51
|
Sahu RK, Aboulthana WM, Mehta DK. Phyto-Phospholipid Complexation as a Novel Drug Delivery System for Management of Cancer with Better Bioavailability: Current Perspectives and Future Prospects. Anticancer Agents Med Chem 2021; 21:1403-1412. [PMID: 33176666 DOI: 10.2174/1871520620999201110191741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Cancer is the foremost cause of death, and it supports the need for the identification of novel anticancer drugs to improve the efficacy of current-therapy. While the synthetic anticancer drug is associated with numerous side effects. Hence the plant active or phytoconstituents are in high demand for the treatment of cancer due to minimum side effects. But the polar nature of phytoconstituents hindered the absorption of the drug and lowered the therapeutic efficacy. The plant activity incorporated into Phyto-phospholipid Complexation can enhance bioavailability and improved therapeutic efficacy. In this review article, advantages, limitation and application of Phyto-phospholipid complexes have been illustrated. The article highlights the application of Phyto-phospholipid complexes as a promising drug carrier system to treat cancer.
Collapse
Affiliation(s)
- Ram K Sahu
- Department of Pharmaceutical Science, Assam University (A Central University), Silchar, Assam, 788011, India
| | - Wael M Aboulthana
- Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, 33 Bohouth St., P.O. 12622, Dokki, Giza, Egypt
| | - Dinesh K Mehta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana-Ambala (HR), 133207, India
| |
Collapse
|
52
|
More MP, Pardeshi SR, Pardeshi CV, Sonawane GA, Shinde MN, Deshmukh PK, Naik JB, Kulkarni AD. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
53
|
Gaafar PME, El-Salamouni NS, Farid RM, Hazzah HA, Helmy MW, Abdallah OY. Pegylated liquisomes: A novel combined passive targeting nanoplatform of L-carnosine for breast cancer. Int J Pharm 2021; 602:120666. [PMID: 33933646 DOI: 10.1016/j.ijpharm.2021.120666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
PEGylated Liquisomes (P-Liquisomes), a novel drug delivery system was designed for the first time by incorporating phospholipid complex in PEGylated liquid crystalline nanoparticles (P-LCNPs). L-carnosine (CN), a challenging dipeptide, has proven to be a promising anti-cancer drug. However, it exhibits high water solubility and extensive in-vivo degradation that halts its use. The objective of this work was to investigate the ability of our novel system to improve the CN anticancer activity by prolonging it's release and protecting it in-vivo. In-vitro appraisal revealed spherical light-colored vesicles encapsulated in the liquid crystals, confirming the successful formation of the combined system. P-Liquisomes were nano-sized (149.3 ± 1.4 nm), with high ZP (-40.2 ± 1.5 mV), complexation efficiency (97.5 ± 0.9%) and outstanding sustained release of only 75.4% released after 24 h, compared to P-LCNPs and Phytosomes. The results obtained with P-Liquisomes are considered as a break through compared to P-LCNPs or Phytosomes alone, especially when dealing with the hydrophilic CN. In-vitro cytotoxicity evaluation, revealed superior cytotoxic effect of P-Liquisomes (IC50 = 25.9) after 24 h incubation. Besides, P-Liquisomes proved to be non-toxic in-vivo and succeeded to show superior chemopreventive activity manifested by reduction of; % tumor growth (7.1%), VEGF levels (14.3 pg/g tissue), cyclin D1 levels 15.5 ng/g tissue and elevation in caspase-3 level (36.4 ng/g tissue), compared to Phytosomes and CN solution. Conclusively, P-Liquisomes succeded to achieve the maximum therapeutic outcome of CN without altering its activity and might be used as a sustained delivery system for other promising hydrophilic compounds.
Collapse
Affiliation(s)
- Passent M E Gaafar
- Department of Pharmaceutics, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt.
| | - Noha S El-Salamouni
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ragwa M Farid
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Heba A Hazzah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maged W Helmy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
54
|
Alhakamy NA, Ahmed OAA, Fahmy UA, Md S. Development and In Vitro Evaluation of 2-Methoxyestradiol Loaded Polymeric Micelles for Enhancing Anticancer Activities in Prostate Cancer. Polymers (Basel) 2021; 13:884. [PMID: 33805675 PMCID: PMC7998642 DOI: 10.3390/polym13060884] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to formulate and optimize 2ME-loaded PMs (2ME-PMs) for enhancing the anticancer activity of 2ME in prostate cancer (PC). The 2ME-PMs were formulated using PEG-PLGA (PL), Tween 80 (TW80), and alpha-lipoic acid (ALA). The optimization was carried out using a Box-Behnken design with the PL, TW80, and ALA as the independent variables and particle size (PS) as the response. The formulation was optimized for the lowest possible PS, and the software suggested optimum formula with 100.282 mg, 2%, and 40 mg for PL, TW80, and ALA, respectively. The optimized PMs had spherical morphology with PS of 65.36 ± 2.2 nm, polydispersity index (PDI) of 0.273 ± 0.03, and entrapment efficiency of 65.23 ± 3.5%. The in vitro drug release was 76.3 ± 3.2% after 24 h. The cell line studies using PC-3 cells showed IC50 values of 18.75 and 54.41 µmol for 2ME-PM and 2ME, respectively. The estimation of tumor biomarkers was also carried out. The tumor biomarkers caspase-9 (17.38 ± 1.42 ng/mL), tumor protein P53 (p53) (1050.0 ± 40.9 pg/mL), nitric oxide (NO) (0.693 ± 0.03 pg/mL), interleukin-1β (IL-1β) (25.84 ± 2.23 pg/mL), nuclear factor kappa B (NF-kB) (0.719 ± 0.07 pg/mL), interleukin-6 (IL-6) (2.53 ± 0.16 folds), and cyclooxygenase-2 (COX-2) (3.04 ± 0.5 folds) were determined for 2ME-PMs and the results showed that these values changed significantly compared to those of 2ME. Overall, the results showed that the formulation of 2ME to 2ME-PMs enhances the anticancer effect. The exploration of the combined advantages of PEG, PLGA, ALA, and PMs in cancer therapy and the delivery of 2ME is the major importance of this research work. PEG reduces the elimination of 2ME, PLGA enhances 2ME loading, ALA has an inherent apoptotic effect, and PMs can efficiently target tumor cells.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
55
|
Alhakamy NA, Ahmed OAA, Ibrahim TS, Aldawsari HM, Eljaaly K, Fahmy UA, Alaofi AL, Caraci F, Caruso G. Evaluation of the Antiviral Activity of Sitagliptin-Glatiramer Acetate Nano-Conjugates against SARS-CoV-2 Virus. Pharmaceuticals (Basel) 2021; 14:178. [PMID: 33668390 PMCID: PMC7996174 DOI: 10.3390/ph14030178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
The outbreak of the COVID-19 pandemic in China has become an urgent health and economic challenge. There is a current race for developing strategies to treat and/or prevent COVID-19 worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of coronavirus that causes COVID-19. The aim of the present work was to evaluate the efficacy of the combined complex (nano-conjugates) of two FDA-approved drugs, sitagliptin (SIT) and glatiramer acetate (GA), against a human isolate of the SARS-CoV-2 virus. SIT-GA nano-conjugates were prepared according to a full three-factor bilevel (23) factorial design. The SIT concentration (mM, X1), GA concentration (mM, X2), and pH (X3) were selected as the factors. The particle size (nm, Y1) and zeta potential (mV, Y2) were assessed as responses. Characterization of the optimized formula for the Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) was carried out. In addition, the half-maximal inhibitory concentration (IC50) in Vero-E6 epithelial cells previously infected with the virus was investigated. The results revealed that the optimized formula of the prepared complex was a 1:1 SIT:GA molar ratio at a pH of 10, which met the required criteria with a desirability value of 0.878 and had a particle size and zeta potential at values of 77.42 nm and 27.67 V, respectively. The SIT-GA nano-complex showed antiviral potential against an isolate of SARS-CoV-2 with IC50 values of 16.14, 14.09, and 8.52 µM for SIT, GA, and SIT-GA nano-conjugates, respectively. Molecular docking has shown that the formula's components have a high binding affinity to the COVID 3CL protease, essential for coronavirus replication, paralleled by 3CL protease inhibition (IC50 = 2.87 µM). An optimized formulation of SIT-GA could guarantee both enhanced deliveries to target cells and improved cellular uptake. Further clinical studies are being carried out to validate the clinical efficacy of the optimized formulation against SARS-CoV-2.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Organic chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
56
|
Badr-Eldin SM, Alhakamy NA, Fahmy UA, Ahmed OAA, Asfour HZ, Althagafi AA, Aldawsari HM, Rizg WY, Mahdi WA, Alghaith AF, Alshehri S, Caraci F, Caruso G. Cytotoxic and Pro-Apoptotic Effects of a Sub-Toxic Concentration of Fluvastatin on OVCAR3 Ovarian Cancer Cells After its Optimized Formulation to Melittin Nano-Conjugates. Front Pharmacol 2021; 11:642171. [PMID: 33633571 PMCID: PMC7901935 DOI: 10.3389/fphar.2020.642171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fluvastatin (FLV) is a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor often used to lower total and low-density lipoprotein (LDL) cholesterol and for the prevention of adverse cardiovascular events. This drug as well as melittin (MEL), the major component of honeybee venom (Apis mellifera), has shown antineoplastic activity, then representing promising approaches for cancer therapy. However, adverse effects related to the use of FLV and MEL have been reported and very few studies have been carried out to obtain an optimized formulation allowing for combining the two drugs and then maximizing the anticancer activity, then minimizing the needed dosage. In the present study, an optimized formulation in terms of minimized particle size and maximized zeta potential was investigated for its cytotoxic potential in human OVCAR3 ovarian cancer cells. FLV-MEL nano-conjugates, containing a sub-toxic concentration of drug, demonstrated an improved cytotoxic potential (IC50 = 2.5 µM), about 18-fold lower, compared to the free drug (IC50 = 45.7 µM). Cell cycle analysis studies demonstrated the significant inhibition of the OVCAR3 cells proliferation exerted by FLV-MEL nano-conjugates compared to all the other treatments, with a higher percentage of cells accumulating on G2/M and pre-G1 phases, paralleled by lower percentage of cells in G0/G1 and S phases. The synergistic antineoplastic activity of FLV and MEL combined in the optimized formula was also showed by the marked pronecrotic and pro-apoptotic activities, the latter mediated by the modulation of BAX/BCL-2 ratio in favor of BAX. Our optimized FLV-MEL formulation might therefore represents a novel path for the development of specific and more effective antineoplastic drugs directed against ovarian cancer.
Collapse
Affiliation(s)
- Shaimaa M Badr-Eldin
- Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Nabil A Alhakamy
- Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia.,Advanced Drug Delivery Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia.,Advanced Drug Delivery Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Hibah M Aldawsari
- Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, King Abdulaziz University, Jeddah, Saudi Arabia.,Advanced Drug Delivery Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh, Saudi Arabia
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy.,Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| |
Collapse
|
57
|
Singh AK, Singh A. Preparation, Characterization and In Vitro Antioxidant Potential of Boldine-phospholipid Complex. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999201021165556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Boldine, is an aporphine alkaloid that possesses potent antioxidant activity.
Despite having enormous potential, the clinical application of boldine was restricted because of its
poor bioavailability attributed to its poor aqueous solubility and rapid clearance from the body. The
drug phospholipid complexation techniques were frequently employed to overcome the limitation of
low bioavailability of phytoconstituents/herbal extract.
Objective:
The boldine phospholipid complex (BOL-PC) formulation was developed for enhancing
antioxidant potential of boldine by preparing its phospholipid complex.
Methods:
Boldine loaded phospholipid (BOL-PC) complex was prepared by refluxing followed by
solvent evaporation method and subjected to various physicochemical and spectral analysis. Further,
the in-vitro antioxidant activity was evaluated by DPPH free radical scavenging method.
Results:
The formation of the complex was confirmed by 1H NMR and thermal analysis. SEM and PXRD revealed partial
amorphization of drug in complex formed. The BOL-PC dissolution rate and solubility was significantly improved
compared to the parent compound. The maximum % yield and % EE was found to be 95.92± 0.01732 and 95.89±0.3502
respectively in the optimized formulation (F3) which exhibited concentration-dependent antioxidant property.
Conclusion:
It was concluded from the study that the phospholipid complexation of boldine has better
antioxidant potential and improved the solubility, dissolution profile which may facilitate its oral absorption
and enhances its chances for clinical application.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Research Scholar, Department of Pharmaceutical Sciences Bhimtal Campus, Kumaun University, Nainital Uttarakhand,India
| | - Anita Singh
- Department of Pharmaceutical Sciences Bhimtal Campus, Kumaun University, Nainital Uttarakhand,India
| |
Collapse
|
58
|
Kumbhar SA, Kokare CR, Shrivastava B, Gorain B, Choudhury H. Antipsychotic Potential and Safety Profile of TPGS-Based Mucoadhesive Aripiprazole Nanoemulsion: Development and Optimization for Nose-To-Brain Delivery. J Pharm Sci 2021; 110:1761-1778. [PMID: 33515583 DOI: 10.1016/j.xphs.2021.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Delivering therapeutics to the brain using conventional dosage forms is always a challenge, thus the present study was aimed to formulate mucoadhesive nanoemulsion (MNE) of aripiprazole (ARP) for intranasal delivery to transport the drug directly to the brain. Therefore, a TPGS based ARP-MNE was formulated and optimized using the Box-Behnken statistical design. The improved in vitro release profile of the formulation was in agreement to enhanced ex vivo permeation through sheep mucous membranes with a maximum rate of permeation co-efficient (62.87 cm h-1 × 103) and flux (31.43 μg cm-2.h-1). The pharmacokinetic profile following single-dose administration showed the maximum concentration of drug in the brain (Cmax) of 15.19 ± 2.51 μg mL-1 and Tmax of 1 h in animals with ARP-MNE as compared to 10.57 ± 1.88 μg mL-1 and 1 h, and 2.52 ± 0.38 μg mL-1 and 3 h upon intranasal and intravenous administration of ARP-NE, respectively. Further, higher values of % drug targeting efficiency (96.9%) and % drug targeting potential (89.73%) of ARP-MNE through intranasal administration were investigated. The studies in Wistar rats showed no existence of extrapyramidal symptoms through the catalepsy test and forelimb retraction results. No ex vivo ciliotoxicity on nasal mucosa reflects the safety of the components and delivery tool. Further, findings on locomotor activity and hind-limb retraction test in ARP-MNE treated animals established its antipsychotic efficacy. Thus, it can be inferred that the developed ARP-MNE could effectively be explored as brain delivery cargo in the effective treatment of schizophrenia without producing any toxic manifestation.
Collapse
Affiliation(s)
- Santosh Ashok Kumbhar
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur 302 017, Rajasthan, India; Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, Maharashtra, India
| | - Chandrakant R Kokare
- Department of Pharmaceutics, STES's Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411 041, Maharashtra, India
| | - Birendra Shrivastava
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur 302 017, Rajasthan, India.
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, Selangor, Malaysia; Centre for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Bukit jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
59
|
Fahmy UA, Fahmy O, Alhakamy NA. Optimized Icariin Cubosomes Exhibit Augmented Cytotoxicity against SKOV-3 Ovarian Cancer Cells. Pharmaceutics 2020; 13:E20. [PMID: 33374293 PMCID: PMC7823966 DOI: 10.3390/pharmaceutics13010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical application of icariin (ICA) is limited, despite its activity against cancer growth, because of the low solubility of ICA in an aqueous environment. Therefore, the present study attempted to develop and optimize ICA-loaded cubosome delivery and to explore its efficacy and possible mechanism of action against ovarian cancer. The optimization of the cubosome formulation was performed using the Box‒Behnken statistical design; during the characterization, the particle sizes were in the range of 73 to 183 nm and the entrapment efficiency was 78.3% to 97.3%. Optimized ICA-loaded cubosomes (ICA-Cubs) exhibited enhanced cytotoxicity and apoptotic potential, compared with ICA-raw, against ovarian cancer cell lines (SKOV-3 and Caov 3). The optimized ICA-Cubs showed a relatively non-cytotoxic effect on normal EA.hy926 endothelial cells. Further analysis of cell cycle arrest suggested a potential role in the pre-G1 and G2/M phases for ICA-Cubs in comparison with ICA-raw. ICA-Cubs increased the generation of reactive oxygen species (ROS) and the overexpression of p53 and caspase-3 in the SKOV-3 cell line. In conclusion, the cubosomal delivery of ICA might provide a prospective approach towards the superior control of ovarian cancer cell growth. Its improved efficacy compared with that of the free drug might be due to the improved solubility and cellular permeability of ICA.
Collapse
Affiliation(s)
- Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar Fahmy
- Department of Urology, University Putra Malaysia (UPM), Selangor 43400, Malaysia;
- Department of Urology, University Hospital of Tübingen, Eberhard-Karls University, 72076 Tübingen, Germany
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
60
|
Aljehani AA, Albadr NA, Eid BG, Abdel-Naim AB. Icariin enhances AMP-activated protein kinase and prevents high fructose and high salt-induced metabolic syndrome in rats. Saudi Pharm J 2020; 28:1309-1316. [PMID: 33250640 PMCID: PMC7679472 DOI: 10.1016/j.jsps.2020.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/27/2020] [Indexed: 01/05/2023] Open
Abstract
Metabolic syndrome (MetS) is an increasing health threat and often leads to cardiovascular complications. The aim of this study was to evaluate icariin’s ability to combat MetS induced in rats and outline the involved mechanisms of action. Rats were grouped in four batches. The controls received a regular diet and water. MetS was induced in the remaining three groups using a high-salt high-fructose diet. Groups 1 and 2 were given daily doses of saline, while Groups 3 and 4 received 25 and 50 mg/kg icariin, respectively, for 12 weeks in total. The experimental protocol was carried out for 12 weeks consecutively. Icariin significantly decreased body mass index (BMI), adiposity index and body weight. Further, icariin protected against dyslipidemia, hyperglycemia, and hyperinsulinemia and improved insulin resistance as given by the homeostatic model assessment of insulin resistance (HOMA-IR) values. Icariin guarded against the rise in serum interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). In addition, it significantly inhibited the decrease in mRNA expression of glucose transporter type 4 (GLUT4) and liver kinase B1 (LKB1). These effects were accompanied by decreased liver content of nuclear factor kappa B (NFκB) and enhanced serum levels of phosphorylated 5ʹ-adenosine monophosphate-activated protein kinase (p-AMPK). Further, icariin significantly increased p-AMPK/AMPK ratio in liver tissues. Conclusively, icariin offers protection in experimentally induced MetS, partially due to AMPK activation.
Collapse
Affiliation(s)
- Abeer A Aljehani
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawal A Albadr
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
61
|
Ebada HMK, Nasra MMA, Elnaggar YSR, Abdallah OY. Novel rhein-phospholipid complex targeting skin diseases: development, in vitro, ex vivo, and in vivo studies. Drug Deliv Transl Res 2020; 11:1107-1118. [PMID: 32815084 DOI: 10.1007/s13346-020-00833-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhein (RH), an anthraquinone derivative, has proven to be a promising molecule for treating several skin disorders thanks to its pleiotropic pharmacological activities like antimicrobial, antifungal, antioxidant, and anticancer. However, RH's low water and oil solubility and poor skin permeability halted its topical delivery. This is the first work to investigate the expediency of tailoring a rhein-phospholipid complex (RH-PLC) to improve RH challenging physicochemical and skin permeability properties. The phospholipid complex was prepared by employing different methods and different RH/PL molar ratios. RH-PLC was successfully developed at a stoichiometric ratio of 1:1 using a novel pH-dependent method where at a certain pH, it exhibits the highest complexation efficiency (95%). RH-PLC formation was confirmed using FTIR, DSC, and XRPD analysis. RH-PLC showed a significant increase in water and n-octanol solubility. RH-PLC was self-assembled upon dispersion into water forming nano-sized particles (196.6 ± 1.6 nm) with high negatively charged surface (- 29.7 ± 2.45 mV). RH-PLC exhibited a significant 3.3- and 2.46-fold increase in ex vivo and in vivo skin permeability when compared with RH suspension, respectively. Confocal microscopy study confirmed the ability of RH-PLC to penetrate deeply into rat skin. Besides, skin irritation test on healthy rats indicated compatibility and safety of RH-PLC. Conclusively, phospholipid complex might be a suitable approach to improve permeability of RH and other promising abandoned poor-permeable drugs. The proposed RH-PLC is expected to be a major progressive step toward the development of a topical RH formulation. Graphical abstract.
Collapse
Affiliation(s)
- Heba M K Ebada
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Maha M A Nasra
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Messalla Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
62
|
Alhakamy NA, Badr-Eldin SM, Fahmy UA, Alruwaili NK, Awan ZA, Caruso G, Alfaleh MA, Alaofi AL, Arif FO, Ahmed OAA, Alghaith AF. Thymoquinone-Loaded Soy-Phospholipid-Based Phytosomes Exhibit Anticancer Potential against Human Lung Cancer Cells. Pharmaceutics 2020; 12:E761. [PMID: 32806507 PMCID: PMC7463966 DOI: 10.3390/pharmaceutics12080761] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Thymoquinone (TQ), a natural polyphenol, has been associated with various pharmacological responses; however, low bioavailability of TQ limits its clinical application. Thus, a novel phytosomal delivery system of TQ-Phospholipon® 90H complex (TQ-phytosome) was developed by refluxing combined with anti-solvent precipitation. This TQ delivery system was optimized by a three-factor, three-level Box-Behnken design. The optimized TQ-phytosome size was (45.59 ± 1.82 nm) and the vesicle size was confirmed by transmission electron microscopy. The in vitro release pattern of the formulation indicated a biphasic release pattern, where an initial burst release was observed within 2 h, followed by a prolonged release. A remarkable increase in dose-dependent cytotoxicity was evident from the significant decrease in IC50 value of TQ-phytosomes (4.31 ± 2.21 µM) against the A549 cell line. The differential effect of TQ-phytosomes in cell cycle analysis was observed, where cancer cells were accumulated on G2-M and pre-G1 phases. Furthermore, increased apoptotic induction and cell necrosis of TQ-phytosomes were revealed with the annexin V staining technique via activation of caspase-3. In reactive oxygen species (ROS) analysis, TQ-phytosomes acted to significantly increase ROS generation in A549 cells. In conclusion, the sustained release profile with significantly-improved anticancer potential could be obtained with TQ by this phytosomal nanocarrier platform.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 2014, Saudi Arabia;
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, 94018 Troina (EN), Italy;
| | - Mohamed A. Alfaleh
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.L.A.); (A.F.A.)
| | - Faris O Arif
- General Surgery KAUH, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia;
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (S.M.B.-E.); (O.A.A.A.)
- Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.L.A.); (A.F.A.)
| |
Collapse
|
63
|
Formulation Design, Statistical Optimization, and In Vitro Evaluation of a Naringenin Nanoemulsion to Enhance Apoptotic Activity in A549 Lung Cancer Cells. Pharmaceuticals (Basel) 2020; 13:ph13070152. [PMID: 32679917 PMCID: PMC7407592 DOI: 10.3390/ph13070152] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022] Open
Abstract
Naringenin (NAR), a flavonoid mainly found in citrus and grapefruits, has proven anti-cancer activities. However, the poor water solubility and low bioavailability of NAR limits its use as a therapeutic agent. The aim of this study was to develop and optimize stable naringenin nanoemulsions (NAR-NE) using a Box-Behnken experimental design to obtain a formulation with a higher efficiency. Anticancer activity of optimized NAR-NE was evaluated in A549 lung cancer cells using cell viability, flow-cytometric assays, and enzyme-linked immunosorbent assay. The stabilized nanoemulsion, which showed a spherical surface morphology, had a globule size of 85.6 ± 2.1 nm, a polydispersity index of 0.263 ± 0.02, a zeta potential of -9.6 ± 1.2 mV, and a drug content of 97.34 ± 1.3%. The NAR release from the nanoemulsion showed an initial burst release followed by a stable and controlled release for a longer period of 24 h. The nanoemulsion exhibited excellent thermodynamic and physical stability against phase separation and storage. The NAR-NE showed concentration-dependent cytotoxicity in A549 lung cancer cells, which was greater than that of free NAR. The percentage of apoptotic cells and cell cycle arrest at the G2/M and pre-G1 phases induced by NAR-NE were significantly higher than those produced by free NAR (p < 0.05). NAR-NEs were more effective than the NAR solution in reducing Bcl2 expression, while increasing pro-apoptotic Bax and caspase-3 activity. Therefore, stabilized NAR-NE could be a suitable drug delivery system to enhance the effects of NAR in the treatment of lung cancer.
Collapse
|
64
|
Aldawsari HM, Fahmy UA, Abd-Allah F, Ahmed OAA. Formulation and Optimization of Avanafil Biodegradable Polymeric Nanoparticles: A Single-Dose Clinical Pharmacokinetic Evaluation. Pharmaceutics 2020; 12:E596. [PMID: 32604853 PMCID: PMC7356025 DOI: 10.3390/pharmaceutics12060596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Avanafil (AVA) is a second-generation phosphodiesterase-5 (PDE5) inhibitor. AVA shows high selectivity to penile tissues and fast absorption, but has a bioavailability of about 36%. The aim was to formulate and optimize AVA-biodegradable nanoparticles (NPs) to enhance AVA bioavailability. To assess the impact of variables, the Box-Behnken design was utilized to investigate and optimize the formulation process variables: the AVA:poly (lactic-co-glycolic acid) (PLGA) ratio (w/w, X1); sonication time (min, X2); and polyvinyl alcohol (PVA) concentration (%, X3). Particle size (nm, Y1) and EE% (%, Y2) were the responses. The optimized NPs were characterized for surface morphology and permeation. Furthermore, a single-oral dose (50 mg AVA) pharmacokinetic investigation on healthy volunteers was carried out. Statistical analysis revealed that all the investigated factors exhibited a significant effect on the particle size. Furthermore, the entrapment efficiency (Y2) was significantly affected by both the AVA:PLGA ratio (X1) and PVA concentration (X3). Pharmacokinetic data showed a significant increase in the area under the curve (1.68 folds) and plasma maximum concentration (1.3-fold) for the AVA NPs when compared with raw AVA. The optimization and formulation of AVA as biodegradable NPs prepared using solvent evaporation (SE) proves a successful way to enhance AVA bioavailability.
Collapse
Affiliation(s)
- Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Fathy Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11865, Egypt;
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61111, Egypt
| |
Collapse
|