51
|
Golizeh M, Nam J, Chatelain E, Jackson Y, Ohlund LB, Rasoolizadeh A, Camargo FV, Mahrouche L, Furtos A, Sleno L, Ndao M. New metabolic signature for Chagas disease reveals sex steroid perturbation in humans and mice. Heliyon 2022; 8:e12380. [PMID: 36590505 PMCID: PMC9800200 DOI: 10.1016/j.heliyon.2022.e12380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The causative agent of Chagas disease (CD), Trypanosoma cruzi, claims thousands of lives each year. Current diagnostic tools are insufficient to ensure parasitological detection in chronically infected patients has been achieved. A host-derived metabolic signature able to distinguish CD patients from uninfected individuals and assess antiparasitic treatment efficiency is introduced. Serum samples were collected from chronic CD patients, prior to and three years after treatment, and subjected to untargeted metabolomics analysis against demographically matched CD-negative controls. Five metabolites were confirmed by high-resolution tandem mass spectrometry. Several database matches for sex steroids were significantly altered in CD patients. A murine experiment corroborated sex steroid perturbation in T. cruzi-infected mice, particularly in male animals. Proteomics analysis also found increased steroidogenesis in the testes of infected mice. Metabolic alterations identified in this study shed light on the pathogenesis and provide the basis for developing novel assays for the diagnosis and screening of CD patients.
Collapse
Affiliation(s)
- Makan Golizeh
- Department of Mathematical and Physical Sciences, Concordia University of Edmonton, Edmonton, Alberta, Canada,National Reference Centre for Parasitology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - John Nam
- National Reference Centre for Parasitology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada,Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Yves Jackson
- Division of Primary Care Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Leanne B. Ohlund
- Chemistry Department, Université du Québec à Montréal, Montreal, Quebec, Canada,Center for Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO-FC), Montreal, Quebec, Canada
| | - Asieh Rasoolizadeh
- National Reference Centre for Parasitology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Fabio Vasquez Camargo
- National Reference Centre for Parasitology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Louiza Mahrouche
- Chemistry Department, Regional Centre for Mass Spectrometry, Université de Montréal, Montreal, Quebec, Canada
| | - Alexandra Furtos
- Chemistry Department, Regional Centre for Mass Spectrometry, Université de Montréal, Montreal, Quebec, Canada
| | - Lekha Sleno
- Chemistry Department, Université du Québec à Montréal, Montreal, Quebec, Canada,Center for Excellence in Research on Orphan Diseases – Fondation Courtois (CERMO-FC), Montreal, Quebec, Canada,Corresponding author.
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada,Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, Quebec, Canada,Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada,Corresponding author.
| |
Collapse
|
52
|
Sulfur amino acid supplementation displays therapeutic potential in a C. elegans model of Duchenne muscular dystrophy. Commun Biol 2022; 5:1255. [PMID: 36385509 PMCID: PMC9668843 DOI: 10.1038/s42003-022-04212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms. A C. elegans model of Duchenne muscular dystrophy reveals a potential role for disrupted sulfur metabolism in the disease and thus the therapeutic potential of sulfur amino acid supplementation.
Collapse
|
53
|
Wang R, Qi YF, Ding CH, Zhang D. Sulfur-containing amino acids and their metabolites in atrial fibrosis. Front Pharmacol 2022; 13:1063241. [DOI: 10.3389/fphar.2022.1063241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Atrial fibrosis, a symbol of atrial structural remodelling, is a complex process involved in the occurrence and maintenance of atrial fibrillation (AF). Atrial fibrosis is regulated by multiple factors. Sulfur containing amino acids and their metabolites, such as hydrogen sulfide (H2S) and taurine, can inhibit the process of atrial fibrosis and alleviate atrial remodeling. However, homocysteine can promote the activation of atrial fibroblasts and further promote atrial fibrosis. In this review, we will focus on the recent progress in atrial structural changes and molecular mechanisms of atrial fibrosis, as well as the regulatory roles and possible mechanisms of sulfur containing amino acids and their metabolites in atrial fibrosis. It is expected to provide new ideas for clarifying the mechanism of atrial fibrosis and finding targets to inhibit the progress of atrial fibrosis.
Collapse
|
54
|
Iheanacho MM, Analike RA, Meludu SC, Ogbodo EC, Onah CE. Short-term energy drink consumption influences plasma glucose, apolipoprotein B, body mass index and pulse rate among students. Discoveries (Craiova) 2022; 10:e159. [PMID: 37448554 PMCID: PMC10337989 DOI: 10.15190/d.2022.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/29/2022] [Accepted: 12/28/2022] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE Energy drinks are becoming more popular every year, particularly among young adults such as college students, despite evidence that they have harmful health effects. The effect of energy drink consumption on plasma glucose, serum apolipoproteins, and triglyceride levels in students was investigated. METHODS In order to test this, we chose two representative types of energy drinks in Nigeria, namely fearless and predator. These energy drinks are brand names of non-alcoholic beverages aimed to provide energy. 30 students, apparently healthy male human subjects aged 18 to 30 years who gave informed consent to the research work were randomly selected and divided into two groups: Group A (fearless energy drink consumers, n=15) and Group B (predator energy drink consumers, n=15). RESULTS: The results demonstrated significant reductions in pulse rate (86.00±41.32 vs. 78.87±27.72; p=0.03) and BMI (21.41±1.93 vs. 21.7±12.02; p=0.00) as compared to baseline values after one month of "fearless energy drink" consumption. Plasma glucose levels were significantly higher (97.53±10.62 vs. 88.80±11.33; p=0.01) and Apo B levels were significantly lower (21.41±1.93 vs. 21.71±2.02; p=0.00) following two weeks of fearless energy drink consumption than in baseline. In addition, BMI and Apo B levels were significantly lower after two weeks of predator energy drink consumption, but plasma glucose levels were significantly higher after two weeks and one month of predator energy drink consumption, respectively (p<0.05). SBP, DBP, TG and Apo A levels did not differ significantly in both fearless and predator energy drink consumers at baseline and after the study period respectively (p>0.05). CONCLUSION This study has shown that the consumption of energy drinks causes significant alterations in BMI, pulse rate, plasma glucose and apolipoprotein B levels which may have important clinical consequences for energy drink consumers.
Collapse
Affiliation(s)
- Munachimso Mariasonia Iheanacho
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Rosemary Adamma Analike
- Department of Chemical Pathology, Faculty of Medicine, Nnamdi Azikiwe University, Awka, Nigeria
| | - Samuel Chukwuemeka Meludu
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Human Biochemistry, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Emmanuel Chukwuemeka Ogbodo
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Christian Ejike Onah
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
55
|
Du Z, Sun H, Du Y, Li L, Lv Q, Yu H, Li F, Wang Y, Jiao X, Hu C, Qin Y. Comprehensive Metabolomics and Machine Learning Identify Profound Oxidative Stress and Inflammation Signatures in Hypertensive Patients with Obstructive Sleep Apnea. Antioxidants (Basel) 2022; 11:antiox11101946. [PMID: 36290670 PMCID: PMC9598902 DOI: 10.3390/antiox11101946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) can aggravate blood pressure and increase the risk of cardiovascular diseases in hypertensive individuals, yet the underlying pathophysiological process is still incompletely understood. More importantly, OSA remains a significantly undiagnosed condition. In this study, a total of 559 hypertensive patients with and without OSA were included. Metabolome and lipidome-wide analyses were performed to explore the pathophysiological processes of hypertension comorbid OSA and derive potential biomarkers for diagnosing OSA in hypertensive subjects. Compared to non-OSA hypertensive patients (discovery set = 120; validation set = 116), patients with OSA (discovery set = 165; validation set = 158) demonstrated a unique sera metabolic phenotype dominated by abnormalities in biological processes of oxidative stress and inflammation. By integrating three machine learning algorithms, six discriminatory metabolites (including 5-hydroxyeicosatetraenoic acid, taurine, histidine, lysophosphatidic acid 16:0, lysophosphatidylcholine 18:0, and dihydrosphingosine) were selected for constructing diagnostic and classified model. Notably, the established multivariate-model could accurately identify OSA subjects. The corresponding area under the curve values and the correct classification rates were 0.995 and 96.8% for discovery sets, 0.997 and 99.1% for validation sets. This work updates the molecular insights of hypertension comorbid OSA and paves the way for the use of metabolomics for the diagnosis of OSA in hypertensive individuals.
Collapse
Affiliation(s)
- Zhiyong Du
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Haili Sun
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Yunhui Du
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Linyi Li
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Qianwen Lv
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Huahui Yu
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Fan Li
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Yu Wang
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Xiaolu Jiao
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Chaowei Hu
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Yanwen Qin
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
- Correspondence: ; Tel./Fax: +86-10-64456529
| |
Collapse
|
56
|
He M, Huang Y, Wang Y, Liu J, Han M, Xiao Y, Zhang N, Gui H, Qiu H, Cao L, Jia W, Huang S. Metabolomics-based investigation of SARS-CoV-2 vaccination (Sinovac) reveals an immune-dependent metabolite biomarker. Front Immunol 2022; 13:954801. [PMID: 36248825 PMCID: PMC9554639 DOI: 10.3389/fimmu.2022.954801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
SARS-CoV-2 and its mutant strains continue to rapidly spread with high infection and fatality. Large-scale SARS-CoV-2 vaccination provides an important guarantee for effective resistance to existing or mutated SARS-CoV-2 virus infection. However, whether the host metabolite levels respond to SARS-CoV-2 vaccine-influenced host immunity remains unclear. To help delineate the serum metabolome profile of SARS-CoV-2 vaccinated volunteers and determine that the metabolites tightly respond to host immune antibodies and cytokines, in this study, a total of 59 sera samples were collected from 30 individuals before SARS-CoV-2 vaccination and from 29 COVID-19 vaccines 2 weeks after the two-dose vaccination. Next, untargeted metabolomics was performed and a distinct metabolic composition was revealed between the pre-vaccination (VB) group and two-dose vaccination (SV) group by partial least squares-discriminant and principal component analyses. Based on the criteria: FDR < 0.05, absolute log2 fold change greater than 0.25, and VIP >1, we found that L-glutamic acid, gamma-aminobutyric acid (GABA), succinic acid, and taurine showed increasing trends from SV to VB. Furthermore, SV-associated metabolites were mainly annotated to butanoate metabolism and glutamate metabolism pathways. Moreover, two metabolite biomarkers classified SV from VB individuals with an area under the curve (AUC) of 0.96. Correlation analysis identified a positive association between four metabolites enriched in glutamate metabolism and serum antibodies in relation to IgG, IgM, and IgA. These results suggest that the contents of gamma-aminobutyric acid and indole in serum could be applied as biomarkers in distinguishing vaccinated volunteers from the unvaccinated. What’s more, metabolites such as GABA and taurine may serve as a metabolic target for adjuvant vaccines to boost the ability of the individuals to improve immunity.
Collapse
Affiliation(s)
- Maozhang He
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yixuan Huang
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yun Wang
- Department of Nosocomial Infection Control, Anhui No.2 Provincial People’s Hospital, Hefei, China
| | - Jiling Liu
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Yixuan Xiao
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Na Zhang
- Department of Nosocomial Infection Control, Anhui No.2 Provincial People’s Hospital, Hefei, China
| | - Hongya Gui
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Huan Qiu
- School of Nursing, Anhui Medical University, Hefei, China
| | - Liqing Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Weihua Jia
- School of Life Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Shenghai Huang, ; Weihua Jia,
| | - Shenghai Huang
- Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Life Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Shenghai Huang, ; Weihua Jia,
| |
Collapse
|
57
|
Liu T, Wang D, Zhou X, Song J, Yang Z, Shi C, Li R, Zhang Y, Zhang J, Yan J, Zhu X, Li Y, Gong M, Wang C, Yuan C, Cui Y, Wu X. Study on the mechanism of American ginseng extract for treating type 2 diabetes mellitus based on metabolomics. Front Pharmacol 2022; 13:960050. [PMID: 36120310 PMCID: PMC9479495 DOI: 10.3389/fphar.2022.960050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
American ginseng extract (AGE) is an efficient and low-toxic adjuvant for type 2 diabetes mellitus (T2DM). However, the metabolic mechanisms of AGE against T2DM remain unknown. In this study, a rat model of T2DM was created and administered for 28 days. Their biological (body weight and serum biochemical indicators) and pathological (pancreatic sections stained with HE) information were collected for further pharmacodynamic evaluation. Moreover, an ultra-performance liquid chromatography–mass spectrometry–based (UHPLC–MS/MS–based) untargeted metabolomics method was used to identify potential biomarkers of serum samples from all rats and related metabolic pathways. The results indicated that body weight, fasting blood glucose (FBG), fasting blood insulin (FINS), blood triglyceride concentration (TG), high-density lipoprotein cholesterol (HDL-C), insulin resistance index (HOMA-IR) and insulin sensitivity index (ISI), and impaired islet cells were significantly improved after the high dose of AGE (H_AGE) and metformin treatment. Metabolomics analysis identified 101 potential biomarkers among which 94 metabolites had an obvious callback. These potential biomarkers were mainly enriched in nine metabolic pathways linked to amino acid metabolism and lipid metabolism. Tryptophan metabolism and glutathione metabolism, as differential metabolic pathways between AGE and metformin for treating T2DM, were further explored. Further analysis of the aforementioned results suggested that the anti-T2DM effect of AGE was closely associated with inflammation, oxidative stress, endothelial dysfunction, dyslipidemia, immune response, insulin resistance, insulin secretion, and T2DM-related complications. This study can provide powerful support for the systematic exploration of the mechanism of AGE against T2DM and a basis for the clinical diagnosis of T2DM.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dan Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
- Department of Pharmacy, Chu Hisen-I Memorial Hospital, Tianjin Medical University, Tianjin, China
| | - Xinfeng Zhou
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jiayin Song
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zijun Yang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chang Shi
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Rongshan Li
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yanwen Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jun Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jiuxing Yan
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xuehui Zhu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Tianjin Neurological Institute, Tianjin Medical University, Tianjin, China
| | - Min Gong
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chongzhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL, United States
| | - Chunsu Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL, United States
| | - Yan Cui
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- *Correspondence: Yan Cui, ; Xiaohui Wu,
| | - Xiaohui Wu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
- *Correspondence: Yan Cui, ; Xiaohui Wu,
| |
Collapse
|
58
|
Effect of taurine on glycaemic, lipid and inflammatory profile in individuals with type 2 diabetes: study protocol of a randomised trial. Br J Nutr 2022; 129:1871-1876. [PMID: 36047065 DOI: 10.1017/s0007114522002768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Type 2 diabetes mellitus (T2DM) is characterised by chronic hyperglycaemia. Despite the efficacy of conventional pharmacotherapy, some individuals do not reach glycaemic goals and require adjuvant therapies. Taurine, a semi-essential amino acid, decreases blood glucose and cholesterol levels in rodents and humans. However, glycated hemoglobin (HbA1c) has not been evaluated in randomised controlled trials after taurine treatment for more than 12 weeks. This study aims to evaluate the effect of taurine administration on glycaemic, lipid, inflammatory, anthropometric and dietary parameters in individuals with T2DM. A randomised, double-blind, placebo-controlled clinical trial will be conducted at the Clinical Research Center of a tertiary public hospital. Participants with T2DM (n 94) will be recruited and randomised to receive 3 g of taurine or placebo, twice/day, orally, for 12 weeks. Blood samples will be collected before and after 12 weeks of treatment, when HbA1c, fasting glucose, insulin, albuminuria, creatinine, total cholesterol and fractions, triglycerides, C-reactive protein, TNF-α, IL 1, 4, 5, 6, 10 and 13 will be evaluated. Anthropometric parameters and 24-hour food recall will also be evaluated. The study will evaluate the effect of taurine treatment on biochemical and anthropometric parameters in individuals with T2DM. These results will guide the decision-making to indicate taurine treatment as an adjunct in individuals with T2DM who have not reached their glycaemic goal.
Collapse
|
59
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
60
|
Yousuf M, Shamsi A, Mohammad T, Azum N, Alfaifi SYM, Asiri AM, Mohamed Elasbali A, Islam A, Hassan MI, Haque QMR. Inhibiting Cyclin-Dependent Kinase 6 by Taurine: Implications in Anticancer Therapeutics. ACS OMEGA 2022; 7:25844-25852. [PMID: 35910117 PMCID: PMC9330843 DOI: 10.1021/acsomega.2c03479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Cyclin-dependent kinase 6 (CDK6) is linked with a cyclin partner and plays a crucial role in the early stages of cancer development. It is currently a potential drug target for developing therapeutic molecules targeting cancer therapy. Here, we have identified taurine as an inhibitor of CDK6 using combined in silico and experimental studies. We performed various experiments to find the binding affinity of taurine with CDK6. Molecular docking analysis revealed critical residues of CDK6 that are involved in taurine binding. Fluorescence measurement studies showed that taurine binds to CDK6 with a significant binding affinity, with a binding constant of K = 0.7 × 107 M-1 for the CDK6-taurine complex. Enzyme inhibition assay suggested taurine as a good inhibitor of CDK6 possessing an IC50 value of 4.44 μM. Isothermal titration calorimetry analysis further confirmed a spontaneous binding of taurine with CDK6 and delineated the thermodynamic parameters for the CDK6-taurine system. Altogether, this study established taurine as a CDK6 inhibitor, providing a base for using taurine and its derivatives in CDK6-associated cancer and other diseases.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department
of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre
of
Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Naved Azum
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Sulaiman Y. M. Alfaifi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdullah M. Asiri
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Clinical
Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
61
|
Khalaf HA, Elsamanoudy AZ, Abo-Elkhair SM, Hassan FE, Mohie PM, Ghoneim FM. Endoplasmic reticulum stress and mitochondrial injury are critical molecular drivers of AlCl 3-induced testicular and epididymal distortion and dysfunction: protective role of taurine. Histochem Cell Biol 2022; 158:97-121. [PMID: 35511291 PMCID: PMC9247002 DOI: 10.1007/s00418-022-02111-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/30/2022]
Abstract
Aluminum, the third most plentiful metal in the Earth's crust, has potential for human exposure and harm. Oxidative stress plays an essential role in producing male infertility by inducing defects in sperm functions. We aimed to investigate the role of endoplasmic reticulum (ER) stress and mitochondrial injury in the pathogenesis of aluminum chloride (AlCl3)-induced testicular and epididymal damage at the histological, biochemical, and molecular levels, and to assess the potential protective role of taurine. Forty-eight adult male albino rats were separated into four groups (12 in each): negative control, positive control, AlCl3, and AlCl3 plus taurine groups. Testes and epididymis were dissected. Histological and immunohistochemical (Bax and vimentin) studies were carried out. Gene expression of vimentin, PCNA, CHOP, Bcl-2, Bax, and XBP1 were investigated via quantitative real-time polymerase chain reaction (qRT-PCR), besides estimation of malondialdehyde (MDA) and total antioxidant capacity (TAC). Light and electron microscopic examinations of the testes and epididymis revealed pathological changes emphasizing both mitochondrial injury and ER stress in the AlCl3 group. Taurine-treated rats showed a noticeable improvement in the testicular and epididymal ultrastructure. Moreover, they exhibited increased gene expression of vimentin, Bcl-2, and PNCA accompanied by decreased CHOP, Bax, and XBP1 gene expression. In conclusion, male reproductive impairment is a significant hazard associated with AlCl3 exposure. Both ER stress and mitochondrial impairment are critical mechanisms of the deterioration in the testes and epididymis induced by AlCl3, but taurine can amend this.
Collapse
Affiliation(s)
- Hanaa A Khalaf
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ayman Z Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, 21465, Saudi Arabia
| | - Salwa M Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Passant M Mohie
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fatma M Ghoneim
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
62
|
Egbujor MC, Petrosino M, Zuhra K, Saso L. The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects. Antioxidants (Basel) 2022; 11:1255. [PMID: 35883746 PMCID: PMC9311638 DOI: 10.3390/antiox11071255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling has become a key pathway for cellular regulation against oxidative stress and inflammation, and therefore an attractive therapeutic target. Several organosulfur compounds are reportedly activators of the Nrf2 pathway. Organosulfur compounds constitute an important class of therapeutic agents in medicinal chemistry due to their ability to participate in biosynthesis, metabolism, cellular functions, and protection of cells from oxidative damage. Sulfur has distinctive chemical properties such as a large number of oxidation states and versatility of reactions that promote fundamental biological reactions and redox biochemistry. The presence of sulfur is responsible for the peculiar features of organosulfur compounds which have been utilized against oxidative stress-mediated diseases. Nrf2 activation being a key therapeutic strategy for oxidative stress is closely tied to sulfur-based chemistry since the ability of compounds to react with sulfhydryl (-SH) groups is a common property of Nrf2 inducers. Although some individual organosulfur compounds have been reported as Nrf2 activators, there are no papers with a collective analysis of these Nrf2-activating organosulfur compounds which may help to broaden the knowledge of their therapeutic potentials and motivate further research. In line with this fact, for the first time, this review article provides collective and comprehensive information on Nrf2-activating organosulfur compounds and their therapeutic effects against oxidative stress, thereby enriching the chemical and pharmacological diversity of Nrf2 activators.
Collapse
Affiliation(s)
- Melford Chuka Egbujor
- Department of Chemical Sciences, Rhema University Nigeria, Aba 453115, Abia State, Nigeria
| | - Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Karim Zuhra
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
63
|
Rubio-Casillas A, Gupta RC, Redwa EM, Uversky VN, Badierah R. Early taurine administration as a means for halting the cytokine storm progression in COVID-19 patients. EXPLORATION OF MEDICINE 2022:234-248. [DOI: 10.37349/emed.2022.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2025] Open
Abstract
Around the world, more than 6.2 million individuals have died as a result of coronavirus disease 2019 (COVID-19). According to a recent survey conducted among immunologists, epidemiologists, and virologists, this disease is expected to become endemic. This implies that the disease could have a continuous presence and/or normal frequency in the population. Pharmacological interventions to prevent infection, as well as to treat the patients at an early phase of illness to avoid hospitalization are essential additions to the vaccines. Taurine is known to inhibit the generation of all inflammatory mediators linked to the cytokine storm. It can also protect against lung injury by suppressing increased oxidants production and promoting the resolution of the inflammatory process. Neutrophil lactoferrin degranulation stimulated by taurine may have antiviral effects against SARS-CoV-2, limiting viral replication. It is hypothesized that if taurine is administered early in the onset of COVID-19 disease, it may stop the cytokine storm from progressing, lowering morbidity and mortality.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- 1Autlán Regional Hospital, Health Secretariat, Autlán, Jalisco 48900, Mexico 2Biology Laboratory, Autlán Regional High School, University of Guadalajara, Autlán, Jalisco 48900, Mexico
| | - Ramesh C. Gupta
- 3School of Agricultural Sciences and Rural Development, Nagaland University, Medziphema 797004, India
| | - Elrashdy M. Redwa
- 4Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 5Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- 6Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Raied Badierah
- 7Medical Laboratory, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
64
|
A Metabolomics Approach to Sulforaphane Efficacy in Secondhand Smoking-Induced Pulmonary Damage in Mice. Metabolites 2022; 12:metabo12060518. [PMID: 35736451 PMCID: PMC9227370 DOI: 10.3390/metabo12060518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Sulforaphane is an isocyanate abundantly present in cruciferous vegetables. In the present study, we aimed to investigate the effects of sulforaphane on secondhand smoking (SHS)-induced pulmonary damage in mice. Additionally, a metabolomic study was performed to identify biomarkers associated with pulmonary disease using proton nuclear magnetic resonance (1H-NMR) analysis. Male C57BL6J mice were divided into a control group, an SHS exposure group (positive control group, PC), and a sulforaphane treatment group exposed to secondhand smoke (SS) (n = 5 per group). The PC and SS groups were exposed to secondhand smoke in a chamber twice daily for four weeks. Mice in the SS group were orally administered sulforaphane (50 mg/kg) for four weeks during secondhand smoke exposure. Histopathological examination of the lungs revealed pulmonary damage in PC mice, including loss of bronchial epithelial cells, bronchial wall thickening, and infiltration of macrophages. In contrast, mice in the SS group showed little or no epithelial thickening, thereby exhibiting reduced lung damage. Mouse serum and lung tissues were collected and analyzed to determine changes in endogenous metabolites using 1H-NMR. After target profiling, we identified metabolites showing the same tendency in the serum and lung as biomarkers for SHS-induced pulmonary damage, including taurine, glycerol, creatine, arginine, and leucine. As a result of histopathological examination, sulforaphane might inhibit SHS-induced lung damage, and metabolite analysis results suggest potential biomarkers for SHS-induced pulmonary damage in mice.
Collapse
|
65
|
Correlation Analysis of Umbilical Cord Blood Metabolic Phenotype and Inflammation in Patients with Gestational Diabetes Mellitus Complicated with Overweight and Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6072286. [PMID: 35600958 PMCID: PMC9122673 DOI: 10.1155/2022/6072286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
Abstract
Background Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnancy. The incidence rate is increasing year by year, which seriously threatens the safety of maternal and infant. Obesity is a vital factor in inducing GDM. Pregnant women with GDM account for a large proportion of overweight and obese pregnant women. Our study aimed to explore the potential mechanism of differential metabolites on inflammation and find the intervention and management methods for GDM in overweight and obese pregnant women. Methods Umbilical cord blood samples and placenta were collected from normal weight pregnant women with GDM (control group) and overweight and obese pregnant women with GDM (obesity group) for a comparative study. Serum inflammatory factors IL-10, TNF-α, IL-6, lipopolysaccharide (LPS), and TLR4 expression were detected by ELISA. The expression levels of BCL-2 and caspase-3 were measured by Western blot. TUNEL staining was used to observe the apoptosis of placental villi. KEGG combined with metabolomics was used to compare the differences of metabolic maps between the two groups. Results Compared with the control group, the level of anti-inflammatory factor IL-10 in the cord blood was decreased in the obesity group, while the levels of proinflammatory factors TNF-α, IL-6, and LPS were increased. In the placental tissues, the obesity group had higher concentrations of LPS, TLR4, and caspase-3 and lower concentration of BCL-2. Placental villi in the obesity group were more likely to undergo apoptosis than the control group. Correlation analysis showed that the above metabolite concentrations were negatively correlated with TNF-α or LPS. Conclusion Metabolites could control obesity in the process of controlling the occurrence and development of inflammation.
Collapse
|
66
|
Lakshmanan AP, Al Zaidan S, Bangarusamy DK, Al-Shamari S, Elhag W, Terranegra A. Increased Relative Abundance of Ruminoccocus Is Associated With Reduced Cardiovascular Risk in an Obese Population. Front Nutr 2022; 9:849005. [PMID: 35571941 PMCID: PMC9097523 DOI: 10.3389/fnut.2022.849005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background Obesity is a complex disease with underlying genetic, environmental, psychological, physiological, medical, and epigenetic factors. Obesity can cause various disorders, including cardiovascular diseases (CVDs), that are among the most prevalent chronic conditions in Qatar. Recent studies have highlighted the significant roles of the gut microbiome in improving the pathology of various diseases, including obesity. Thus, in this study, we aimed to investigate the effects of dietary intake and gut microbial composition in modulating the risk of CVD development in obese Qatari adults. Methods We enrolled 46 adult subjects (18–65 years of age) who were classified based on their CVD risk scores, calculated using the Framingham formula, into a CVD no-risk group (score of <10%, n = 36) and CVD risk group (score of ≥10%, n = 10). For each study subject, we measured the gut microbial composition with a 16s rDNA sequencing method that targeted the v3-v4 region using Illumina Miseq, and their nutritional status was recorded based on 24-h dietary recall. Dietary intake, bacterial taxa summary, diversity index, microbial markers, pathway analysis, and network correlation were determined for the study subjects. Results The CVD risk group showed a lower intake of vitamin D, reduced relative abundance of genera Ruminococcus and Bifidobacterium, no change in bacterial diversity, and higher levels of taurine, hypotaurine, and lipoic acid metabolism than the CVD no-risk group. Besides, the relative abundance of genus Ruminococcus was positively correlated with the intake of protein, monounsaturated fat, vitamin A, and vitamin D. Conclusion Taken together, our results suggest that the genus Ruminococcus could be used as a microbial marker, and its reduced relative abundance could mediate the risk of CVDs in the Obese Qatari population.
Collapse
Affiliation(s)
| | - Sara Al Zaidan
- Precision Nutrition, Research Department, Sidra Medicine, Doha, Qatar
| | | | - Sahar Al-Shamari
- Bariatric and Metabolic Surgery Department, Hamad Medical Corporation, Doha, Qatar
| | - Wahiba Elhag
- Bariatric and Metabolic Surgery Department, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
67
|
Faghfouri AH, Seyyed Shoura SM, Fathollahi P, Shadbad MA, Papi S, Ostadrahimi A, Faghfuri E. Profiling inflammatory and oxidative stress biomarkers following taurine supplementation: a systematic review and dose-response meta-analysis of controlled trials. Eur J Clin Nutr 2022; 76:647-658. [PMID: 34584225 DOI: 10.1038/s41430-021-01010-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Taurine (Tau) has modulatory effects on inflammatory and oxidative stress biomarkers; however, the results of clinical studies are not comprehensive enough to determine the effect of different durations and doses of Tau supplementation on inflammatory and oxidative stress biomarkers. The current study was conducted based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. For this purpose, PubMed/Medline, Scopus, and Embase databases were systematically searched to obtain the relevant studies published before 30th March 2021. Meta-analysis was performed on controlled clinical trials by using the random-effects method. Non-linear relationship between variables and effect size was performed using dose-response and time-response analyses. The Cochrane Collaboration's tool was used to evaluate the quality of included studies. Tau supplementation can reduce the levels of malondialdehyde (MDA) (SMD = -1.17 µmol/l; 95% CI: -2.08, - 0.26; P = 0.012) and C-reactive protein (CRP) (SMD = -1.95 mg/l; 95% CI: -3.20, - 0.71; P = 0.002). There have been no significant effects of Tau supplementation on the levels of tumor necrosis factors-alpha (TNF-α) (SMD = -0.18 pg/ml; 95% CI: -0.56, 0.21; P = 0.368), and interleukin-6 (IL-6) (SMD = -0.49 pg/ml; 95% CI: -1.13, 0.16; P = 0.141). Besides, Tau has more alleviating effect on oxidative stress and inflammation on 56 days after supplementation (P < 0.05). Tau can decrease the levels of CRP and MDA. Based on the currently available evidence, Tau has no significant effect on the level of TNF-α and IL-6. Eight-week of Tau supplementation has more beneficial effects on inflammatory and oxidative stress biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Faghfouri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Morteza Seyyed Shoura
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Fathollahi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahab Papi
- Department of Public Health, Faculty of Health, Social Determinants of Health Research Center, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
68
|
The Role of Amino Acids in Endothelial Biology and Function. Cells 2022; 11:cells11081372. [PMID: 35456051 PMCID: PMC9030017 DOI: 10.3390/cells11081372] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022] Open
Abstract
The vascular endothelium acts as an important component of the vascular system. It is a barrier between the blood and vessel wall. It plays an important role in regulating blood vessel tone, permeability, angiogenesis, and platelet functions. Several studies have shown that amino acids (AA) are key regulators in maintaining vascular homeostasis by modulating endothelial cell (EC) proliferation, migration, survival, and function. This review summarizes the metabolic and signaling pathways of AAs in ECs and discusses the importance of AA homeostasis in the functioning of ECs and vascular homeostasis. It also discusses the challenges in understanding the role of AA in the development of cardiovascular pathophysiology and possible directions for future research.
Collapse
|
69
|
Mechanism of taurine reducing inflammation and organ injury in sepsis mice. Cell Immunol 2022; 375:104503. [DOI: 10.1016/j.cellimm.2022.104503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/29/2022]
|
70
|
Boo YC. Metabolic Basis and Clinical Evidence for Skin Lightening Effects of Thiol Compounds. Antioxidants (Basel) 2022; 11:antiox11030503. [PMID: 35326153 PMCID: PMC8944565 DOI: 10.3390/antiox11030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Melanin pigment is a major factor in determining the color of the skin, and its abnormal increase or decrease can cause serious pigmentation disorders. The melanin pigment of the skin is divided into light pheomelanin and dark eumelanin, and a big difference between them is whether they contain sulfur. Melanin synthesis starts from a common reaction in which tyrosine or dihydroxyphenylalanine (DOPA) is oxidized by tyrosinase (TYR) to produce dopaquinone (DQ). DQ is spontaneously converted to leukodopachrome and then oxidized to dopachrome, which enters the eumelanin synthesis pathway. When DQ reacts with cysteine, cysteinyl dopa is generated, which is oxidized to cysteinyl DQ and enters the pheomelanin synthesis pathway. Therefore, thiol compounds can influence the relative synthesis of eumelanin and pheomelanin. In addition, thiol compounds can inhibit enzymatic activity by binding to copper ions at the active site of TYR, and act as an antioxidant scavenging reactive oxygen species and free radicals or as a modulator of redox balance, thereby inhibiting overall melanin synthesis. This review will cover the metabolic aspects of thiol compounds, the role of thiol compounds in melanin synthesis, comparison of the antimelanogenic effects of various thiol compounds, and clinical trials on the skin lightening efficacy of thiol compounds. We hope that this review will help identify the advantages and disadvantages of various thiol compounds as modulators of skin pigmentation and contribute to the development of safer and more effective strategies for the treatment of pigmentation disorders.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea;
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea
| |
Collapse
|
71
|
Correia MJ, Pimpão AB, Fernandes DGF, Morello J, Sequeira CO, Calado J, Antunes AMM, Almeida MS, Branco P, Monteiro EC, Vicente JB, Serpa J, Pereira SA. Cysteine as a Multifaceted Player in Kidney, the Cysteine-Related Thiolome and Its Implications for Precision Medicine. Molecules 2022; 27:1416. [PMID: 35209204 PMCID: PMC8874463 DOI: 10.3390/molecules27041416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Dalila G. F. Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Joaquim Calado
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Nephrology Department, Centro Hospitalar Universitário de Lisboa Central, 1069-166 Lisboa, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Manuel S. Almeida
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Patrícia Branco
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| |
Collapse
|
72
|
Li Q. Metabolic Reprogramming, Gut Dysbiosis, and Nutrition Intervention in Canine Heart Disease. Front Vet Sci 2022; 9:791754. [PMID: 35242837 PMCID: PMC8886228 DOI: 10.3389/fvets.2022.791754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
This review provides a state-of-the-art overview on recent advances in systems biology in canine cardiac disease, with a focus on our current understanding of bioenergetics and amino acid metabolism in myxomatous mitral valve disease (MMVD). Cross-species comparison is drawn to highlight the similarities between human and canine heart diseases. The adult mammalian heart exhibits a remarkable metabolic flexibility and shifts its energy substrate preference according to different physiological and pathological conditions. The failing heart suffers up to 40% ATP deficit and is compared to an engine running out of fuel. Bioenergetics and metabolic readaptations are among the major research topics in cardiac research today. Myocardial energy metabolism consists of three interconnected components: substrate utilization, oxidative phosphorylation, and ATP transport and utilization. Any disruption or uncoupling of these processes can result in deranged energy metabolism leading to heart failure (HF). The review describes the changes occurring in each of the three components of energy metabolism in MMVD and HF. It also provides an overview on the changes in circulating and myocardial glutathione, taurine, carnitines, branched-chain amino acid catabolism and tryptophan metabolic pathways. In addition, the review summarizes the potential role of the gut microbiome in MMVD and HF. As our knowledge and understanding in these molecular and metabolic processes increase, it becomes possible to use nutrition to address these changes and to slow the progression of the common heart diseases in dogs.
Collapse
|
73
|
The Disease-Modifying Role of Taurine and Its Therapeutic Potential in Coronavirus Disease 2019 (COVID-19). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:3-21. [DOI: 10.1007/978-3-030-93337-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
74
|
Influences of Taurine Pharmacodynamics and Sex on Active Avoidance Learning and Memory. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:381-393. [DOI: 10.1007/978-3-030-93337-1_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
75
|
Wang K, Zhang B, Tian T, Zhang B, Shi G, Zhang C, Li G, Huang M. Taurine protects dopaminergic neurons in paraquat-induced Parkinson's disease mouse model through PI3K/Akt signaling pathways. Amino Acids 2021; 54:1-11. [PMID: 34837554 DOI: 10.1007/s00726-021-03104-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/24/2021] [Indexed: 01/19/2023]
Abstract
Taurine (Tau) is one of the most abundant amino acids in the brain and regulates physiological functions in the central nervous system, including anti-inflammatory effects. There is growing evidence that microglia-mediated neuro-inflammatory responses are an integral part of Parkinson's disease (PD) onset and progression. Among the many factors regulating the inflammatory response, phosphatidylinositol-3 kinase (PI3K) is susceptible to activation by a variety of cytokines and physicochemical factors, and subsequently recruits signaling proteins containing the pleckstrin homology structural domain to further regulate protein kinase B (AKT) expression involved in the regulation of the intracellular immune response and inflammatory response. Therefore, we established a PD mouse model using paraquat (PQ) intraperitoneal injection staining to explore the mechanism of Tau action on PI3K/AKT signaling pathway. Our study showed that PD mice with Tau intervention recovered motor and non-motor functions to some extent, and the number of dopaminergic (DAc) neurons in the substantia nigra and the level of dopamine (DA) secretion in the striatum were also significantly increased compared with the PQ-dyed group, and the protein content of PI3K and PDK-1 and the phosphorylation level of AKT were reduced in parallel with the reduction in the expression of microglia and related inflammatory factors. In conclusion, our results suggest that Tau may regulate microglia-mediated inflammatory responses through inhibition of the PI3K/AKT pathway in the midbrain of PD mice, thereby reducing DAc neurons damage.
Collapse
Affiliation(s)
- Kaidong Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Baofu Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Tian Tian
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Bingyang Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Chunhui Zhang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Guoliang Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China. .,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
76
|
Evaluation of Antibacterial Effects of Matrix-Induced Silver Ions against Antibiotic-Resistant ESKAPE Pathogens. Pharmaceuticals (Basel) 2021; 14:ph14111094. [PMID: 34832878 PMCID: PMC8621581 DOI: 10.3390/ph14111094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, drug-resistant bacterial infections, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), have become a critical health issue worldwide, highlighting the emerging need for novel antibacterial agents. In this study, silver nanoparticles were extracted from silver-containing mesoporous bioactive glass (MBG-Ag) using four different matrixes, including water, phosphate buffer saline (PBS), tryptic soy broth (TSB), and taurine (Tau). The inductively coupled plasma-mass spectrometer (ICP-MS) results demonstrated that the silver concentration of Tau-Ag was the highest among the four matrixes. The Tau-Ag was also observed to have 87.35% silver ions in its X-ray photoelectron spectrometer (XPS) spectra. The micrograph of transmission electron microscope (TEM) displayed a uniform distribution of silver nanoparticles, which was confined in a smaller size compared to that in TSB-Ag. Moreover, the peak shifts observed in the Fourier-transform infrared spectrometer (FTIR) spectrum implied that the -SO32− and -NH groups in taurine may interact with silver. A low cytotoxicity was noted for Tau-Ag, with approximately 70% of cells surviving at 0.63 mg/mL. Compared to the other three matrix-induced silver agents, Tau-Ag represented a better antibacterial effect against methicillin-resistant Staphylococcus aureus, with a minimum inhibitory concentration (MIC) value of 0.63 mg/mL and a postponed growth of 0.31 mg/mL observed. Further antibacterial examinations illustrated the presence of remarkable antibacterial activities against vancomycin-resistant Enterococcus feacium, carbapenem-resistant Klebsiella pneumoniae, carbapenem-resistant Acinetobacter baumannii, and carbapenem-resistant Pseudomonas aeruginosa. Given our observations and multiple bioactive functions of taurine (prevent patients from inflammation and oxidative-stress injuries), we anticipate that taurine matrix-induced silver ions would be a biomedical material with a high potential for combatting drug-resistant ESKAPE pathogens.
Collapse
|
77
|
Ghanim A, Farag M, Anwar M, Ali N, Hawas M, Elsallab H, Elhendawy W, Basyouni L, Refaey O, Zaki K, Ali N, Metwaly H. Taurine alleviates kidney injury in a thioacetamide rat model by mediating Nrf2/HO-1, NQO-1 and MAPK/ NF-κB signaling pathways. Can J Physiol Pharmacol 2021; 100:352-360. [PMID: 34695366 DOI: 10.1139/cjpp-2021-0488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the molecular mechanisms by which taurine exerts its reno-protective effects in thioacetamide (TAA)-induced kidney injury in rats. Rats received taurine (100 mg/kg daily, intraperitoneally) either from day 1 of TAA injection (250 mg/kg twice weekly for 6 weeks) or after 6 weeks of TAA administration. Taurine treatment, either concomitant or later as a therapy, restored kidney functions, reduced BUN, creatinine, MDA, and increased renal levels of SOD and reversed the increase of KIM-1 and NGAL caused by TAA. Taurine treatment also led to a significant rise in Nrf2, HO-1, and NQO-1 levels, with significant suppression of ERK 1/2, NF-κB, and TNFα gene expressions, and IL-18 and TNFα protein levels compared to those in TAA kidney-injured rats. Taurine exhibited reno-protective potential in TAA-induced kidney injury through its anti-oxidant and anti-inflammatory effects. Taurine anti-oxidant activity is accredited to its effect on Nrf-2 induction and subsequent activation of HO-1 and NQO-1. In addition, taurine exerts its anti-inflammatory effect via regulating NF-κB transcription and subsequent production of pro-inflammatory mediators via MAPK signaling regulation.
Collapse
Affiliation(s)
- Amal Ghanim
- Fayoum University, 158401, Biochemistry, Fayoum University, Fayoum, Egypt, 63514.,Fayoum University, 158401, biochemistry, Fayoum University, Fayoum, Egypt, 63514;
| | - Mahmoud Farag
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Mahitab Anwar
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Nada Ali
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Mohammed Hawas
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Hend Elsallab
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Walaa Elhendawy
- Delta University for Science and Technology, 501253, Pharmacology, Belkas, Dakahlia, Egypt;
| | - Lina Basyouni
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Ola Refaey
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Khaled Zaki
- Delta University for Science and Technology, 501253, Clinical Pharmacy, Belkas, Dakahlia, Egypt;
| | - Noha Ali
- Delta University for Science and Technology, 501253, Pharmaceutical Chemistry, Belkas, Dakahlia, Egypt;
| | - Heba Metwaly
- Delta University for Science and Technology, 501253, Biochemistry, Belkas, Dakahlia, Egypt.,Alexandria University, 54562, Pharmaceutical Biochemistry, Alexandria, Egypt;
| |
Collapse
|
78
|
Samadi M, Baeeri M, Haghi-Aminjan H, Rahimifard M, Gholami M, Hassani S, Sattari M, Azarmi Y, Bameri B, Armandeh M, Hooshangi Shayesteh MR, Eghbal MA, Abdollahi M. On the mechanisms of taurine in alleviating electrocardiographic, hemodynamic, and biochemical parameters following aluminum phosphide cardiotoxicity. Food Chem Toxicol 2021; 154:112347. [PMID: 34139304 DOI: 10.1016/j.fct.2021.112347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Aluminum phosphide (AlP) causes severe cardiotoxicity. Taurine has been chosen for the present study because of its positive known effects on cardiac injuries. METHOD To evaluate AlP-induced cardiotoxicity, the animals were divided into seven groups, including the control group, the taurine group (500 mg/kg), AlP with LD50 dose, AlP + taurine 20, 50, 100, and 200 mg/kg group. To assess cardiac hemodynamic parameters, Wistar rats received taurine intraperitoneally 60 min after AlP gavage. Cardiac hemodynamic parameters were evaluated for 180 min. To study biochemical parameters, 24 h after AlP treatment, the animals were sacrificed, and heart tissues were collected. RESULT ECG, BP, and HR abnormalities of AlP poisoning were improved by taurine treatment. AlP induced biochemical alterations including complexes I and IV activities, the ADP/ATP ratio, mitochondrial membrane potential, cytochrome C release, and oxidative stress biomarkers ameliorated by taurine. Moreover, taurine improved apoptosis, as well as lessened CK-MB and troponin I levels. Also, there were no significant changes between taurine 500 mg/kg and the control group in tests. CONCLUSION The present findings showed that taurine could be a possible candidate for AlP cardiotoxicity treatment via the effect on mitochondrial electron transfer chain and maintaining intracellular ATP balance.
Collapse
Affiliation(s)
- Mahedeh Samadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Sattari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Azarmi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Bameri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Armandeh
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hooshangi Shayesteh
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Eghbal
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
79
|
A 1H NMR spectroscopic metabolomic study of the protective effects of irbesartan in a rat model of chronic mountain sickness. J Pharm Biomed Anal 2021; 204:114235. [PMID: 34252817 DOI: 10.1016/j.jpba.2021.114235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Chronic mountain sickness (CMS) is a significant pathology in most high-altitude regions globally, affecting the cardiopulmonary system and its mechanism is largely unknown. A metabonomic approach using 1H nuclear magnetic resonance spectroscopy allows for detecting differential metabolites, which provides a global view and mechanisms during CMS development. In this study, we simulated a high-altitude environment to establish a rat model of CMS. Irbesartan was administered to CMS rats at three doses (6.75, 13.5, and 27 mg/kg) once a day for 15 days. HE staining and transmission electron microscopy were used to evaluate the effect of changes on the lung. Based on 1H NMR spectra obtained from serum samples, partial least squares-discriminant analysis (PLS-DA) and its variant orthogonal PLS-DA (OPLS-DA) models were applied to distinguish the different groups. Histopathological sections showed that the alveolar structure was abnormal, inflammatory infiltration occurred in CMS rats, and CMS induced notable metabolic disorder according to the 1H NMR result. However, irbesartan reversed the imbalanced metabolites via energy metabolism, amino acid metabolism, and taurine metabolism pathways, and its effect was also confirmed by the general signs and morphology of the lung. The results revealed that irbesartan as an effective therapeutic agent to improve CMS is warranted.
Collapse
|
80
|
Topically Applied Taurine Chloramine Protects against UVB-Induced Oxidative Stress and Inflammation in Mouse Skin. Antioxidants (Basel) 2021; 10:antiox10060867. [PMID: 34071363 PMCID: PMC8229643 DOI: 10.3390/antiox10060867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/05/2023] Open
Abstract
Excessive exposure to solar light, especially its UV component, is a principal cause of photoaging, dermatitis, and photocarcinogenesis. In searching for candidate substances that can effectively protect the skin from photodamage, the present study was conducted with taurine chloramine (TauCl), formed from taurine in phagocytes recruited to inflamed tissue. Irradiation with ultraviolet B (UVB) of 180 mJ/cm2 intensity caused oxidative damage and apoptotic cell death in the murine epidermis. These events were blunted by topically applied TauCl, as evidenced by the lower level of 4-hydroxynonenal-modified protein, reduced proportions of TUNEL-positive epidermal cells, and suppression of caspase-3 cleavage. In addition, the expression of two prototypic inflammatory enzymes, cyclooxygenase-2 and inducible nitric oxide synthase, and transcription of some pro-inflammatory cytokines (Tnf, Il6, Il1b, Il10) were significantly lower in TauCl-treated mice than vehicle-treated control mice. The anti-inflammatory effect of TauCl was associated with inhibition of STAT3 activation and induction of antioxidant enzymes, such as heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1, through activation of nuclear factor erythroid 2-related factor 2.
Collapse
|
81
|
Kim SH, Yum HW, Kim SH, Kim W, Kim SJ, Kim C, Kim K, Suh YG, Surh YJ. Protective Effects of Taurine Chloramine on Experimentally Induced Colitis: NFκB, STAT3, and Nrf2 as Potential Targets. Antioxidants (Basel) 2021; 10:antiox10030479. [PMID: 33803551 PMCID: PMC8002934 DOI: 10.3390/antiox10030479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 01/27/2023] Open
Abstract
Taurine chloramine (TauCl) is an endogenous anti-inflammatory substance which is derived from taurine, a semi-essential sulfur-containing β-amino acid found in some foods including meat, fish, eggs and milk. In general, TauCl as well as its parent compound taurine downregulates production of tissue-damaging proinflammatory mediators, such as chemokines and cytokines in many different types of cells. In the present study, we investigated the protective effects of TauCl on experimentally induced colon inflammation. Oral administration of TauCl protected against mouse colitis caused by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TauCl administration attenuated apoptosis in the colonic mucosa of TNBS-treated mice. This was accompanied by reduced expression of an oxidative stress marker, 4-hydroxy-2-nonenal and proinflammatory molecules including tumor necrosis factor-α, interleukin-6 and cyclooxygenase-2 in mouse colon. TauCl also inhibited activation of NFκB and STAT3, two key transcription factors mediating proinflammatory signaling. Notably, the protective effect of TauCl on oxidative stress and inflammation in the colon of TNBS-treated mice was associated with elevated activation of Nrf2 and upregulation of its target genes encoding heme oxygenase-1, NAD(P)H:quinone oxidoreductase, glutamate cysteine ligase catalytic subunit, and glutathione S-transferase. Taken together, these results suggest that TauCl exerts the protective effect against colitis through upregulation of Nrf2-dependent cytoprotective gene expression while blocking the proinflammatory signaling mediated by NFκB and STAT3.
Collapse
Affiliation(s)
- Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Hye-Won Yum
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Seung Hyeon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
- Cancer Research Institute, Seoul National University, Seoul 03087, Korea
| | - Wonki Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Chaekyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, Inha University, Incheon 22212, Korea;
| | - Kyeojin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam 13488, Korea;
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.H.K.); (H.-W.Y.); (S.H.K.); (W.K.); (S.-J.K.); (K.K.)
- Cancer Research Institute, Seoul National University, Seoul 03087, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Correspondence:
| |
Collapse
|
82
|
Haange SB, Groeger N, Froment J, Rausch T, Burkhardt W, Gonnermann S, Braune A, Blaut M, von Bergen M, Rolle-Kampczyk U. Multiplexed Quantitative Assessment of the Fate of Taurine and Sulfoquinovose in the Intestinal Microbiome. Metabolites 2020; 10:E430. [PMID: 33114761 PMCID: PMC7692227 DOI: 10.3390/metabo10110430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
(1) Introduction: Sulfonates, which can be diet- or host-derived, are a class of compounds detected in the gut, are involved in host-microbiome interactions and have several health effects. Our aim was to develop a method to quantify five of the sulfonates in the intestine and apply it in a simplified human microbiome model. These were taurine, its metabolic precursor cysteate and one of its degradation products isethionate, as well as sulfoquinovose and one of its most relevant degradation products 2,3-dihydroxy-1-propanesulfonate. (2) Methods: An extraction and sample preparation method was developed, without the need for derivatization. To detect and quantify the extracted sulfonates, a multiplexed LC-MS/MS-MRM method was established. (3) Results: The accuracy and precision of the method were within GLP-accepted parameters (www.ema.europa.eu). To apply this method in a pilot study, we spiked either taurine or sulfoquinovose into an in vitro simplified human microbiota model with and without Bilophila wadsworthia, a known sulfonate utilizer. The results revealed that only the culture with B. wadsworthia was able to degrade taurine, with isethionate as an intermediate. After spiking the communities with sulfoquinovose, the results revealed that the simplified human microbiome model was able to degrade sulfoquinovose to 2,3-dihydroxypropane-1-sulfonate, which was probably catalyzed by Escherichia coli. In the community with B. wadsworthia, the 2,3-dihydroxypropane-1-sulfonate produced was further degraded by B. wadsworthia to sulfide. (4) Conclusions: We successfully developed a method for sulfonate quantification and applied it in a first pilot study.
Collapse
Affiliation(s)
- Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (N.G.); (J.F.); (M.v.B.)
| | - Nicole Groeger
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (N.G.); (J.F.); (M.v.B.)
| | - Jean Froment
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (N.G.); (J.F.); (M.v.B.)
| | - Theresa Rausch
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (T.R.); (W.B.); (S.G.); (A.B.); (M.B.)
| | - Wiebke Burkhardt
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (T.R.); (W.B.); (S.G.); (A.B.); (M.B.)
| | - Svenja Gonnermann
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (T.R.); (W.B.); (S.G.); (A.B.); (M.B.)
| | - Annett Braune
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (T.R.); (W.B.); (S.G.); (A.B.); (M.B.)
| | - Michael Blaut
- Research Group Intestinal Microbiology, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (T.R.); (W.B.); (S.G.); (A.B.); (M.B.)
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (N.G.); (J.F.); (M.v.B.)
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, 04103 Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (N.G.); (J.F.); (M.v.B.)
| |
Collapse
|