51
|
Lühr JJ, Alex N, Amon L, Kräter M, Kubánková M, Sezgin E, Lehmann CHK, Heger L, Heidkamp GF, Smith AS, Zaburdaev V, Böckmann RA, Levental I, Dustin ML, Eggeling C, Guck J, Dudziak D. Maturation of Monocyte-Derived DCs Leads to Increased Cellular Stiffness, Higher Membrane Fluidity, and Changed Lipid Composition. Front Immunol 2020; 11:590121. [PMID: 33329576 PMCID: PMC7728921 DOI: 10.3389/fimmu.2020.590121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells of the immune system. Upon sensing pathogenic material in their environment, DCs start to mature, which includes cellular processes, such as antigen uptake, processing and presentation, as well as upregulation of costimulatory molecules and cytokine secretion. During maturation, DCs detach from peripheral tissues, migrate to the nearest lymph node, and find their way into the correct position in the net of the lymph node microenvironment to meet and interact with the respective T cells. We hypothesize that the maturation of DCs is well prepared and optimized leading to processes that alter various cellular characteristics from mechanics and metabolism to membrane properties. Here, we investigated the mechanical properties of monocyte-derived dendritic cells (moDCs) using real-time deformability cytometry to measure cytoskeletal changes and found that mature moDCs were stiffer compared to immature moDCs. These cellular changes likely play an important role in the processes of cell migration and T cell activation. As lipids constitute the building blocks of the plasma membrane, which, during maturation, need to adapt to the environment for migration and DC-T cell interaction, we performed an unbiased high-throughput lipidomics screening to identify the lipidome of moDCs. These analyses revealed that the overall lipid composition was significantly changed during moDC maturation, even implying an increase of storage lipids and differences of the relative abundance of membrane lipids upon maturation. Further, metadata analyses demonstrated that lipid changes were associated with the serum low-density lipoprotein (LDL) and cholesterol levels in the blood of the donors. Finally, using lipid packing imaging we found that the membrane of mature moDCs revealed a higher fluidity compared to immature moDCs. This comprehensive and quantitative characterization of maturation associated changes in moDCs sets the stage for improving their use in clinical application.
Collapse
Affiliation(s)
- Jennifer J. Lühr
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Nano-Optics, Max-Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Nils Alex
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Martin Kräter
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Markéta Kubánková
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Raddcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Christian H. K. Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Gordon F. Heidkamp
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Roche Innovation Center Munich, Roche Pharmaceutical Research and Early Development, pRED, Munich, Germany
| | - Ana-Sunčana Smith
- PULS Group, Department of Physics, IZNF, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vasily Zaburdaev
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Mathematics in Life Sciences, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ilya Levental
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, United States
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Raddcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Institute for Applied Optics and Biophysics, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Jena, Germany
| | - Jochen Guck
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Biological Optomechanics, Max-Planck Institute for the Science of Light, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Medical Immunology Campus Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
52
|
Eisendle K, Weinlich G, Ebner S, Forstner M, Reider D, Zelle‐Rieser C, Tripp CH, Fritsch P, Stoitzner P, Romani N, Nguyen VA. Combining chemotherapy and autologous peptide-pulsed dendritic cells provides survival benefit in stage IV melanoma patients. J Dtsch Dermatol Ges 2020; 18:1270-1277. [PMID: 33197129 PMCID: PMC7756560 DOI: 10.1111/ddg.14334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES We examined retrospectively whether the combination of standard dacarbazine (DTIC) and/or fotemustine chemotherapy and autologous peptide-loaded dendritic cell (DC) vaccination may improve survival of stage IV melanoma patients. Furthermore, a small cohort of long-term survivors was studied in more detail. PATIENTS AND METHODS Between 1998 and 2008, 41 patients were vaccinated at least three times with DCs while receiving chemotherapy and compared to all other 168 patients in our database who only received chemotherapy (1993-2008). RESULTS Median life expectancy of patients receiving additional DC-vaccination was 18 months, compared to eleven months for patients under standard chemotherapy alone. In contrast to patients with other haplotypes, the HLA-A1/A1 subset of DC-treated patients showed significantly lower median survival (12 vs. 25 months). Autoantibodies were frequently detected in serum of both vaccinated and non-vaccinated patients, and there was no correlation between titers, loss or appearance of autoantibodies and survival. Additionally, phenotyping of DCs and PBMCs also did not reveal any conspicuous correlation with survival. CONCLUSIONS Combining standard chemotherapy and DC vaccination appears superior to chemotherapy alone. The impact of HLA haplotypes on survival emphasizes the importance of a careful selection of patients with specific, well-defined HLA haplotypes for future vaccination trials using peptide-pulsed DCs, possibly combined with checkpoint inhibitors.
Collapse
Affiliation(s)
- Klaus Eisendle
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
- Department of Dermatology and VenerologyCentral Hospital of BolzanoItaly
| | - Georg Weinlich
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Susanne Ebner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
- Department of VisceralTransplant and Thoracic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Markus Forstner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Daniela Reider
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Claudia Zelle‐Rieser
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Christoph H. Tripp
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Peter Fritsch
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Patrizia Stoitzner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Nikolaus Romani
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Van Anh Nguyen
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
53
|
Eisendle K, Weinlich G, Ebner S, Forstner M, Reider D, Zelle‐Rieser C, Tripp CH, Fritsch P, Stoitzner P, Romani N, Nguyen VA. Kombination von Chemotherapie und autologen, Peptid‐beladenen dendritischen Zellen bringt Überlebensvorteil bei Melanompatienten im Stadium IV. J Dtsch Dermatol Ges 2020; 18:1270-1279. [DOI: 10.1111/ddg.14334_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Klaus Eisendle
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
- Abteilung Dermatologie Venerologie und Allergologie Zentrales Lehrkrankenhaus Bolzano/Bozen Südtiroler Sanitätsbetriebe Bolzano/Bozen Italia
| | - Georg Weinlich
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Susanne Ebner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
- Universitätsklinik Klinik für Visceral‐ Transplantations‐ und Thoraxchirurgie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Markus Forstner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Daniela Reider
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Claudia Zelle‐Rieser
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Christoph H. Tripp
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Peter Fritsch
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Patrizia Stoitzner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Nikolaus Romani
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Van Anh Nguyen
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| |
Collapse
|
54
|
Hager S, Fittler FJ, Wagner E, Bros M. Nucleic Acid-Based Approaches for Tumor Therapy. Cells 2020; 9:E2061. [PMID: 32917034 PMCID: PMC7564019 DOI: 10.3390/cells9092061] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Within the last decade, the introduction of checkpoint inhibitors proposed to boost the patients' anti-tumor immune response has proven the efficacy of immunotherapeutic approaches for tumor therapy. Furthermore, especially in the context of the development of biocompatible, cell type targeting nano-carriers, nucleic acid-based drugs aimed to initiate and to enhance anti-tumor responses have come of age. This review intends to provide a comprehensive overview of the current state of the therapeutic use of nucleic acids for cancer treatment on various levels, comprising (i) mRNA and DNA-based vaccines to be expressed by antigen presenting cells evoking sustained anti-tumor T cell responses, (ii) molecular adjuvants, (iii) strategies to inhibit/reprogram tumor-induced regulatory immune cells e.g., by RNA interference (RNAi), (iv) genetically tailored T cells and natural killer cells to directly recognize tumor antigens, and (v) killing of tumor cells, and reprograming of constituents of the tumor microenvironment by gene transfer and RNAi. Aside from further improvements of individual nucleic acid-based drugs, the major perspective for successful cancer therapy will be combination treatments employing conventional regimens as well as immunotherapeutics like checkpoint inhibitors and nucleic acid-based drugs, each acting on several levels to adequately counter-act tumor immune evasion.
Collapse
Affiliation(s)
- Simone Hager
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | | | - Ernst Wagner
- Department of Chemistry and Pharmacy, Ludwig-Maximilians-University (LMU), 81377 Munich, Germany;
| | - Matthias Bros
- Department of Dermatology, University Medical Center, 55131 Mainz, Germany;
| |
Collapse
|
55
|
Al-Kassmy J, Pedersen J, Kobinger G. Vaccine Candidates against Coronavirus Infections. Where Does COVID-19 Stand? Viruses 2020; 12:E861. [PMID: 32784685 PMCID: PMC7472384 DOI: 10.3390/v12080861] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
Seven years after the Middle East respiratory syndrome (MERS) outbreak, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) made its first appearance in a food market in Wuhan, China, drawing an entirely new course to our lives. As the virus belongs to the same genus of MERS and SARS, researchers have been trying to draw lessons from previous outbreaks to find a potential cure. Although there were five Phase I human vaccine trials against SARS and MERS, the lack of data in humans provided us with limited benchmarks that could help us design a new vaccine for Coronavirus disease 2019 (COVID-19). In this review, we showcase the similarities in structures of virus components between SARS-CoV, MERS-CoV, and SARS-CoV-2 in areas relevant to vaccine design. Using the ClinicalTrials.gov and World Health Organization (WHO) databases, we shed light on the 16 current approved clinical trials worldwide in search for a COVID-19 vaccine. The different vaccine platforms being tested are Bacillus Calmette-Guérin (BCG) vaccines, DNA and RNA-based vaccines, inactivated vaccines, protein subunits, and viral vectors. By thoroughly analyzing different trials and platforms, we also discuss the advantages and disadvantages of using each type of vaccine and how they can contribute to the design of an adequate vaccine for COVID-19. Studying past efforts invested in conducting vaccine trials for MERS and SARS will provide vital insights regarding the best approach to designing an effective vaccine against COVID-19.
Collapse
Affiliation(s)
- Jawad Al-Kassmy
- Department of Experimental Surgery, McGill University, Montreal General Hospital 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | - Jannie Pedersen
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada; (J.P.); (G.K.)
| | - Gary Kobinger
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC G1V 4G2, Canada; (J.P.); (G.K.)
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4238, USA
| |
Collapse
|
56
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|