51
|
Hierarchical design of hyaluronic acid-peptide constructs for glioblastoma targeting: Combining insights from NMR and molecular dynamics simulations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
52
|
Rauwel E, Al-Arag S, Salehi H, Amorim CO, Cuisinier F, Guha M, Rosario MS, Rauwel P. Assessing Cobalt Metal Nanoparticles Uptake by Cancer Cells Using Live Raman Spectroscopy. Int J Nanomedicine 2020; 15:7051-7062. [PMID: 33061367 PMCID: PMC7522600 DOI: 10.2147/ijn.s258060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/08/2020] [Indexed: 11/26/2022] Open
Abstract
Purpose Nanotechnology applied to cancer treatment is a growing area of research in nanomedicine with magnetic nanoparticle-mediated anti-cancer drug delivery systems offering least possible side effects. To that end, both structural and chemical properties of commercial cobalt metal nanoparticles were studied using label-free confocal Raman spectroscopy. Materials and Methods Crystal structure and morphology of cobalt nanoparticles were studied by XRD and TEM. Magnetic properties were studied with SQUID and PPMS. Confocal Raman microscopy has high spatial resolution and compositional sensitivity. It, therefore, serves as a label-free tool to trace nanoparticles within cells and investigate the interaction between coating-free cobalt metal nanoparticles and cancer cells. The toxicity of cobalt nanoparticles against human cells was assessed by MTT assay. Results Superparamagnetic Co metal nanoparticle uptake by MCF7 and HCT116 cancer cells and DPSC mesenchymal stem cells was investigated by confocal Raman microscopy. The Raman nanoparticle signature also allowed accurate detection of the nanoparticle within the cell without labelling. A rapid uptake of the cobalt nanoparticles followed by rapid apoptosis was observed. Their low cytotoxicity, assessed by means of MTT assay against human embryonic kidney (HEK) cells, makes them promising candidates for the development of targeted therapies. Moreover, under a laser irradiation of 20mW with a wavelength of 532nm, it is possible to bring about local heating leading to combustion of the cobalt metal nanoparticles within cells, whereupon opening new routes for cancer phototherapy. Conclusion Label-free confocal Raman spectroscopy enables accurately localizing the Co metal nanoparticles in cellular environments. The interaction between the surfactant-free cobalt metal nanoparticles and cancer cells was investigated. The facile endocytosis in cancer cells shows that these nanoparticles have potential in engendering their apoptosis. This preliminary study demonstrates the feasibility and relevance of cobalt nanomaterials for applications in nanomedicine such as phototherapy, hyperthermia or stem cell delivery.
Collapse
Affiliation(s)
- Erwan Rauwel
- Institute of Technology, Estonian University of Life Sciences, Tartu, Estonia
| | | | | | - Carlos O Amorim
- Dpt. Of Physics & CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | | | - Mithu Guha
- Dpt. Of General & Molecular Pathology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maria S Rosario
- CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Protima Rauwel
- Institute of Technology, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
53
|
Asil SM, Ahlawat J, Barroso GG, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 2020; 8:4109-4128. [PMID: 32638706 PMCID: PMC7439575 DOI: 10.1039/d0bm00809e] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With an aging population that has been increasing in recent years, the need for the development of therapeutic approaches for treatment of neurodegenerative disorders (ND) has increased. ND, which are characterized by the progressive loss of the structure or function of neurons, are often associated with neuronal death. In spite of screening numerous drugs, currently there is no specific treatment that can cure these diseases or slow down their progression. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Huntington's disease, and prion diseases belong to ND which affect enormous numbers of people globally. There are some main possible reasons for failure in the treatment of neurodegenerative diseases such as limitations introduced by the Blood-Brain Barrier (BBB), the Blood-Cerebrospinal Fluid Barrier (BCFB) and P-glycoproteins. Current advances in nanotechnology present opportunities to overcome the mentioned limitations by using nanotechnology and designing nanomaterials improving the delivery of active drug candidates. Some of the basic and developing strategies to overcome drug delivery impediments are the local delivery of drugs, receptor-mediated transcytosis, physicochemical disruption of the BBB, cell-penetrating peptides and magnetic disruption. Recently, the application of nanoparticles has been developed to improve the efficiency of drug delivery. Nanoengineered particles as nanodrugs possess the capacity to cross the BBB and also show decreased invasiveness. Examples include inorganic, magnetic, polymeric and carbonic nanoparticles that have been developed to improve drug delivery efficiency. Despite numerous papers published in this filed, there are some unsolved issues that need to be addressed for successful treatment of neurodegenerative diseases. These are discussed herein.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- The Department of Environmental Science & Engineering, The University of Texas at El Paso, USA
| | - Jyoti Ahlawat
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, USA
| | | | - Mahesh Narayan
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, USA
| |
Collapse
|
54
|
Varnamkhasti BS, Jafari S, Taghavi F, Alaei L, Izadi Z, Lotfabadi A, Dehghanian M, Jaymand M, Derakhshankhah H, Saboury AA. Cell-Penetrating Peptides: As a Promising Theranostics Strategy to Circumvent the Blood-Brain Barrier for CNS Diseases. Curr Drug Deliv 2020; 17:375-386. [DOI: 10.2174/1567201817666200415111755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
The passage of therapeutic molecules across the Blood-Brain Barrier (BBB) is a profound challenge for the management of the Central Nervous System (CNS)-related diseases. The ineffectual nature of traditional treatments for CNS disorders led to the abundant endeavor of researchers for the design the effective approaches in order to bypass BBB during recent decades. Cell-Penetrating Peptides (CPPs) were found to be one of the promising strategies to manage CNS disorders. CPPs are short peptide sequences with translocation capacity across the biomembrane. With special regard to their two key advantages like superior permeability as well as low cytotoxicity, these peptide sequences represent an appropriate solution to promote therapeutic/theranostic delivery into the CNS. This scenario highlights CPPs with specific emphasis on their applicability as a novel theranostic delivery system into the brain.
Collapse
Affiliation(s)
- Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Fereshteh Taghavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Loghman Alaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Alireza Lotfabadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Mojtaba Dehghanian
- Department of Biotechnology, Shahr-e Kord Branch, Islamic Azad University, Shahr-e Kord, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
55
|
Valcourt DM, Dang MN, Wang J, Day ES. Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer. Ann Biomed Eng 2020; 48:1864-1884. [PMID: 31686312 PMCID: PMC7196499 DOI: 10.1007/s10439-019-02399-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
The Wnt, Hedgehog, and Notch signaling pathways play a crucial role in early development and the maintenance of adult tissues. When dysregulated, these developmental signaling pathways can drive the formation and progression of cancer by facilitating cell survival, proliferation, and stem-like behavior. While this makes these pathways promising targets for therapeutic intervention, their pharmacological inhibition has been challenging due to the substantial complexity that exists within each pathway and the complicated crosstalk that occurs between the pathways. Recently, several small molecule inhibitors, ribonucleic acid (RNA) molecules, and antagonistic antibodies have been developed that can suppress these signaling pathways in vitro, but many of them face systemic delivery challenges. Nanoparticle-based delivery vehicles can overcome these challenges to enhance the performance and anti-cancer effects of these therapeutic molecules. This review summarizes the mechanisms by which the Wnt, Hedgehog, and Notch signaling pathways contribute to cancer growth, and discusses various nanoparticle formulations that have been developed to deliver small molecules, RNAs, and antibodies to cancer cells to inhibit these signaling pathways and halt tumor progression. This review also outlines some of the challenges that these nanocarriers must overcome to achieve therapeutic efficacy and clinical translation.
Collapse
Affiliation(s)
- D M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - M N Dang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - J Wang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - E S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA.
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA.
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, DE, 19713, USA.
| |
Collapse
|
56
|
Malla RR, Kumari S, Kgk D, Momin S, Nagaraju GP. Nanotheranostics: Their role in hepatocellular carcinoma. Crit Rev Oncol Hematol 2020; 151:102968. [DOI: 10.1016/j.critrevonc.2020.102968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/24/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
|
57
|
Ren D, Cheng H, Wang X, Vishnoi M, Teh BS, Rostomily R, Chang J, Wong ST, Zhao H. Emerging treatment strategies for breast cancer brain metastasis: from translational therapeutics to real-world experience. Ther Adv Med Oncol 2020; 12:1758835920936151. [PMID: 32655700 PMCID: PMC7328353 DOI: 10.1177/1758835920936151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic therapies for primary breast cancer have made great progress over the past two decades. However, oncologists confront an insidious and particularly difficult problem: in those patients with metastatic breast cancer, up to 50% of human epidermal growth factor 2 (HER2)-positive and 25-40% of triple-negative subtypes, brain metastases (BM) kill most of them. Fortunately, standard- of-care treatments for BM have improved rapidly, with a decline in whole brain radiation therapy and use of fractionated stereotactic radiosurgery as well as targeted therapies and immunotherapies. Meanwhile, advances in fundamental understanding of the basic biological processes of breast cancer BM (BCBM) have led to many novel experimental therapeutic strategies. In this review, we describe the most recent clinical treatment options and emerging experimental therapeutic strategies that have the potential to combat BCBM.
Collapse
Affiliation(s)
- Ding Ren
- Outpatient Department, PLA Navy NO.905 Hospital,
Shanghai, P.R. China
| | - Hao Cheng
- Department of Orthopedics, Tongji Hospital,
Wuhan, P.R. China
| | - Xin Wang
- Department of Systems Medicine and
Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine,
Houston, TX, USA
| | - Monika Vishnoi
- Department of Neurosurgery, Houston Methodist
Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Bin S. Teh
- Department of Radiation Oncology, Houston
Methodist Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Robert Rostomily
- Department of Neurosurgery, Houston Methodist
Hospital, Weill Cornell Medicine, Houston, TX, USA
| | - Jenny Chang
- Houston Methodist Cancer Center, Weill Cornell
Medicine, Houston, TX, USA
| | - Stephen T. Wong
- Department of Systems Medicine and
Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine,
6670 Bertner Ave, Houston, TX 77030, USA
| | - Hong Zhao
- Department of Systems Medicine and
Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine,
6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
58
|
Balhorn R, Balhorn MC, Balakrishnan K, Rebhun RB. The small molecule antibody mimic SH7139 targets a family of HLA-DRs expressed by B-cell lymphomas and other solid cancers. J Drug Target 2020; 28:1124-1136. [PMID: 32588667 DOI: 10.1080/1061186x.2020.1787418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective high-affinity ligands (SHALs) belong to a novel class of small-molecule cancer therapeutics that function as targeted prodrugs. SH7139, the most advanced of the SHAL drugs designed to bind to a unique β-subunit structural epitope located on HLA-DR10, has exhibited exceptional preclinical efficacy and safety profiles. A comparison of SH7139 and SH7129, a biotin derivative of the drug developed for use as a diagnostic, showed the incorporation of a biotin tag did not alter the SHALs ability to target or kill HLA-DR10 expressing Raji cells. The use of SH7129 in an immuno-histochemical type assay to stain peripheral blood mononuclear cells (PBMCs) obtained from individuals expressing specific HLA-DRB1 alleles has also revealed that in addition to HLA-DR10, seven other more commonly expressed HLA-DRs are targeted by the drug. Computational dockings of the SHAL's recognition ligands to a number of HLA-DR structures explain, in part, why the targeting domains of SH7129 and SH7139 bind to some HLA-DRs but not others. The results also substantiate the selectivity of SH7129 and suggest it may prove useful as a companion diagnostic for pre-screening biopsy samples to identify those patients whose tumours should respond to SH7139 therapy.
Collapse
Affiliation(s)
| | | | - Karuppiah Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Robert B Rebhun
- The Comparative Cancer Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
59
|
Sahli F, Courcelle M, Palama T, Djaker N, Savarin P, Spadavecchia J. Temozolomide, Gemcitabine, and Decitabine Hybrid Nanoconjugates: From Design to Proof-of-Concept (PoC) of Synergies toward the Understanding of Drug Impact on Human Glioblastoma Cells. J Med Chem 2020; 63:7410-7421. [PMID: 32524814 DOI: 10.1021/acs.jmedchem.0c00694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper emphasizes the synthesis of novel hybrid drug nanoparticles (Hyb-D-AuNPs) based on gold-temozolomide (TMZ) complexes combined with gemcitabine (GEM) and decitabine (DAC) to improve the efficiency and reduce the resistance of U87 malignant glial cells against TMZ. All products were evaluated by several spectroscopic techniques (Raman, UV-Vis) and transmission electron microscopy (TEM). Besides, for therapeutic purposes, the effect of these nanoparticles on cell proliferation and toxicity was evaluated, which clearly showed a synergic action of TMZ and GEM. Through the analysis of the exometabolome by nuclear magnetic resonance (NMR), the metabolic changes in the culture medium were measured in glial cells. Moreover, these nanoparticles are especially appropriated to the thermal destruction of cancer in the case of photothermal therapy due to their photothermal heating properties. This study presents an original chemical approach that it could play a central role in the field of nanomedicine, with novel perspectives for the development of new drugs and active targeting in glioblastoma multiforme (GBM) cancer therapy.
Collapse
Affiliation(s)
- Ferdaous Sahli
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Manon Courcelle
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Tony Palama
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Nadia Djaker
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Philippe Savarin
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| | - Jolanda Spadavecchia
- Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques, Université Sorbonne Paris Nord, CNRS, NBD-CSPBAT, UMR 7244, Bobigny 93000, France
| |
Collapse
|
60
|
Rani V, Venkatesan J, Prabhu A. Nanotherapeutics in glioma management: Advances and future perspectives. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
61
|
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor. In spite of the rigorous multimodal treatment involving surgery and radiochemotherapy, GBM has a dismal prognosis and rapid relapsing potential. Hence, search for novel therapeutic agents still continues. Neoantigens are the tumor-specific antigens which arise due to somatic mutations in the tumor genome. In recent years, personalized vaccine approach targeting neoantigens has been explored widely in cancer immunotherapy and several efforts have also been made to revolutionize the immunotherapy of cold tumors such as GBM using neoantigen targeted vaccines. AREAS COVERED In this review, we discuss the clinical application of personalized neoantigen targeted vaccine strategy in GBM immunotherapy. While discussing this strategy, we brief about the current challenges faced in GBM treatment by the novel immunotherapeutics. EXPERT OPINION To date, very few vaccines developed for GBM have reached till phase III clinical development. Early-phase clinical trials of GBM neoantigen vaccines have shown promising clinical outcomes and therefore, its rapid clinical development is warranted. Advent of newer and faster techniques such as next-generation sequencing will drive the faster clinical development of multiplex neoantigen vaccines and hence, increase in the clinical trials is expected.
Collapse
Affiliation(s)
- Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS University , Mumbai, India
| | - Varada Date
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS University , Mumbai, India
| |
Collapse
|
62
|
Gascon S, Giraldo Solano A, El Kheir W, Therriault H, Berthelin P, Cattier B, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Characterization and Mathematical Modeling of Alginate/Chitosan-Based Nanoparticles Releasing the Chemokine CXCL12 to Attract Glioblastoma Cells. Pharmaceutics 2020; 12:E356. [PMID: 32295255 PMCID: PMC7238026 DOI: 10.3390/pharmaceutics12040356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/23/2022] Open
Abstract
Chitosan (Chit) currently used to prepare nanoparticles (NPs) for brain application can be complexed with negatively charged polymers such as alginate (Alg) to better entrap positively charged molecules such as CXCL12. A sustained CXCL12 gradient created by a delivery system can be used, as a therapeutic approach, to control the migration of cancerous cells infiltrated in peri-tumoral tissues similar to those of glioblastoma multiforme (GBM). For this purpose, we prepared Alg/Chit NPs entrapping CXCL12 and characterized them. We demonstrated that Alg/Chit NPs, with an average size of ~250 nm, entrapped CXCL12 with ~98% efficiency for initial mass loadings varying from 0.372 to 1.490 µg/mg NPs. The release kinetic profiles of CXCL12 were dependent on the initial mass loading, and the released chemokine from NPs after seven days reached 12.6%, 32.3%, and 59.9% of cumulative release for initial contents of 0.372, 0.744, and 1.490 µg CXCL12/mg NPs, respectively. Mathematical modeling of released kinetics showed a predominant diffusive process with strong interactions between Alg and CXCL12. The CXCL12-NPs were not toxic and did not promote F98 GBM cell proliferation, while the released CXCL12 kept its chemotaxis effect. Thus, we developed an efficient and tunable CXCL12 delivery system as a promising therapeutic strategy that aims to be injected into a hydrogel used to fill the cavity after surgical tumor resection. This system will be used to attract infiltrated GBM cells prior to their elimination by conventional treatment without affecting a large zone of healthy brain tissue.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (P.B.); (N.F.)
| | - Angéla Giraldo Solano
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (A.G.S.); (H.T.)
| | - Wiam El Kheir
- Advanced dynamic cell culture systems laboratory, Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (W.E.K.); (B.C.)
| | - Hélène Therriault
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada; (A.G.S.); (H.T.)
| | - Pierre Berthelin
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (P.B.); (N.F.)
| | - Bettina Cattier
- Advanced dynamic cell culture systems laboratory, Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (W.E.K.); (B.C.)
| | - Bernard Marcos
- Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of chemical engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Benoit Paquette
- Department of nuclear medicine and radiobiology, Faculty of Medicine and Health Science, Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (P.B.); (N.F.)
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced dynamic cell culture systems laboratory, Department of Chemical and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 boul universite, Sherbrooke, QC J1K 2R1, Canada; (W.E.K.); (B.C.)
- Research Center on Aging, 1036, rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
63
|
Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, Ten Hagen TLM, Haeri A. Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Adv Colloid Interface Sci 2020; 277:102121. [PMID: 32092487 DOI: 10.1016/j.cis.2020.102121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Liposomes, lipid-based vesicular systems, have attracted major interest as a means to improve drug delivery to various organs and tissues in the human body. Recent literature highlights the benefits of liposomes for use as drug delivery systems, including encapsulating of both hydrophobic and hydrophilic cargos, passive and active targeting, enhanced drug bioavailability and therapeutic effects, reduced systemic side effects, improved cargo penetration into the target tissue and triggered contents release. Pioneering work of liposomes researchers led to introduction of long-circulating, ligand-targeted and triggered release liposomes, as well as, liposomes containing nucleic acids and vesicles containing combination of cargos. Altogether, these findings have led to widespread application of liposomes in a plethora of areas from cancer to conditions such as cardiovascular, neurologic, respiratory, skin, autoimmune and eye disorders. There are numerous review articles on the application of liposomes in treatment of cancer, which seems the primary focus, whereas other diseases also benefit from liposome-mediated treatments. Therefore, this article provides an illustrated detailed overview of liposomal formulations, in vitro characterization and their applications in different disorders other than cancer. Challenges and future directions, which must be considered to obtain the most benefit from applications of liposomes in these disorders, are discussed.
Collapse
Affiliation(s)
- Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hosseinpour-Moghadam
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niayesh Shakeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC Cancer Center, Rotterdam, the Netherlands.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
64
|
Su YL, Kuo LW, Hsu CH, Chiang CS, Lu YJ, Chang SJ, Hu SH. Rabies virus glycoprotein-amplified hierarchical targeted hybrids capable of magneto-electric penetration delivery to orthotopic brain tumor. J Control Release 2020; 321:159-173. [PMID: 32045622 DOI: 10.1016/j.jconrel.2020.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/16/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Compact nanohybrids can potentially unite various therapeutic features and reduce side effects for precise cancer therapy. However, the poor accumulation and limited tumor penetration of drugs at the tumor impede the manifestation of nanomedicine. We developed a rabies virus glycoprotein (RVG)-amplified hierarchical targeted hybrid that acts as a stealthy and magnetolytic carrier that transports dual tumor-penetrating agents incorporating two drugs (boron-doped graphene quantum dots (B-GQDs)/doxorubicin and pH-responsive dendrimers (pH-Den)/palbociclib). The developed RVG-decorated hybrids (RVG-hybrids) enhance the accumulation of drugs at tumor by partially bypassing the BBB via spinal cord transportation and pH-induced aggregation of hierarchical targeting. The penetrated delivery of dual pH-Den and B-GQD drugs to deep tumors is actuated by magnetoelectric effect, which are able to generate electrons to achieve electrostatic repulsion and disassemble the hybrids into components of a few nanometers in size. The synergy of magnetoelectric drug penetration and chemotherapy was achieved by delivery of the B-GQDs and pH-Den to orthotopic tumors, which prolonged the host survival time. This RVG-amplified dual hierarchical delivery integrated with controlled and penetrated release from this hybrid improve the distribution of the therapeutic agents at the brain tumor for synergistic therapy, exhibiting potential for clinic use.
Collapse
Affiliation(s)
- Yu-Lin Su
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Wen Kuo
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Hsien Hsu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
65
|
Salehi B, Calina D, Docea AO, Koirala N, Aryal S, Lombardo D, Pasqua L, Taheri Y, Marina Salgado Castillo C, Martorell M, Martins N, Iriti M, Suleria HAR, Sharifi-Rad J. Curcumin's Nanomedicine Formulations for Therapeutic Application in Neurological Diseases. J Clin Med 2020; 9:E430. [PMID: 32033365 PMCID: PMC7074182 DOI: 10.3390/jcm9020430] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
The brain is the body's control center, so when a disease affects it, the outcomes are devastating. Alzheimer's and Parkinson's disease, and multiple sclerosis are brain diseases that cause a large number of human deaths worldwide. Curcumin has demonstrated beneficial effects on brain health through several mechanisms such as antioxidant, amyloid β-binding, anti-inflammatory, tau inhibition, metal chelation, neurogenesis activity, and synaptogenesis promotion. The therapeutic limitation of curcumin is its bioavailability, and to address this problem, new nanoformulations are being developed. The present review aims to summarize the general bioactivity of curcumin in neurological disorders, how functional molecules are extracted, and the different types of nanoformulations available.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
| | - Sushant Aryal
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal
| | | | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende (CS), Italy
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. HernâniMonteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy
| | | | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|
66
|
Integrin Signaling in Glioma Pathogenesis: From Biology to Therapy. Int J Mol Sci 2020; 21:ijms21030888. [PMID: 32019108 PMCID: PMC7037280 DOI: 10.3390/ijms21030888] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/17/2022] Open
Abstract
Integrins are a large family of transmembrane adhesion receptors, which play a key role in interactions of a cell with the surrounding stroma. Integrins are comprised of non-covalently linked α and β chains, which form heterodimeric receptor complexes. The signals from integrin receptors are combined with those originating from growth factor receptors and participate in orchestrating morphological changes of cells, organization of the cytoskeleton, stimulation of cell proliferation and rescuing cells from programmed cell death induced by extracellular matrix (ECM) detachment. Upon binding to specific ligands or ECM components, integrin dimers activate downstream signaling pathways, including focal adhesion kinase, phosphoinositide-3-kinase (PI3K) and AKT kinases, which regulate migration, invasion, proliferation and survival. Expression of specific integrins is upregulated in both tumor cells and stromal cells in a tumor microenvironment. Therefore, integrins became an attractive therapeutic target for many cancers, including the most common primary brain tumors-gliomas. In this review we provide an overview of the involvement of integrin signaling in glioma pathogenesis, formation of the tumor niche and brain tissue infiltration. We will summarize up-to-date therapeutic strategies for gliomas focused on interference with integrin ligand-receptor signaling.
Collapse
|
67
|
Kang C, Kim D. Nanoconfinement-mediated cancer theranostics. Arch Pharm Res 2020; 43:110-117. [PMID: 31989481 DOI: 10.1007/s12272-020-01217-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Despite various therapeutic or diagnostic developments, cancer is still one of the most lethal diseases due to insufficiently adequate treatments and the delay of the early stage of disease detection. An image-guided drug delivery system (IGDDS), as a real-time noninvasive imaging assessment of therapeutic response, has the strong potential to improve the diagnosis and treatment of cancer because its imaging property offers the quantification of nanomedicine at the intended disease sites, the possible assurance of adequate treatment and elimination of undesirable delay of early-stage diagnosis due to low resolution. One of potential modality that overcomes these challenges could be the nanoconfinement of gold (Au) nanoparticles within other nanoparticles called "Particle-in-Particle (PIP)", which is a strong candidate of cancer treatment because of its "theranostic (therapy + diagnostics)" advantages including imaging (e.g., CT) and therapeutic hyperthermia application. In this review, we will elaborate on the current application of theranostic by nanoconfinement. Then, we will narrow down the gold nanoparticle-mediated theranostic application and its nanoconfinement advantages. Finally, the future direction for maximum nanoconfinement mediated cancer therapy will be included.
Collapse
Affiliation(s)
- Changsun Kang
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, College Station, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, College Station, USA.
| |
Collapse
|
68
|
Silva F, Paulo A, Pallier A, Même S, Tóth É, Gano L, Marques F, Geraldes CF, Castro MMC, Cardoso AM, Jurado AS, López-Larrubia P, Lacerda S, Cabral Campello MP. Dual Imaging Gold Nanoplatforms for Targeted Radiotheranostics. MATERIALS 2020; 13:ma13030513. [PMID: 31978954 PMCID: PMC7040626 DOI: 10.3390/ma13030513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with affinity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1- and T2- MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1- and T2- MRI / SPECT imaging probes.
Collapse
Affiliation(s)
- Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Carlos F.G.C. Geraldes
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- Coimbra Chemistry Center, University of Coimbra, 3004-535 Coimbra, Portugal
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde. Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - M. Margarida C.A. Castro
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- Coimbra Chemistry Center, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana M. Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
- Institute for Interdisciplinary Research of the University of Coimbra, 3030-789 Coimbra, Portugal
| | - Amália S. Jurado
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, c/ Arturo Duperier 4, 28029 Madrid, Spain;
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
- Correspondence: (M.P.C.C.); (S.L.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- Correspondence: (M.P.C.C.); (S.L.)
| |
Collapse
|
69
|
Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2019; 317:195-215. [PMID: 31794799 DOI: 10.1016/j.jconrel.2019.11.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022]
Abstract
In recent years, nanomedicines have emerged as a promising method for central nervous system drug delivery, enabling the drugs to overcome the blood-brain barrier and accumulate preferentially in the brain. Despite the current success of brain-targeted nanomedicines, limitations still exist in terms of the targeting specificity. Based on the molecular mechanism, the exact cell populations and subcellular organelles where the injury occurs and the drugs take effect have been increasingly accepted as a more specific target for the next generation of nanomedicines. Dual and multi-targeted nanoparticles integrate different targeting functionalities and have provided a paradigm for precisely delivering the drug to the pathological site inside the brain. The targeting process often involves the sequential or synchronized navigation of the targeting moieties, which allows highly controlled drug delivery compared to conventional targeting strategies. Herein, we focus on the up-to-date design of pathological site-specific nanoparticles for brain drug delivery, highlighting the dual and multi-targeting strategies that were employed and their impact on improving targeting specificity and therapeutic effects. Furthermore, the background discussion of the basic properties of a brain-targeted nanoparticle and the common lesion features classified by neurological pathology are systematically summarized.
Collapse
Affiliation(s)
- Yan Luo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hang Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
70
|
d'Angelo M, Castelli V, Benedetti E, Antonosante A, Catanesi M, Dominguez-Benot R, Pitari G, Ippoliti R, Cimini A. Theranostic Nanomedicine for Malignant Gliomas. Front Bioeng Biotechnol 2019; 7:325. [PMID: 31799246 PMCID: PMC6868071 DOI: 10.3389/fbioe.2019.00325] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Reyes Dominguez-Benot
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
71
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
72
|
Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater 2019; 93:239-257. [PMID: 30862551 DOI: 10.1016/j.actbio.2019.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a prevalent and debilitating disease that involves pathological contributions from numerous joint tissues and cells. The joint is a challenging arena for drug delivery, since the joint has poor bioavailability for systemically administered drugs and experiences rapid clearance of therapeutics after intra-articular injection. Moreover, each tissue within the joint presents unique barriers to drug localization. In this review, the various applications of nanotechnology to overcome these drug delivery limitations are investigated. Nanomaterials have reliably shown improvements to retention profiles of drugs within the joint space relative to injected free drugs. Additionally, nanomaterials have been modified through active and passive targeting strategies to facilitate interactions with and localization within specific joint tissues such as cartilage and synovium. Last, the limitations of drawing cross-study comparisons, the implications of synovial fluid, and the potential importance of multi-modal therapeutic strategies are discussed. As emerging, cell-specific disease modifying osteoarthritis drugs continue to be developed, the need for targeted nanomaterial delivery will likely become critical for effective clinical translation of therapeutics for osteoarthritis. STATEMENT OF SIGNIFICANCE: Improving drug delivery to the joint is a pressing clinical need. Over 27 million Americans live with osteoarthritis, and this figure is continuously expanding. Numerous drugs have been investigated but have failed in clinical trials, likely related to poor bioavailability to target cells. This article comprehensively reviews the advances in nano-scale delivery vehicles designed to overcome the delivery barriers in the joint. This is the first review to analyze active and passive targeting strategies systematically for different target sites while also delineating between tissue homing and whole joint retention. By bringing together the lessons learned across numerous nano-scale platforms, researchers may be able to hone future nanomaterial designs, allowing emerging therapeutics to perform with clinically relevant efficacy and disease modifying potential.
Collapse
|
73
|
Sung SY, Su YL, Cheng W, Hu PF, Chiang CS, Chen WT, Hu SH. Graphene Quantum Dots-Mediated Theranostic Penetrative Delivery of Drug and Photolytics in Deep Tumors by Targeted Biomimetic Nanosponges. NANO LETTERS 2019; 19:69-81. [PMID: 30521346 DOI: 10.1021/acs.nanolett.8b03249] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dual-targeted delivery of drugs and energy by nanohybrids can potentially alleviate side effects and improve the unique features required for precision medicine. To realize this aim, however, the hybrids which are often rapidly removed from circulation and the piled up tumors periphery near the blood vessels must address the difficulties in low blood half-lives and tumor penetration. In this study, a sponge-inspired carbon composites-supported red blood cell (RBC) membrane that doubles as a stealth agent and photolytic carrier that transports tumor-penetrative agents (graphene quantum dots and docetaxel (GQD-D)) and heat with irradiation was developed. The RBC-membrane enveloped nanosponge (RBC@NS) integrated to a targeted protein that accumulates in tumor spheroids via high lateral bilayer fluidity exhibits an 8-fold increase in accumulation compared to the NS. Penetrative delivery of GQDs to tumor sites is actuated by near-infrared irradiation through a one-atom-thick structure, facilitating penetration and drug delivery deep into the tumor tissue. The synergy of chemotherapy and photolytic effects was delivered by the theranostic GQDs deep into tumors, which effectively damaged and inhibited the tumor in 21 days when treated with a single irradiation. This targeted RBC@GQD-D/NS with the capabilities of enhanced tumor targeting, NIR-induced drug penetration into tumors, and thermal ablation for photolytic therapy promotes tumor suppression and exhibits potential for other biomedical applications.
Collapse
|
74
|
Gold Nanorods as Theranostic Nanoparticles for Cancer Therapy. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|