51
|
Silva-Carvalho R, Leão T, Gama FM, Tomás AM. Covalent Conjugation of Amphotericin B to Hyaluronic Acid: An Injectable Water-Soluble Conjugate with Reduced Toxicity and Anti-Leishmanial Potential. Biomacromolecules 2022; 23:1169-1182. [DOI: 10.1021/acs.biomac.1c01451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ricardo Silva-Carvalho
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Teresa Leão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Francisco M. Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana M. Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
52
|
De Grandi D, Meghdadi A, LuTheryn G, Carugo D. Facile production of quercetin nanoparticles using 3D printed centrifugal flow reactors. RSC Adv 2022; 12:20696-20713. [PMID: 35919149 PMCID: PMC9295137 DOI: 10.1039/d2ra02745c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
A 3D printed reactor-in-a-centrifuge (RIAC) was developed to produce drug nanocrystals. Quercetin nanocrystals were manufactured at varying operational and formulation conditions, and had a small size (190–302 nm) and low size dispersity (PDI < 0.1).
Collapse
Affiliation(s)
- Davide De Grandi
- Department of Drug Sciences, Faculty of Pharmacy, University of Pavia, Pavia 27100, Italy
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Alireza Meghdadi
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
- Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Gareth LuTheryn
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dario Carugo
- Department of Pharmaceutics, School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
53
|
Li J, Zordan C, Ponce S, Lu X. Impact of Swelling of Spray Dried Dispersions in Dissolution Media on their Dissolution: An Investigation Based on UV Imaging. J Pharm Sci 2021; 111:1761-1769. [PMID: 34896344 DOI: 10.1016/j.xphs.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Impact of SDD-dissolution medium interactions on the swelling and dissolution of spray dried dispersions (SDDs) was investigated using UV imaging by monitoring SDD swelling in situ, along with correlating of the swelling with the micro-dissolution and intrinsic dissolution of SDDs. SDDs of ketoconazole or indomethacin with three polymers: polyvinylpyrrolidone (PVP), hydroxypropyl cellulose (HPC), and hydroxypropyl methylcellulose acetate succinate (HPMC-AS) were prepared for the study. Dissolution media employed for assessing swelling and dissolution include water, acetate buffer, phosphate buffer, fasted state simulated intestinal fluid (FaSSIF), and fed state simulated intestinal fluid (FeSSIF), in which influence of polymers and drugs together with the physical-chemical properties of dissolution media (pH, and the presence of sodium taurocholate and lecithin) on SDD swelling and dissolution was evaluated. It appears that hydrophilic and hydrophobic properties of polymers can significantly impact SDD swelling and thus the dissolution. Furthermore, properties of dissolution media such as pH as well as presence of bile salts and lecithin seems to affect SDD swelling and dissolution as well. Throughout the text, thermodynamic swelling of polymers was used to interpret SDD dissolution behavior. Finally, practical implication of polymer swelling on dissolution was discussed.
Collapse
Affiliation(s)
- Jinjiang Li
- Product Development, Bristol-Myers Squibb Company, New Brunswick, NJ 008902, USA; Prelude Therapeutics, Wilmington, DE 19803, USA.
| | - Christopher Zordan
- Product Development, Bristol-Myers Squibb Company, New Brunswick, NJ 008902, USA
| | - Steven Ponce
- Product Development, Bristol-Myers Squibb Company, New Brunswick, NJ 008902, USA
| | - Xujin Lu
- Product Development, Bristol-Myers Squibb Company, New Brunswick, NJ 008902, USA
| |
Collapse
|
54
|
Kim W, Kim JS, Choi HG, Jin SG, Cho CW. Novel ezetimibe-loaded fibrous microparticles for enhanced solubility and oral bioavailability by electrospray technique. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
55
|
Sharma A, Bhardwaj P, Arya SK. Naringin: A potential natural product in the field of biomedical applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
56
|
Azad M, Guner G, Afolabi A, Davé R, Bilgili E. Impact of solvents during wet stirred media milling of cross-linked biopolymer suspensions. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
57
|
Aljubailah A, Alharbi WNO, Haidyrah AS, Al-Garni TS, Saeed WS, Semlali A, Alqahtani SMS, Al-Owais AA, Karami AM, Aouak T. Copolymer Involving 2-Hydroxyethyl Methacrylate and 2-Chloroquinyl Methacrylate: Synthesis, Characterization and In Vitro 2-Hydroxychloroquine Delivery Application. Polymers (Basel) 2021; 13:4072. [PMID: 34883576 PMCID: PMC8659029 DOI: 10.3390/polym13234072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The Poly(2-chloroquinyl methacrylate-co-2-hydroxyethyl methacrylate) (CQMA-co-HEMA) drug carrier system was prepared with different compositions through a free-radical copolymerization route involving 2-chloroquinyl methacrylate (CQMA) and 2-hydroxyethyl methacrylate) (HEMA) using azobisisobutyronitrile as the initiator. 2-Chloroquinyl methacrylate monomer (CQMA) was synthesized from 2-hydroxychloroquine (HCQ) and methacryloyl chloride by an esterification reaction using triethylenetetramine as the catalyst. The structure of the CQMA and CQMA-co-HEMA copolymers was confirmed by a CHN elementary analysis, Fourier transform infra-red (FTIR) and nuclear magnetic resonance (NMR) analysis. The absence of residual aggregates of HCQ or HCQMA particles in the copolymers prepared was confirmed by a differential scanning calorimeter (DSC) and XR-diffraction (XRD) analyses. The gingival epithelial cancer cell line (Ca9-22) toxicity examined by a lactate dehydrogenase (LDH) assay revealed that the grafting of HCQ onto PHEMA slightly affected (4.2-9.5%) the viability of the polymer carrier. The cell adhesion and growth on the CQMA-co-HEMA drug carrier specimens carried out by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay revealed the best performance with the specimen containing 3.96 wt% HCQ. The diffusion of HCQ through the polymer matrix obeyed the Fickian model. The solubility of HCQ in different media was improved, in which more than 5.22 times of the solubility of HCQ powder in water was obtained. According to Belzer, the in vitro HCQ dynamic release revealed the best performance with the drug carrier system containing 4.70 wt% CQMA.
Collapse
Affiliation(s)
- Abeer Aljubailah
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia; (A.A.); (W.N.O.A.)
| | - Wafa Nazzal Odis Alharbi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia; (A.A.); (W.N.O.A.)
| | - Ahmed S. Haidyrah
- Nuclear and Radiological Control Unit, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Tahani Saad Al-Garni
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecin Dentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Saad M. S. Alqahtani
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| | - Ahmad Abdulaziz Al-Owais
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| | - Abdulnasser Mahmoud Karami
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| | - Taieb Aouak
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (T.S.A.-G.); (S.M.S.A.); (A.A.A.-O.); (A.M.K.)
| |
Collapse
|
58
|
Vardaka E, Andreas O, Nikolakakis I, Kachrimanis K. Development of agomelatine nanocomposite formulations by wet media milling. Eur J Pharm Sci 2021; 166:105979. [PMID: 34425232 DOI: 10.1016/j.ejps.2021.105979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
Nanocrystal formulations of the BCS class II agomelatine, were developed by wet media milling. The most suitable stabilizer was identified and effects of process and formulation variables on the nanocrystal size and ζ-potential were evaluated employing a Box-Behnken experimental design. The optimized nanosuspensions were dried and subsequently evaluated for redispersibility and physicochemical properties. Computational simulation of solid state properties was applied to rationalize crystal fracture. It was found that low viscosity hydroxypropylcellulose with sodium dodecyl sulfate is the most suitable stabilizer. Stabilizer concentration exerts a statistically significant effect on particle size, which depends on the mill's rotation speed. The milling process induces a polymorphic transition to form II, which could affect size reduction kinetics. The solidified nanosuspensions' redispersibility is deteriorating progressively with storage time, with only minor differences between drying methods, retaining enhanced dissolution rate. Crystal lattice simulations suggest high mechanical anisotropy of form I crystals, which could be an additional reason for fast particle size reduction prior to the polymorphic transformation. Wet media milling, combined with a suitable drying method, can be an efficient technique for the production of stable nanocrystals of agomelatine. Particle informatics methods can enhance our understanding of the mechanisms responsible for agomelatine's nanocomminution.
Collapse
Affiliation(s)
- Elisavet Vardaka
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ouranidis Andreas
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Chemical Engineering Department, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Ioannis Nikolakakis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
59
|
Yang Y, Zhang L, Huang M, Sui R, Khan S. Reconstruction of the cervical spinal cord based on motor function restoration and mitigation of oxidative stress and inflammation through eNOS/Nrf2 signaling pathway using ibuprofen-loaded nanomicelles. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
60
|
Kinetic and Microhydrodynamic Modeling of Fenofibrate Nanosuspension Production in a Wet Stirred Media Mill. Pharmaceutics 2021; 13:pharmaceutics13071055. [PMID: 34371746 PMCID: PMC8309173 DOI: 10.3390/pharmaceutics13071055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
This study examined the impact of stirrer speed and bead material loading on fenofibrate particle breakage during wet stirred media milling (WSMM) via three kinetic models and a microhydrodynamic model. Evolution of median particle size was tracked via laser diffraction during WSMM operating at 3000-4000 rpm with 35-50% (v/v) concentration of polystyrene or zirconia beads. Additional experiments were performed at the center points of the above conditions, as well as outside the range of these conditions, in order to test the predictive capability of the models. First-order, nth-order, and warped-time kinetic models were fitted to the data. Main effects plots helped to visualize the influence of the milling variables on the breakage kinetics and microhydrodynamic parameters. A subset selection algorithm was used along with a multiple linear regression model (MLRM) to delineate how the breakage rate constant k was affected by the microhydrodynamic parameters. As a comparison, a purely empirical correlation for k was also developed in terms of the process/bead parameters. The nth-order model was found to be the best model to describe the temporal evolution; nearly second-order kinetics (n ≅ 2) was observed. When the process was operated at a higher stirrer speed and/or higher loading with zirconia beads as opposed to polystyrene beads, the breakage occurred faster. A statistically significant (p-value ≤ 0.01) MLRM of three microhydrodynamic parameters explained the variation in the breakage rate constant best (R2 ≥ 0.99). Not only do the models and the nth-order kinetic-microhydrodynamic correlation enable deeper process understanding toward developing a WSMM process with reduced cycle time, but they also provide good predictive capability, while outperforming the purely empirical correlation.
Collapse
|
61
|
Li M, Furey C, Skros J, Xu O, Rahman M, Azad M, Dave R, Bilgili E. Impact of Matrix Surface Area on Griseofulvin Release from Extrudates Prepared via Nanoextrusion. Pharmaceutics 2021; 13:pharmaceutics13071036. [PMID: 34371728 PMCID: PMC8308970 DOI: 10.3390/pharmaceutics13071036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
We aimed to examine the impact of milling of extrudates prepared via nanoextrusion and the resulting matrix surface area of the particles on griseofulvin (GF, a model poorly soluble drug) release during in vitro dissolution. Wet-milled GF nanosuspensions containing a polymer (Sol: Soluplus®, Kol: Kolliphor® P407, or HPC: Hydroxypropyl cellulose) and sodium dodecyl sulfate were mixed with additional polymer and dried in an extruder. The extrudates with 2% and 10% GF loading were milled–sieved into three size fractions. XRPD–SEM results show that nanoextrusion produced GF nanocomposites with Kol/HPC and an amorphous solid dispersion (ASD) with Sol. For 8.9 mg GF dose (non-supersaturating condition), the dissolution rate parameter was higher for extrudates with higher external specific surface area and those with 10% drug loading. It exhibited a monotonic increase with surface area of the ASD, whereas its increase tended to saturate above ~30 × 10−3 m2/cm3 for the nanocomposites. In general, the nanocomposites released GF faster than the ASD due to greater wettability and faster erosion imparted by Kol/HPC than by Sol. For 100 mg GF dose, the ASD outperformed the nanocomposites due to supersaturation and only 10% GF ASD with 190 × 10−3 m2/cm3 surface area achieved immediate release (80% release within 30 min). Hence, this study suggests that ASD extrudates entail fine milling yielding > ~200 × 10−3 m2/cm3 for rapid drug release, whereas only a coarse milling yielding ~30 × 10−3 m2/cm3 may enable nanocomposites to release low-dose drugs rapidly.
Collapse
Affiliation(s)
- Meng Li
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Casey Furey
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Jeffrey Skros
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Olivia Xu
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
- Department of Organismic and Evolutionary Biology, Harvard College, Cambridge, MA 02138, USA;
| | - Mahbubur Rahman
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Mohammad Azad
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Rajesh Dave
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
| | - Ecevit Bilgili
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.L.); (C.F.); (J.S.); (M.R.); (R.D.)
- Correspondence: ; Tel.: +1-973-596-2998; Fax: +1-973-596-8436
| |
Collapse
|
62
|
Thapa R, Sai K, Saha D, Kushwaha D, Aswal V, Ghosh Moulick R, Bose S, Bhattaharya J. Synthesis and characterization of a nanoemulsion system for solubility enhancement of poorly water soluble non-steroidal anti-inflammatory drugs. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
63
|
Use of Bead Mixtures as a Novel Process Optimization Approach to Nanomilling of Drug Suspensions. Pharm Res 2021; 38:1279-1296. [PMID: 34169438 DOI: 10.1007/s11095-021-03064-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE We aimed to evaluate the feasibility of cross-linked polystyrene (CPS)-yttrium-stabilized zirconia (YSZ) bead mixtures as a novel optimization approach for fast, effective production of drug nanosuspensions during wet stirred media milling (WSMM). METHODS Aqueous suspensions of 10% fenofibrate (FNB, drug), 7.5% HPC-L, and 0.05% SDS were wet-milled at 3000-4000 rpm and 35%-50% volumetric loading of CPS:YSZ bead mixtures (CPS:YSZ 0:1-1:0 v:v). Laser diffraction, SEM, viscometry, DSC, and XRPD were used for characterization. An nth-order model described the breakage kinetics, while a microhydrodynamic model allowed us to gain insights into the impact of bead materials. RESULTS CPS beads achieved the lowest specific power consumption, whereas YSZ beads led to the fastest breakage. Breakage followed second-order kinetics. Optimum conditions were identified as 3000 rpm and 50% loading of 0.5:0.5 v/v CPS:YSZ mixture from energy-cycle time-heat dissipation perspectives. The microhydrodynamic model suggests that YSZ beads experienced more energetic/forceful collisions with smaller contact area as compared with CPS beads owing to the higher density-elastic modulus of the former. CONCLUSIONS We demonstrated the feasibility of CPS-YSZ bead mixtures and rationalized its optimal use in WSMM through their modulation of breakage kinetics, energy utilization, and heat dissipation.
Collapse
|
64
|
Cortés H, Hernández-Parra H, Bernal-Chávez SA, Prado-Audelo MLD, Caballero-Florán IH, Borbolla-Jiménez FV, González-Torres M, Magaña JJ, Leyva-Gómez G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3197. [PMID: 34200640 PMCID: PMC8226872 DOI: 10.3390/ma14123197] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range. Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We included a section on general properties and uses and a comprehensive compilation of formulations with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic surfactants with biological barriers to emphasize that the function of surfactants is not limited to stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the last section corresponds to a recommendation in the experimental approach for choosing a surfactant applying the systematic methodology of Quality by Design.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - María L. Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
65
|
Mirankó M, Trif L, Tóth J, Feczkó T. Nanostructured micronized solid dispersion of crystalline-amorphous metronidazole embedded in amorphous polymer matrix prepared by nano spray drying. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
66
|
Rojekar S, Vora LK, Tekko IA, Volpe-Zanutto F, McCarthy HO, Vavia PR, Donnelly RF. Etravirine-loaded dissolving microneedle arrays for long-acting delivery. Eur J Pharm Biopharm 2021; 165:41-51. [PMID: 33971273 DOI: 10.1016/j.ejpb.2021.04.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
A key challenge of HIV treatment with multiple antiretroviral drugs is patient adherence. Thus, there is an urgent need for long-acting depot systems for delivering drugs over an extended duration. Although the parenteral route is preferred for depot systems, it is associated with obvious drawbacks, such as painful injections, potentially-contaminated sharps waste, and the necessity of trained healthcare personnel for administration. Amongst a small number of alternatives in development microneedles are versatile delivery systems enabling systemic drug delivery and potentially improving patient adherence due to their capacity for self-administration. We have developed dissolving microneedle (DMNs) embedded with etravirine nanosuspension (ETR NS) as a long-acting HIV therapy to improve patient adherence. The ETR NS prepared by sonoprecipitation yielded particle sizes of 764 ± 96.2 nm, polydispersity indices of of 0.23 ± 0.02, and zeta potentials of -19.75 ± 0.55 mV. The DMNs loaded with ETR NS demonstrated 12.84 ± 1.33% ETR deposition in ex-vivo neonatal porcine skin after 6 h application. In in vivo rat pharmacokinetic studies, the Cmax exhibited by DMNs loaded with ETR powder and ETR NS were 158 ± 10 ng/mL and 177 ± 30 ng/mL, respectively. DMN groups revealed a higher t1/2, Tmax, and mean residence time compared to intravenous ETR solutions, suggesting the long-acting potential of etravirine delivered intradermally using DMNs.
Collapse
Affiliation(s)
- Satish Rojekar
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase III Funded, Mumbai 400019, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ismaiel A Tekko
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Aleppo University, Syria
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Pradeep R Vavia
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University Under Section 3 of UGC Act - 1956, Elite Status and Center of Excellence - Govt. of Maharashtra, TEQIP Phase III Funded, Mumbai 400019, India.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
67
|
Abstract
Telmisartan (TEL) is an antihypertensive BCS class II drug with low solubility at physiological pH. However, the solubility of TEL increases with the presence of an alkalizer. Electrospinning is one of the most recent techniques for the solubility enhancement studies. In this study, an electrospun orally disintegrating film (ODF) formulation of TEL was developed with L-arginine and polyvinylpyrrolidone K90 (PVP), and its characterization studies were performed. Preformulation studies were performed to investigate possible incompatibilities in the components of formulation with differential scanning calorimetry (DSC) and Fourier transform infrared spectrometer (FT-IR) analyses. ODFs were characterized in terms of drug content and uniformity, mechanical properties, fiber shape and diameter and in vitro dissolution profile. Smooth nanofibers without any beads were obtained. The dissolution rate of the TEL significantly increased. The chosen formulation had acceptable mechanical properties with much faster dissolution compared to the commercially available product. Developed ODF and marketed product were compared with a dissolution study in phosphate-buffered solution (pH 7.4). ODF and marketed product both reached 100% release in the 45th minute, and ODF results showed that ODF had much faster release than marketed product. In this study, TEL ODF formulation was successfully produced and characterized.
Collapse
Affiliation(s)
- Mehmet Birer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
68
|
Tran PHL, Tran TTD. Nano-sized Solid Dispersions for Improving the Bioavailability of Poorly Water-soluble Drugs. Curr Pharm Des 2021; 26:4917-4924. [PMID: 32611298 DOI: 10.2174/1381612826666200701134135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
It has been well established that solid dispersions have a high potential to increase the release rate of poorly water-soluble drugs, resulting in high drug bioavailability. Solid dispersions have been vigorously investigated with various practical approaches in recent decades. Improvements in wettability, molecular interactions and drugs being held in an amorphous state in solid dispersions are the main mechanisms underlying the high drug release rate. Moreover, the synergistic effect of incorporating nanotechnology in solid dispersions is expected to lead to an advanced drug delivery system for poorly water-soluble drugs. However, to date, there is still a lack of reviews providing outlooks on the nano-sized solid dispersions that have been substantially investigated for improving the bioavailability of poorly water-soluble drugs. In the current review, we aim to overview key advantages and approaches for producing nano-sized solid dispersions. The classification of key strategies in developing nano-sized solid dispersions will advance the creation of even more efficient solid dispersions, which will translate into clinical studies.
Collapse
Affiliation(s)
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
69
|
Kala SG, Chinni S. Development and Characterization of Venetoclax Nanocrystals for Oral Bioavailability Enhancement. AAPS PharmSciTech 2021; 22:92. [PMID: 33683477 DOI: 10.1208/s12249-021-01968-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Venetoclax (VX) used in the treatment of chronic lymphocytic leukemia possesses low oral bioavailability (5.4%) and undergoes first-pass metabolism. Development of a formulation to overcome its bioavailability problem can be done by using nanocrystals which has many scientific applications. Nanocrystals of VX were formulated using amalgamation of precipitation and high-pressure homogenization method, in which polyvinyl alcohol (PVA) was selected as stabilizer. Process parameters like concentration of stabilizer, homogenization pressure, number of homogenization cycle, and concentration of lyoprotectant were optimized to obtain the desired particle size for the preparation of nanocrystal formulation. HPLC methods were developed and validated in-house for determination of in vitro dissolution data and in vivo bioavailability data. Physicochemical characterization was done to determine the particle size (zeta sizer), crystalline nature (DSC and XRPD), solubility (shaker bath), and dissolution (USP type 2 apparatus). Lyophilized VX nanocrystals of size less than 350 nm showed substantial increase in saturation solubility (~20 folds) and dissolution in comparison with free VX. In vitro release study revealed that 100% dissolution was achieved in 120 min as compared to VX free base which is having less than 43.5% dissolution in 120 min. Formulations of VX remain stable for 6 months under accelerated stability conditions. In vivo pharmacokinetic data in male Sprague-Dawley rats showed (~2.02 folds) significant increase in oral bioavailability of VX formulation as compared to free drug because of rapid dissolution and absorption which makes the nanocrystal formulation a better approach for oral administration of poorly soluble drugs.
Collapse
|
70
|
Latif R, Makar RR, Hosni EA, El Gazayerly ON. The potential of intranasal delivery of nanocrystals in powder form on the improvement of zaleplon performance: in-vitro, in-vivo assessment. Drug Dev Ind Pharm 2021; 47:268-279. [PMID: 33501862 DOI: 10.1080/03639045.2021.1879834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The present work focuses on improving zaleplon (ZAP) performance through nanosizing its insoluble particles which were then delivered intranasally in powder form. SIGNIFICANCE Since nanopowders have an exceptional ability to cross cell membrane, their absorption is facilitated in the solid form. Hence, delivering insoluble ZAP nanocrystals (NC) through intranasal route improves its bioavailability due to both nanosization and the escape of hepatic metabolism. METHODS Nanocrystals were prepared by anti-solvent precipitation followed by probe sonication in presence of Soluplus®, Poloxamer-188 (0.25%), sodium lauryl sulfate (0.5%), and mannitol. Physicochemical evaluation of the prepared NC was done by DSC and XRPD. TGA was performed for stability detection. Ex vivo permeation study through isolated cattle nasal mucosal membrane, in addition to an in vivo bioavailability study was performed for assessment of the prepared NC. RESULTS Nanosization to 200 nm contributed to the enhancement in dissolution ∼100% within 30 min and reduced half-life to 1.63 min. Confirmation of adsorption of polymers over NC' surface was elucidated. TGA confirmed their thermal stability. Ex vivo permeation study showed a 2.7 enhancement ratio in favor of the prepared NC. Both the extent and rate of NC absorption through nasal mucosa of rabbits were significantly higher (p ˂ .05) than in case of oral tablets. The relative bioavailability of NC was increased 3.14 times as compared to the Sleep aid® tablets. CONCLUSION The intranasal delivery of nanoscale ZAP powder proved to be a successful alternative to oral formulations that suffer poor absorption and limited bioavailability.
Collapse
Affiliation(s)
- Randa Latif
- Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rana R Makar
- Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ehab A Hosni
- Faculty of Pharmacy, Al-Kut University, Wasit, Iraq
| | | |
Collapse
|
71
|
Kong X, Cheng R, Wang J, Fang Y, Hwang KC. Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. NANO TODAY 2021; 36:101004. [DOI: 10.1016/j.nantod.2020.101004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
72
|
A novel delivery system for enhancing bioavailability of S-adenosyl-l-methionine: Pectin nanoparticles-in-microparticles and their in vitro - in vivo evaluation'. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
73
|
Shin HW, Kim JE, Park YJ. Nanoporous Silica Entrapped Lipid-Drug Complexes for the Solubilization and Absorption Enhancement of Poorly Soluble Drugs. Pharmaceutics 2021; 13:pharmaceutics13010063. [PMID: 33418969 PMCID: PMC7825318 DOI: 10.3390/pharmaceutics13010063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
This study aims to examine the contribution of nanoporous silica entrapped lipid-drug complexes (NSCs) in improving the solubility and bioavailability of dutasteride (DUT). An NSC was loaded with DUT (dissolved in lipids) and dispersed at a nanoscale level using an entrapment technique. NSC microemulsion formation was confirmed using a ternary phase diagram, while the presence of DUT and lipid entrapment in NSC was confirmed using scanning electron microscopy. Differential scanning calorimetry and X-ray diffraction revealed the amorphous properties of NSC. The prepared all NSC had excellent flowability and enhanced DUT solubility but showed no significant difference in drug content homogeneity. An increase in the lipid content of NSC led to an increase in the DUT solubility. Further the NSC were formulated as tablets using D-α tocopheryl polyethylene glycol 1000 succinate, glyceryl caprylate/caprate, and Neusilin®. The NSC tablets showed a high dissolution rate of 99.6% at 30 min. Furthermore, NSC stored for 4 weeks at 60 °C was stable during dissolution testing. Pharmacokinetic studies performed in beagle dogs revealed enhanced DUT bioavailability when administered as NSC tablets. NSC can be used as a platform to develop methods to overcome the technical and commercial limitations of lipid-based preparations of poorly soluble drugs.
Collapse
Affiliation(s)
- Hey-Won Shin
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
| | - Joo-Eun Kim
- Department of Pharmaceutical Engineering, Catholic University of Daegu, Hayang-Ro 13-13, Gyeongsan City 38430, Korea;
| | - Young-Joon Park
- College of Pharmacy, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon-si 16499, Korea;
- Correspondence: ; Tel.: +82-031-219-3447
| |
Collapse
|
74
|
Tanaka H, Ochii Y, Moroto Y, Ibaraki T, Ogawara KI. Development of Novel Bead Milling Technology with Less Metal Contamination by pH Optimization of the Suspension Medium. Chem Pharm Bull (Tokyo) 2021; 69:81-85. [PMID: 33390524 DOI: 10.1248/cpb.c20-00623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop novel contamination-less bead milling technology without impairing grinding efficiency, we investigated the effect of the formulation properties on the grinding efficiency and the metal contamination generated during the grinding process. Among the various formulations tested, the combination of polyvinylpyrrolidone and sodium dodecyl sulfate was found to be suitable for efficiently pulverizing phenytoin. However, this stabilization system included a relatively strong acid, which raised the concern of possible corrosion of the zirconia beads. An evaluation of the process clearly demonstrated that acidic pH promoted bead dissolution, suggesting that this could be suppressed by controlling the pH of the suspension. Among the various pH values tested, the metal contamination generated during the grinding process could be significantly reduced in the optimized pH range without significant differences in the particle size of the phenytoin suspension after pulverization. In addition, the contamination reduction by pH optimization in the presence of physical contact among the beads was approximately 10-times larger than that without bead contact, suggesting that pH optimization could suppress not only bead dissolution but also the wear caused by bead collisions during the grinding process. These findings show that pH optimization is a simple but effective approach to reducing metal contamination during the grinding process.
Collapse
Affiliation(s)
- Hironori Tanaka
- Formulation R&D Laboratory, CMC R&D Division, Shionogi & Co., Ltd.,Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | - Yuya Ochii
- Formulation R&D Laboratory, CMC R&D Division, Shionogi & Co., Ltd
| | - Yasushi Moroto
- Formulation R&D Laboratory, CMC R&D Division, Shionogi & Co., Ltd
| | | | | |
Collapse
|
75
|
Modeling and Simulation of Process Technology for Nanoparticulate Drug Formulations-A Particle Technology Perspective. Pharmaceutics 2020; 13:pharmaceutics13010022. [PMID: 33374375 PMCID: PMC7823784 DOI: 10.3390/pharmaceutics13010022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022] Open
Abstract
Crystalline organic nanoparticles and their amorphous equivalents (ONP) have the potential to become a next-generation formulation technology for dissolution-rate limited biopharmaceutical classification system (BCS) class IIa molecules if the following requisites are met: (i) a quantitative understanding of the bioavailability enhancement benefit versus established formulation technologies and a reliable track record of successful case studies are available; (ii) efficient experimentation workflows with a minimum amount of active ingredient and a high degree of digitalization via, e.g., automation and computer-based experimentation planning are implemented; (iii) the scalability of the nanoparticle-based oral delivery formulation technology from the lab to manufacturing is ensured. Modeling and simulation approaches informed by the pharmaceutical material science paradigm can help to meet these requisites, especially if the entire value chain from formulation to oral delivery is covered. Any comprehensive digitalization of drug formulation requires combining pharmaceutical materials science with the adequate formulation and process technologies on the one hand and quantitative pharmacokinetics and drug administration dynamics in the human body on the other hand. Models for the technical realization of the drug production and the distribution of the pharmaceutical compound in the human body are coupled via the central objective, namely bioavailability. The underlying challenges can only be addressed by hierarchical approaches for property and process design. The tools for multiscale modeling of the here-considered particle processes (e.g., by coupled computational fluid dynamics, population balance models, Noyes–Whitney dissolution kinetics) and physiologically based absorption modeling are available. Significant advances are being made in enhancing the bioavailability of hydrophobic compounds by applying innovative solutions. As examples, the predictive modeling of anti-solvent precipitation is presented, and options for the model development of comminution processes are discussed.
Collapse
|
76
|
Bilgili E, Guner G. Mechanistic Modeling of Wet Stirred Media Milling for Production of Drug Nanosuspensions. AAPS PharmSciTech 2020; 22:2. [PMID: 33222036 DOI: 10.1208/s12249-020-01876-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Drug nanocrystals have been used for a wide range of drug delivery platforms in the pharmaceutical industry, especially for bioavailability enhancement of poorly water-soluble drugs. Wet stirred media milling (WSMM) is the most widely used process for producing dense, stable suspensions of drug nanoparticles, also referred to as nanosuspensions. Despite a plethora of review papers on the production and applications of drug nanosuspensions, modeling of WSMM has not been thoroughly covered in any review paper before. The aim of this review paper is to briefly expose the pharmaceutical scientists and engineers to various modeling approaches, mostly mechanistic, including computational fluid dynamics (CFD), discrete element method (DEM), population balance modeling (PBM), coupled methods, the stress intensity-number model (SI-SN model), and the microhydrodynamic (MHD) model with a main focus on the MHD model for studying the WSMM process. A total of 71 studies, 30 on drugs and 41 on other materials, were reviewed. Analysis of the pharmaceutics literature reveals that WSMM modeling is largely based on empirical, statistically based modeling approaches, and mechanistic modeling could help pharmaceutical engineers develop a fundamental process understanding. After a review of the salient features and various pros-cons of each modeling approach, recent advances in microhydrodynamic modeling and process insights gained therefrom were highlighted. The SI-SN and MHD models were analyzed and critiqued objectively. Finally, the review points out potential research directions such as more mechanistic and accurate CFD-DEM-PBM simulations and the coupling of the MHD-PBM models with the CFD.
Collapse
|
77
|
Rahim H, Sadiq A, Ullah R, Bari A, Amin F, Farooq U, Ullah Jan N, Mahmood HM. Formulation of Aceclofenac Tablets Using Nanosuspension as Granulating Agent: An Attempt to Enhance Dissolution Rate and Oral Bioavailability. Int J Nanomedicine 2020; 15:8999-9009. [PMID: 33235448 PMCID: PMC7680606 DOI: 10.2147/ijn.s270746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of the studies was to fabricate aceclofenac (AC) tablets using nanosuspension as granulating fluid to boost its rate of in vitro dissolution and eventually its oral bioavailability. METHODS The optimized nanosuspension with particle size of 112±2.01 nm was fabricated using HPMC 1% (w/v), PVP-K30 1% (w/v) and SLS 0.12% (w/v) at 400 watts of ultrasonication energy for 15 min duration and 3 sec pause. Then, the optimized aceclofenac nanosuspension was used as granulating fluid for aceclofenac tablets formulation. The characterization was performed using Malvern zetasizer, SEM, TEM, DSC and P-XRD. The granules were evaluated for the bulk and tapped densities, Hausner's ratio, angle of repose and their resulted values were found within limit. The prepared tablets were tested for average weight, hardness, friability, disintegration, dissolution and in vivo bioavailability in rabbits. RESULTS The in vitro dissolution data showed the boosted rate of nanosuspension-based tablets compared to the microsuspension-based tablets. The in vivo bioavailability (in rabbits model) of aceclofenac nanosuspension-based tablets (ACN-1, ACN-2) proved an improved absorption as in comparison to the marketed formulation. The Cmax and AUC0→24 of ACN-1 and ACN-2 were 1.53-fold, 1.48-fold and 2.23-fold, 2.0-fold greater than that of the marketed drug, and were 1.74-fold, 1.68-fold and 2.3-fold, 2.21-fold greater in comparison to raw drug. CONCLUSION This boosted in vitro and in vivo bioavailability may be attributed to reduced particle size of aceclofenac nanoformulations used in tablets. Finally, this will result in faster absorption of these fabricated tablets.
Collapse
Affiliation(s)
- Haroon Rahim
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Fazli Amin
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Umar Farooq
- Legacy Pharmaceutical (Pvt.) Ltd., Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Ullah Jan
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Hafiz Majid Mahmood
- Department of Pharmacology, College of Pharmacy, King Saud University Riyadh, Riyadh, Saudi Arabia
| |
Collapse
|
78
|
Electro-Hydrodynamic Drop-on-Demand Printing of Aqueous Suspensions of Drug Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12111034. [PMID: 33138033 PMCID: PMC7693662 DOI: 10.3390/pharmaceutics12111034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
We demonstrate the ability to fabricate dosage forms of a poorly water-soluble drug by using wet stirred media milling of a drug powder to produce an aqueous suspension of nanoparticles and then print it onto a porous biocompatible film. Contrary to conventional printing technologies, a deposited material is pulled out from the nozzle. This feature enables printing highly viscous materials with a precise control over the printed volume. Drug (griseofulvin) nanosuspensions prepared by wet media milling were printed onto porous hydroxypropyl methylcellulose films prepared by freeze-drying. The drug particles retained crystallinity and polymorphic form in the course of milling and printing. The versatility of this technique was demonstrated by printing the same amount of nanoparticles onto a film with droplets of different sizes. The mean drug content (0.19-3.80 mg) in the printed films was predicted by the number of droplets (5-100) and droplet volume (0.2-1.0 µL) (R2 = 0.9994, p-value < 10-4). Our results also suggest that for any targeted drug content, the number-volume of droplets could be modulated to achieve acceptable drug content uniformity. Analysis of the model-independent difference and similarity factors showed consistency of drug release profiles from films with a printed suspension. Zero-order kinetics described the griseofulvin release rate from 1.8% up to 82%. Overall, this study has successfully demonstrated that the electro-hydrodynamic drop-on-demand printing of an aqueous drug nanosuspension enables accurate and controllable drug dosing in porous polymer films, which exhibited acceptable content uniformity and reproducible drug release.
Collapse
|
79
|
Amin M, Huang W, Seynhaeve ALB, ten Hagen TLM. Hyperthermia and Temperature-Sensitive Nanomaterials for Spatiotemporal Drug Delivery to Solid Tumors. Pharmaceutics 2020; 12:E1007. [PMID: 33105816 PMCID: PMC7690578 DOI: 10.3390/pharmaceutics12111007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nanotechnology has great capability in formulation, reduction of side effects, and enhancing pharmacokinetics of chemotherapeutics by designing stable or long circulating nano-carriers. However, effective drug delivery at the cellular level by means of such carriers is still unsatisfactory. One promising approach is using spatiotemporal drug release by means of nanoparticles with the capacity for content release triggered by internal or external stimuli. Among different stimuli, interests for application of external heat, hyperthermia, is growing. Advanced technology, ease of application and most importantly high level of control over applied heat, and as a result triggered release, and the adjuvant effect of hyperthermia in enhancing therapeutic response of chemotherapeutics, i.e., thermochemotherapy, make hyperthermia a great stimulus for triggered drug release. Therefore, a variety of temperature sensitive nano-carriers, lipid or/and polymeric based, have been fabricated and studied. Importantly, in order to achieve an efficient therapeutic outcome, and taking the advantages of thermochemotherapy into consideration, release characteristics from nano-carriers should fit with applicable clinical thermal setting. Here we introduce and discuss the application of the three most studied temperature sensitive nanoparticles with emphasis on release behavior and its importance regarding applicability and therapeutic potentials.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Wenqiu Huang
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Ann L. B. Seynhaeve
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
| | - Timo L. M. ten Hagen
- Laboratory of Experimental Oncology (LEO), Department of Pathology, Erasmus Medical Center, 3015GE Rotterdam, The Netherlands; (M.A.); (W.H.); (A.L.B.S.)
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| |
Collapse
|
80
|
Production of Itraconazole Nanocrystal-Based Polymeric Film Formulations for Immediate Drug Release. Pharmaceutics 2020; 12:pharmaceutics12100960. [PMID: 33065968 PMCID: PMC7600483 DOI: 10.3390/pharmaceutics12100960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 11/17/2022] Open
Abstract
In order to improve the solubility properties of BCS class II drug itraconazole, fast dissolving oral polymeric film formulations based on itraconazole nanocrystals were produced. Drug nanocrystals were manufactured by the wet pearl milling technique. In polymeric film formulations, hydroxypropyl methyl cellulose (HPMC) was used as a film forming polymer, and glycerin was used as a plasticizer. For nanocrystal suspensions and film formulations, thorough physicochemical characterization was performed, including particle sizing and size deviation, film appearance, weight variation, thickness, folding endurance, drug content uniformity, disintegration time, and dissolution profile. After milling, the nanoparticles were 369 nm in size with a PI value of 0.20. Nanoparticles were stable and after redispersion from film formulations, the particle size remained almost the same (330 nm and PI 0.16). The produced films were flexible, homogeneous, fast disintegrating, and drug release rate from both the nanosuspension and film formulations showed immediate release behavior. Based on the study, the film casting method for production of itraconazole nanocrystal based immediate release formulations is a good option for improved solubility.
Collapse
|
81
|
Valissery P, Thapa R, Singh J, Gaur D, Bhattacharya J, Singh AP, Dhar SK. Potent in vivo antimalarial activity of water-soluble artemisinin nano-preparations. RSC Adv 2020; 10:36201-36211. [PMID: 35517081 PMCID: PMC9057047 DOI: 10.1039/d0ra05597b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Artemisinin is a remarkable compound whose derivatives and combinations with multiple drugs have been utilized at the forefront of malaria treatment. However, the inherent issues of the parent compound such as poor bioavailability, short serum half-life, and high first-pass metabolism partially limit further applications of this drug. In this study, we enhanced the aqueous phase solubility of artemisinin by encapsulating it in two nanocarriers based on the polymer polycaprolactone (ART-PCL) and lipid-based Large Unilamellar Vesicles (ART-LIPO) respectively. Both nanoformulations exhibit in vitro parasite killing activity against Plasmodium falciparum with the ART-LIPO performing at comparable efficacy to the control drug solubilized in ethanol. These water-soluble formulations showed potent in vivo antimalarial activity as well in the mouse model of malaria at equivalent doses of the parent drug. Additionally, the artemisinin-PCL nanoformulation used in combination with either pyrimethamine or chloroquine increased the survival of the Plasmodium berghei infected mice for more than 34 days and effectively cured the mice of the infection. We highlight the potential for polymer and liposome-based nanocarriers in improving not only the aqueous phase solubility of artemisinin but also concomitantly retaining its therapeutic efficacy in vivo as well.
Collapse
Affiliation(s)
- Praveesh Valissery
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Roshni Thapa
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| | - Jyoti Singh
- National Institute of Immunology New Delhi 110067 India
| | - Deepak Gaur
- School of Biotechnology, Jawaharlal Nehru University New Delhi 110067 India
| | | | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
82
|
Thakor P, Bhavana V, Sharma R, Srivastava S, Singh SB, Mehra NK. Polymer–drug conjugates: recent advances and future perspectives. Drug Discov Today 2020; 25:1718-1726. [DOI: 10.1016/j.drudis.2020.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
|
83
|
Parker N, Rahman M, Bilgili E. Impact of media material and process parameters on breakage kinetics–energy consumption during wet media milling of drugs. Eur J Pharm Biopharm 2020; 153:52-67. [DOI: 10.1016/j.ejpb.2020.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/06/2020] [Accepted: 05/23/2020] [Indexed: 11/30/2022]
|
84
|
Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
85
|
Gaber DA. Nanoparticles of Lovastatin: Design, Optimization and in vivo Evaluation. Int J Nanomedicine 2020; 15:4225-4236. [PMID: 32606674 PMCID: PMC7306574 DOI: 10.2147/ijn.s241120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/18/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction The aim of the study was to optimize the processing factors of precipitation–ultrasonication technique to prepare nano-sized particles of Lovastatin (LA) for enhancing its solubility, dissolution rate and in vivo bioavailability. Methods LA nanoparticles (LANs) were prepared using precipitation–ultrasonication technique under different processing factors. LANs were characterized in terms of particle size, zeta potential and in vitro release. Stability studies at 4°C, 25°C and 40°C were conducted for optimum formulation. In addition, the in vivo bioavailability of the optimum formula was studied in comparison to a marketed product in white master rats. Results The optimized LAN formula (LAN15) had particle size (190±15), polydispersity index (0.626±0.11) and a zeta potential (−25±1.9 mV). The dissolution study of the nanosuspensions showed significant enhancement compared with pure drug. After 50 min, only 20.12±1.85% of LA was dissolved while 99.1±1.09% of LA was released from LAN15. Stability studies verified that nanosuspensions at 4°C and 25°C showed higher stability with no particle growth compared to the samples studied at 40°C. In vivo studies conducted in rats verified that there was 1.45-fold enhancement of Cmax of LAN15 as compared to marketed tablets. Conclusion Nanoparticle prepared by ultrasonication-assisted precipitation method is a promising formula for enhancing the solubility and hence the bioavailability of Lovastatin.
Collapse
Affiliation(s)
- Dalia A Gaber
- Department of Quality Control & Quality Assurance, Holding Company for Biological Products and Vaccines, Cairo, Egypt.,Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
86
|
Synergistic and antagonistic effects of various amphiphilic polymer combinations in enhancing griseofulvin release from ternary amorphous solid dispersions. Eur J Pharm Sci 2020; 150:105354. [DOI: 10.1016/j.ejps.2020.105354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/05/2023]
|
87
|
Degrees of order: A comparison of nanocrystal and amorphous solids for poorly soluble drugs. Int J Pharm 2020; 586:119492. [PMID: 32505579 DOI: 10.1016/j.ijpharm.2020.119492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
Poor aqueous solubility is currently a prevalent issue in the development of small molecule pharmaceuticals. Several methods are possible for improving the solubility, dissolution rate and bioavailability of Biopharmaceutics Classification System (BCS) class II and class IV drugs. Two solid state approaches, which rely on reductions in order, and can theoretically be applied to all molecules without any specific chemical prerequisites (compared with e.g. ionizable or co-former groups, or sufficient lipophilicity), are the use of the amorphous form and nanocrystals. Research involving these two approaches is relatively extensive and commercial products are now available based on these technologies. Nevertheless, their formulation remains more challenging than with conventional dosage forms. This article describes these two technologies from both theoretical and practical perspectives by briefly discussing the physicochemical backgrounds behind these approaches, as well as the resulting practical implications, both positive and negative. Case studies demonstrating the benefits and challenges of these two techniques are presented.
Collapse
|
88
|
Hashem FM, Abd Allah FI, Abdel-Rashid RS, Hassan AAA. Glibenclamide nanosuspension inhaler: development, in vitro and in vivo assessment. Drug Dev Ind Pharm 2020; 46:762-774. [DOI: 10.1080/03639045.2020.1753062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fahima M. Hashem
- Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Fathy I. Abd Allah
- International Center for Bioavailability, Pharmaceutical and Clinical Research (ICBR), Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar university, Cairo, Egypt
| | | | - Abdelsabour A. A. Hassan
- International Center for Bioavailability, Pharmaceutical and Clinical Research (ICBR), Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar university, Cairo, Egypt
- Metered Dose Inhaler Department (MDI), Cairo, Egypt
- Arab Drug Company for pharmaceuticals and chemical industries (ADCO), Cairo, Egypt
| |
Collapse
|
89
|
Bodnár K, Hudson SP, Rasmuson ÅC. Drug Loading and Dissolution Properties of Dalcetrapib–Montmorillonite Nanocomposite Microparticles. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Katalin Bodnár
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sarah P. Hudson
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Åke C. Rasmuson
- Synthesis and Solid State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
90
|
Far J, Abdel-Haq M, Gruber M, Abu Ammar A. Developing Biodegradable Nanoparticles Loaded with Mometasone Furoate for Potential Nasal Drug Delivery. ACS OMEGA 2020; 5:7432-7439. [PMID: 32280885 PMCID: PMC7144157 DOI: 10.1021/acsomega.0c00111] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/16/2020] [Indexed: 05/30/2023]
Abstract
Intranasal drug administration is considered a routine in the treatment of many nasal conditions including chronic rhinosinusitis (CRS), which is a common disease involving long-term inflammation of the nasal mucosa. Topical nasal steroid treatment is safe and easy to use and plays a basic role in both nonsurgical and surgical treatments for CRS. Intranasal steroid therapy for various time intervals is commonly used before and after endoscopic CRS nasal surgeries to reduce inflammation and edema and to improve mucosal healing. The medication is currently administered via conventional nasal sprays; therefore, there is an incentive to develop more efficient drug delivery systems for the controlled release of topical steroids into the sinonasal cavities over a prolonged period of time. In this study, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with mometasone furoate (MF) were generated using the nanoprecipitation method and characterized physicochemically and morphologically. MF NPs exhibited adequate physicochemical properties and high drug encapsulation efficiency and loading content. MF exhibited sustained release from NPs over 7 days in vitro with an initial burst release; various mathematical models were applied to determine the kinetics of drug release. Having demonstrated the ability to load MF in PLGA-NPs using the nanoprecipitation method for the first time, these NPs urge the need for additional investigations to demonstrate their therapeutic potential in nasal delivery applications.
Collapse
Affiliation(s)
- Jumana Far
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Muhammad Abdel-Haq
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Maayan Gruber
- Department
of Otolaryngology−Head and Neck Surgery, Galilee Medical Center, Nahariya 2210001, Israel
- Faculty
of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Aiman Abu Ammar
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering Jerusalem, Jerusalem 9103501, Israel
| |
Collapse
|
91
|
Ryu KA, Park PJ, Kim SB, Bin BH, Jang DJ, Kim ST. Topical Delivery of Coenzyme Q10-Loaded Microemulsion for Skin Regeneration. Pharmaceutics 2020; 12:pharmaceutics12040332. [PMID: 32272811 PMCID: PMC7238272 DOI: 10.3390/pharmaceutics12040332] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to develop a coenzyme Q10 (CoQ10) microemulsion system with improved solubility, penetration, and wound healing efficacy. Based on the pseudo-ternary diagram, microemulsions containing isopropyl myristate (IPM), Cremophor EL®, and Transcutol® HP were selected and confirmed to be nanosized (<20 nm) and thermodynamically stable based on the dilution and thermodynamic stability tests. The CoQ10-loaded microemulsion with a surfactant/co-surfactant (S/CoS) ratio of 2:1 (w/w %) demonstrated a higher permeation efficacy compared to microemulsions with S/CoS ratio of 3:1 or 4:1 (w/w %). Additionally, the CoQ10-loaded microemulsion with an S/CoS ratio of 2:1 demonstrated a relatively rapid wound healing effect in keratinocytes and fibroblasts. Overall, these data suggest that a microemulsion based on IPM, Cremophor EL®, and Transcutol® HP could be an effective vehicle for the topical administration of CoQ10 and could be utilized for the application of other therapeutic agents that have difficulty in penetrating the skin.
Collapse
Affiliation(s)
- Kyeong-A Ryu
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Korea;
| | - Phil June Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16499, Korea;
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, 50 yonsei-ro, Shinchon-dong, Seodaemun-gu, Seoul 03722, Korea;
| | - Bum-Ho Bin
- Department of Biological Sciences, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea;
| | - Dong-Jin Jang
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Korea;
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Korea
- Correspondence: (D.-J.J.); (S.T.K.); Tel.: +82-55-320-3393 (D.-J.J.); +82-55-320-4038 (S.T.K.)
| | - Sung Tae Kim
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Korea;
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Korea
- Correspondence: (D.-J.J.); (S.T.K.); Tel.: +82-55-320-3393 (D.-J.J.); +82-55-320-4038 (S.T.K.)
| |
Collapse
|
92
|
Seynhaeve A, Amin M, Haemmerich D, van Rhoon G, ten Hagen T. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164:125-144. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022]
Abstract
Chemotherapy is a cornerstone of cancer therapy. Irrespective of the administered drug, it is crucial that adequate drug amounts reach all cancer cells. To achieve this, drugs first need to be absorbed, then enter the blood circulation, diffuse into the tumor interstitial space and finally reach the tumor cells. Next to chemoresistance, one of the most important factors for effective chemotherapy is adequate tumor drug uptake and penetration. Unfortunately, most chemotherapeutic agents do not have favorable properties. These compounds are cleared rapidly, distribute throughout all tissues in the body, with only low tumor drug uptake that is heterogeneously distributed within the tumor. Moreover, the typical microenvironment of solid cancers provides additional hurdles for drug delivery, such as heterogeneous vascular density and perfusion, high interstitial fluid pressure, and abundant stroma. The hope was that nanotechnology will solve most, if not all, of these drug delivery barriers. However, in spite of advances and decades of nanoparticle development, results are unsatisfactory. One promising recent development are nanoparticles which can be steered, and release content triggered by internal or external signals. Here we discuss these so-called smart drug delivery systems in cancer therapy with emphasis on mild hyperthermia as a trigger signal for drug delivery.
Collapse
|
93
|
Elhesaisy N, Swidan S. Trazodone Loaded Lipid Core Poly (ε-caprolactone) Nanocapsules: Development, Characterization and in Vivo Antidepressant Effect Evaluation. Sci Rep 2020; 10:1964. [PMID: 32029776 PMCID: PMC7005163 DOI: 10.1038/s41598-020-58803-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/29/2019] [Indexed: 11/21/2022] Open
Abstract
Trazodone hydrochloride (TRH) is a lipophilic drug which is used effectively as an antidepressant. Its poor solubility and short half-life represent an obstacle for its successful use. Nanocapsules with biodegradable polymeric shell are successful drug delivery systems for controlling the release of drugs. To enhance the entrapment of lipophilic drugs, oils can be added forming a lipophilic core in which the drug is more soluble. The aim of this study was to enhance the efficacy of TRH and prolong its action by formulating it into lipid core polymeric shell nanocapsules. Nanocapules were prepared using nanoprecipitation technique. All prepared formulations were in nano size range and negatively charged. The TRH entrapment efficiency (EE%) in lipid core nanocapsules was up to 74.8 ± 0.5% when using Labrafac lipophile as a lipid core compared to only 55.7 ± 0.9% in lipid free polymeric nanospheres. Controlled TRH release was achieved for all prepared formulations. Forced swim test results indicated the significant enhancement of antidepressant effect of the selected TRH loaded Labrafac lipophile core nanocapsules formulation compared to control and TRH dispersion in phosphate buffer. It is concluded that lipid core nanocapsules is a promising carrier for the enhancement of TRH efficacy.
Collapse
Affiliation(s)
- Nahla Elhesaisy
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt
| | - Shady Swidan
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, 11837, Egypt.
- The Center for Drug Research and Development (CDRD), The British University in Egypt, El-Sherouk city, Cairo, 11837, Egypt.
| |
Collapse
|
94
|
Rahman M, Ahmad S, Tarabokija J, Bilgili E. Roles of surfactant and polymer in drug release from spray-dried hybrid nanocrystal-amorphous solid dispersions (HyNASDs). POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
95
|
Liu Q, Mai Y, Gu X, Zhao Y, Di X, Ma X, Yang J. A wet-milling method for the preparation of cilnidipine nanosuspension with enhanced dissolution and oral bioavailability. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101371] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
96
|
Immunological and Toxicological Considerations for the Design of Liposomes. NANOMATERIALS 2020; 10:nano10020190. [PMID: 31978968 PMCID: PMC7074910 DOI: 10.3390/nano10020190] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
Liposomes hold great potential as gene and drug delivery vehicles due to their biocompatibility and modular properties, coupled with the major advantage of attenuating the risk of systemic toxicity from the encapsulated therapeutic agent. Decades of research have been dedicated to studying and optimizing liposomal formulations for a variety of medical applications, ranging from cancer therapeutics to analgesics. Some effort has also been made to elucidate the toxicities and immune responses that these drug formulations may elicit. Notably, intravenously injected liposomes can interact with plasma proteins, leading to opsonization, thereby altering the healthy cells they come into contact with during circulation and removal. Additionally, due to the pharmacokinetics of liposomes in circulation, drugs can end up sequestered in organs of the mononuclear phagocyte system, affecting liver and spleen function. Importantly, liposomal agents can also stimulate or suppress the immune system depending on their physiochemical properties, such as size, lipid composition, pegylation, and surface charge. Despite the surge in the clinical use of liposomal agents since 1995, there are still several drawbacks that limit their range of applications. This review presents a focused analysis of these limitations, with an emphasis on toxicity to healthy tissues and unfavorable immune responses, to shed light on key considerations that should be factored into the design and clinical use of liposomal formulations.
Collapse
|
97
|
Abstract
Ultrasound and magneto-responsive nanosized drug delivery systems have been designed as novel carriers for controlled release. Colloidal bubbles (CBs) could be designed to incorporate different materials, such as protein, lipid, polymer, surfactants, and even nanoparticles in their shell, which makes them suitable for a wide range of drug delivery applications. The interior of CBs may be filled with different gases, which is essential for conferring the characteristics of an ultrasounds contrasting agent. Manipulating the core of CBs enhances features such as stability and duration of the echogenic effect. Thus CBs derivatized with nanoparticles combine functional properties of CBs and NPs to yield a versatile theranostics platform technology.
Collapse
|
98
|
Muljajew I, Erlebach A, Weber C, Buchheim JR, Sierka M, Schubert US. A polyesteramide library from dicarboxylic acids and 2,2′-bis(2-oxazoline): synthesis, characterization, nanoparticle formulation and molecular dynamics simulations. Polym Chem 2020. [DOI: 10.1039/c9py01293a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and in silico approach enabled tailoring of polyesteramides with respect to formation of aqueous nanoparticle dispersions.
Collapse
Affiliation(s)
- Irina Muljajew
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Andreas Erlebach
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Otto Schott Institute of Materials Research (OSIM)
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Johannes R. Buchheim
- Institute for Technical Chemistry and Environmental Chemistry
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
| | - Marek Sierka
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Otto Schott Institute of Materials Research (OSIM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
99
|
Rahman M, Arevalo F, Coelho A, Bilgili E. Hybrid nanocrystal–amorphous solid dispersions (HyNASDs) as alternative to ASDs for enhanced release of BCS Class II drugs. Eur J Pharm Biopharm 2019; 145:12-26. [DOI: 10.1016/j.ejpb.2019.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022]
|
100
|
Hartmanshenn C, Khinast JG, Papageorgiou CD, Mitchell C, Quon J, Glasser BJ. Heat transfer of dry granular materials in a bladed mixer: Effect of thermal properties and agitation rate. AIChE J 2019. [DOI: 10.1002/aic.16861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Clara Hartmanshenn
- Department of Chemical and Biochemical EngineeringRutgers University Piscataway New Jersey
| | - Johannes G. Khinast
- Research Center Pharmaceutical Engineering and Institute for Process and Particle Engineering, Graz University of Technology Graz Austria
| | - Charles D. Papageorgiou
- Process Chemistry Development, Takeda Pharmaceuticals International Co. Cambridge Massachusetts
| | - Chris Mitchell
- Process Chemistry Development, Takeda Pharmaceuticals International Co. Cambridge Massachusetts
| | - Justin Quon
- Process Chemistry Development, Takeda Pharmaceuticals International Co. Cambridge Massachusetts
| | - Benjamin J. Glasser
- Department of Chemical and Biochemical EngineeringRutgers University Piscataway New Jersey
| |
Collapse
|