds via addition of the nitrogen dioxide to the alkyne moiety, intramolecular radical addition of vinyl radical to one aryl ring, oxidation of radical intermediate into carbocation species, and elimination of a proton. In this transformation, Fe(NO3)3 was used as both nitro source and oxidant.
Collapse
Affiliation(s)
- Wangsheng Liu
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai , 200438 , P. R. China
| | - Yanbin Zhang
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai , 200438 , P. R. China
| | - Hao Guo
- Department of Chemistry , Fudan University , 2005 Songhu Road , Shanghai , 200438 , P. R. China.,Academy for Engineering and Technology , Fudan University , 220 Handan Road , Shanghai , 200433 , P. R. China
| |
Collapse
|
95
|
Szőllősi G, Kozma V. Design of Heterogeneous Organocatalyst for the Asymmetric Michael Addition of Aldehydes to Maleimides. ChemCatChem 2018. [DOI: 10.1002/cctc.201800919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- György Szőllősi
- MTA-SZTE Stereochemistry Research Group Dóm tér 8 Szeged 6720 Hungary
| | - Viktória Kozma
- Department of Organic ChemistryUniversity of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
96
|
Yao W, Zhu J, Zhou X, Jiang R, Wang P, Chen W. Ferrocenophane-based bifunctional organocatalyst for highly enantioselective Michael reactions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
97
|
Zheng K, Liu X, Feng X. Recent Advances in Metal-Catalyzed Asymmetric 1,4-Conjugate Addition (ACA) of Nonorganometallic Nucleophiles. Chem Rev 2018; 118:7586-7656. [PMID: 30047721 DOI: 10.1021/acs.chemrev.7b00692] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The metal-catalyzed asymmetric conjugate addition (ACA) reaction has emerged as a general and powerful approach for the construction of optically active compounds and is among the most significant and useful reactions in synthetic organic chemistry. In recent years, great progress has been made in this area with the use of various chiral metal complexes based on different chiral ligands. This review provides comprehensive and critical information on the enantioselective 1,4-conjugate addition of nonorganometallic (soft) nucleophiles and their importance in synthetic applications. The literature is covered from the last 10 years, and a number of examples from before 2007 are included as background information. The review is divided into multiple parts according to the type of nucleophile involved in the reaction (such as C-, B-, O-, N-, S-, P-, and Si-centered nucleophiles) and metal catalyst systems used.
Collapse
Affiliation(s)
- Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| |
Collapse
|
98
|
Shin M, Gu M, Lim SS, Kim MJ, Lee J, Jin H, Jang YH, Jung B. CuI
-Catalysed Enantioselective Alkyl 1,4-Additions to (E
)-Nitroalkenes and Cyclic Enones with Phosphino-Oxazoline Ligands. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minkyeong Shin
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - Minji Gu
- LG Chem; 34122 Daejeon Republic of Korea
| | - Sung Soo Lim
- Department of Energy, Science, & Engineering; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - Min-Jae Kim
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - JuHyung Lee
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - HyeongGyu Jin
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - Yun Hee Jang
- Department of Energy, Science, & Engineering; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| | - Byunghyuck Jung
- School of Basic Science; Daegu Gyeongbuk Institute of Science and Technology (DGIST); 42988 Daegu Republic of Korea
| |
Collapse
|
99
|
Vila C, Rostoll-Berenguer J, Sánchez-García R, Blay G, Fernández I, Muñoz MC, Pedro JR. Enantioselective Synthesis of 2-Amino-1,1-diarylalkanes Bearing a Carbocyclic Ring Substituted Indole through Asymmetric Catalytic Reaction of Hydroxyindoles with Nitroalkenes. J Org Chem 2018; 83:6397-6407. [DOI: 10.1021/acs.joc.8b00612] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlos Vila
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, Burjassot, València 46100, Spain
| | - Jaume Rostoll-Berenguer
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, Burjassot, València 46100, Spain
| | - Rubén Sánchez-García
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, Burjassot, València 46100, Spain
| | - Gonzalo Blay
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, Burjassot, València 46100, Spain
| | - Isabel Fernández
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, Burjassot, València 46100, Spain
| | - M. Carmen Muñoz
- Departament de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, València 46022, Spain
| | - José R. Pedro
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner 50, Burjassot, València 46100, Spain
| |
Collapse
|
100
|
Wang JJ, Yang H, Gou BB, Zhou L, Chen J. Enantioselective Organocatalytic Sulfenylation of β-Naphthols. J Org Chem 2018; 83:4730-4738. [PMID: 29595970 DOI: 10.1021/acs.joc.8b00487] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An enantioselective sulfenylation of β-naphthols has been developed for the first time using a newly synthesized cinchona-derived thiourea as the catalyst and N-(arylthio) succinimide (or phthalimide) as an electrophilic sulfur source. Various enantioenriched naphthalenones with an S-containing all-substituted stereocenter were prepared via a dearomatization strategy under mild reaction conditions.
Collapse
Affiliation(s)
- Jiao-Jiao Wang
- School of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China , Northwest University , Xi'an 710127 , China
| | - Hui Yang
- School of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China , Northwest University , Xi'an 710127 , China
| | - Bo-Bo Gou
- School of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China , Northwest University , Xi'an 710127 , China
| | - Ling Zhou
- School of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China , Northwest University , Xi'an 710127 , China
| | - Jie Chen
- School of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China , Northwest University , Xi'an 710127 , China
| |
Collapse
|