51
|
Chitosan/Alginate Nanoparticles for the Enhanced Oral Antithrombotic Activity of Clam Heparinoid from the Clam Coelomactra antiquata. Mar Drugs 2022; 20:md20020136. [PMID: 35200665 PMCID: PMC8879524 DOI: 10.3390/md20020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan/alginate nanoparticles (DG1-NPs and DG1/Cur-NPs) aiming to enhance the oral antithrombotic activity of clam heparinoid DG1 were prepared by ionotropic pre-gelation. The influence of parameters, such as the concentration of sodium alginate (SA), chitosan (CTS), CaCl2, clam heparinoid DG1, and curcumin (Cur), on the characteristics of the nanoparticles, were investigated. Results indicate that chitosan and alginate can be used as polymer matrices to encapsulate DG1, and nanoparticle characteristics depend on the preparation parameters. Nano-particles should be prepared using 0.6 mg/mL SA, 0.33 mg/mL CaCl2, 0.6 mg/mL CTS, 7.2 mg/mL DG1, and 0.24 mg/mL Cur under vigorous stirring to produce DG1-NPS and DG1/Cur-NPS with small size, high encapsulation efficiency, high loading capacity, and negative zeta potential from approximately −20 to 30 mV. Data from scanning electron microscopy, Fourier-transform infrared spectrometry, and differential scanning calorimetry analyses showed no chemical reaction between DG1, Cur, and the polymers; only physical mixing. Moreover, the drug was loaded in the amorphous phase within the nanoparticle matrix. In the acute pulmonary embolism murine model, DG1-NPs enhanced the oral antithrombotic activity of DG1, but DG1/Cur-NPs did not exhibit higher antithrombotic activity than DG1-NPs. Therefore, the chitosan/alginate nanoparticles enhanced the oral antithrombotic activity of DG1, but curcumin did not further enhance this effect.
Collapse
|
52
|
Mohan T, Ajdnik U, Nagaraj C, Lackner F, Dobaj Štiglic A, Palani T, Amornkitbamrung L, Gradišnik L, Maver U, Kargl R, Stana Kleinschek K. One-Step Fabrication of Hollow Spherical Cellulose Beads: Application in pH-Responsive Therapeutic Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3726-3739. [PMID: 35014252 PMCID: PMC8796171 DOI: 10.1021/acsami.1c19577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 05/16/2023]
Abstract
The path to greater sustainability and the development of polymeric drug delivery systems requires innovative approaches. The adaptation and use of biobased materials for applications such as targeted therapeutic delivery is, therefore, in high demand. A crucial part of this relates to the development of porous and hollow structures that are biocompatible, pH-responsive, deliver active substances, and contribute to pain relief, wound healing, tissue regeneration, and so forth. In this study, we developed a facile single-step and water-based method for the fabrication of hollow spherical cellulose beads for targeted drug release in response to external pH stimuli. Through base-catalyzed deprotection, hydrophobic solid and spherical cellulose acetate beads are transformed into hydrophilic cellulose structures with a hollow interior (wall thickness: 150 μm and inner diameter: 650 μm) by a stepwise increment of temperature and treatment time. Besides the pH-responsive fluid uptake properties, the hollow cellulose structures exhibit a maximum encapsulation efficiency of 20-85% diclofenac (DCF), a nonsteroidal anti-inflammatory drug, used commonly to treat pain and inflammatory diseases. The maximum amount of DCF released in vitro increased from 20 to 100% when the pH of the release medium increased from pH 1.2 to 7.4. As for the DCF release patterns and kinetic models at specific pH values, the release showed a diffusion- and swelling-controlled profile, effortlessly fine-tuned by external environmental pH stimuli. Overall, we show that the modified beads exhibit excellent characteristics for transport across the gastrointestinal tract and enhance the bioavailability of the drug. Their therapeutic efficacy and biocompatibility are also evident from the studies on human fibroblast cells. We anticipate that this platform could support and inspire the development of novel sustainable and effective polysaccharide-based delivery systems.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute
for Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Urban Ajdnik
- Faculty
of Mechanical Engineering, Institute of Engineering Materials and
Design, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Chandran Nagaraj
- Ludwig
Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Florian Lackner
- Institute
for Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Andreja Dobaj Štiglic
- Faculty
of Mechanical Engineering, Institute of Engineering Materials and
Design, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
| | - Thirvengadam Palani
- School
of Chemistry and Chemical Engineering and State Key Laboratory of
Metal Matrix Composites, Shanghai Jiao Tong
University, 800 Dongchuan
Road, Shanghai 200240, China
| | - Lunjakorn Amornkitbamrung
- Faculty
of Engineering, Department of Chemical Engineering Research Unit in
Polymeric Materials for Medical Practice Devices, Chulalongkorn University, 254 Phayathai Rd, Bangkok 10330, Thailand
| | - Lidija Gradišnik
- Faculty of
Medicine, Department of Pharmacology, University
of Maribor, Taborska
ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- Faculty of
Medicine, Department of Pharmacology, University
of Maribor, Taborska
ulica 8, 2000 Maribor, Slovenia
| | - Rupert Kargl
- Institute
for Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute
for Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
53
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon 2022; 8:e08674. [PMID: 35028457 PMCID: PMC8741465 DOI: 10.1016/j.heliyon.2021.e08674] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, multifunctional drug delivery systems (DDSs) have been designed to provide a comprehensive approach with multiple functionalities, including diagnostic imaging, targeted drug delivery, and controlled drug release. Chitosan-based drug nanoparticles (CSNPs) systems are employed as diagnostic imaging and delivering the drug to particular targeted sites in a regulated manner. Drug release is an important factor in ensuring high reproducibility, stability, quality control of CSNPs, and scientific-based for developing CSNPs. Several factors influence drug release from CSNPs, including composition, composition ratio, ingredient interactions, and preparation methods. Early, CSNPs were used for improving drug solubility, stability, pharmacokinetics, and pharmacotherapeutics properties. Chitosan has been developed toward a multifunctional drug delivery system by exploring positively charged properties and modifiable functional groups. Various modifications to the polymer backbone, charge, or functional groups will undoubtedly affect the drug release from CSNPs. The drug release from CSNPs has a significant influence on its therapeutic actions. Our review's objective was to summarize and discuss the relationship between the modification in CSNPs as multifunctional delivery systems and drug release properties and kinetics of the drug release model. Kinetic models help describe the release rate, leading to increased efficiency, accuracy, the safety of the dose, optimizing the drug delivery device's design, evaluating the drug release rate, and improvement of patient compatibility. In conclusion, almost all CSNPs showed bi-phasic release, initial burst release drug in a particular time followed controlled manner release in achieving the expected release, stimuli external can be applied. CSNPs are a promising technique for multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), 11800, USM, Penang, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Indonesia
| |
Collapse
|
54
|
Liu J, Xu W, Liu Y, Wang Y, Zhang J, Wang Z, Mai K, Ai Q. Effects of Chitosan-Coated Microdiet on Dietary Physical Properties, Growth Performance, Digestive Enzyme Activities, Antioxidant Capacity, and Inflammation Response of Large Yellow Croaker ( Larimichthys crocea) Larvae. AQUACULTURE NUTRITION 2022; 2022:4355182. [PMID: 36860430 PMCID: PMC9973130 DOI: 10.1155/2022/4355182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 05/13/2023]
Abstract
A 30-day feeding trial was designed to investigate the physical properties of chitosan-coated microdiet (CCD) and the effect of CCD on survival, growth performance, activities of digestive enzymes, intestinal development, antioxidant capacity, and inflammatory response of large yellow croaker larvae (initial weight: 3.81 ± 0.20 mg). Four isonitrogenous (50% crude protein) and isolipidic (20% crude lipid) microdiets were prepared with different concentrations of chitosan wall material by spray drying method (0.00%, 0.30%, 0.60%, and 0.90%, weight (chitosan) : volume (acetic acid)). Results showed that the lipid encapsulation efficiency (control: 60.52%, Diet1: 84.63%, Diet2: 88.06%, Diet3: 88.65%) and nitrogen retention efficiency (control: 63.76%, Diet1: 76.14%, Diet2: 79.52%, Diet3: 84.68%) correlated positively with the concentration of wall material (P < 0.05). Furthermore, the loss rate of CCD was significantly lower than the uncoated diet. Larvae fed the diet with 0.60% CCD had significantly higher specific growth rate (13.52 and 9.95%/day) and survival rate (14.73 and 12.58%) compared to the control group (P < 0.05). Larvae fed the diet with 0.30% CCD had significantly higher trypsin activity in pancreatic segments than the control group (4.47 and 3.05 U/mg protein) (P < 0.05). Larvae fed the diet with 0.60% CCD had significantly higher activity of leucine aminopeptidase (7.29 and 4.77 mU/mg protein) and alkaline phosphatase (83.37 and 46.09 U/mg protein) in the brush border membrane than those of the control group (P < 0.05). The intestinal epithelial proliferation- and differentiation-related factors (zo-1, zo-2, and pcna) in larvae fed the diet with 0.30% CCD had higher expression than those of the control group (P < 0.05). When the concentration of wall material reached 0.90%, the larvae had significantly higher superoxide dismutase activity than that of the control group (27.27 and 13.72 U/mg protein) (P < 0.05). Meanwhile, malondialdehyde contents were significantly lower in larvae fed the diet with 0.90% CCD than that of the control group (8.79 and 6.79 nmol/mg protein) (P < 0.05). 0.30%~0.60% CCD significantly increased the activity of total nitric oxide synthase (2.31, 2.60, and 2.05 mU/mg protein) and inducible nitric oxide synthase (1.91, 2.01, and 1.63 mU/mg protein) and had significantly higher transcriptional levels of inflammatory factor genes (il-1β, tnf-α, and il-6) than those of the control group (P < 0.05). The results indicated chitosan-coated microdiet had great potential in feeding large yellow croaker larvae in addition to reducing nutrition loss.
Collapse
Affiliation(s)
- Jiahui Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yuntao Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jianmin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
55
|
Chitosan-based drug delivery systems: current strategic design and potential application in human hard tissue repair. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
The Analysis of Chitosan-Coated Nanovesicles Containing Erythromycin-Characterization and Biocompatibility in Mice. Antibiotics (Basel) 2021; 10:antibiotics10121471. [PMID: 34943683 PMCID: PMC8698811 DOI: 10.3390/antibiotics10121471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoantibiotics have proved improved pharmacokinetic characteristics and antimicrobial features. Recent studies have shown non-toxicity, non-immunogenicity, antioxidant, anti-hyperlipidemic, and hepatocyte protective actions, among other advantages of chitosan-based nanoparticles. The purpose of our study was the structural analysis of novel chitosan-coated vesicles entrapping erythromycin (ERT) and the assessment of their biocompatibility in mice. According to the group in which they were randomly assigned, the mice were treated orally with one of the following: distilled water; chitosan; ERT; chitosan vesicles containing ERT. Original nanosystems entrapping ERT in liposomes stabilized with chitosan were designed. Their oral administration did not produce sizeable modifications in the percentages of the leukocyte formula elements, of some blood constants useful for evaluating the hepatic and renal function, respectively, and of some markers of oxidative stress and immune system activity, which suggests a good biocompatibility in mice. The histological examination did not reveal significant alterations of liver and kidney architecture in mice treated with chitosan liposomes entrapping ERT. The results indicate the designed liposomes are a promising approach to overcome disadvantages of conventional ERT treatments and to amplify their benefits and can be further studied as carrier systems.
Collapse
|
57
|
Limocon JRA, Madalag LMC, Reliquias PJB, Tionko JVS, Fermin JL, Kee SL, Tan MJT, Jonco MJLJ, Pomperada MJF. Small but Terrible: Utilizing Chitosan-Based Nanoparticles as Drug Carriers to Treat Tuberculosis in the Philippines. Front Pharmacol 2021; 12:752107. [PMID: 34690783 PMCID: PMC8527166 DOI: 10.3389/fphar.2021.752107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | | | | | - Jamie Ledesma Fermin
- Department of Electronics Engineering, University of St. La Salle, Bacolod, Philippines
| | - Shaira Limson Kee
- Department of Natural Sciences, University of St. La Salle, Bacolod, Philippines
| | - Myles Joshua Toledo Tan
- Department of Natural Sciences, University of St. La Salle, Bacolod, Philippines.,Department of Chemical Engineering, University of St. La Salle, Bacolod, Philippines
| | | | | |
Collapse
|
58
|
Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar Drugs 2021; 19:551. [PMID: 34677450 PMCID: PMC8540467 DOI: 10.3390/md19100551] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
Conventional bone grafting procedures used to treat bone defects have several limitations. An important aspect of bone tissue engineering is developing novel bone substitute biomaterials for bone grafts to repair orthopedic defects. Considerable attention has been given to chitosan, a natural biopolymer primarily extracted from crustacean shells, which offers desirable characteristics, such as being biocompatible, biodegradable, and osteoconductive. This review presents an overview of the chitosan-based biomaterials for bone tissue engineering (BTE). It covers the basic knowledge of chitosan in terms of biomaterials, the traditional and novel strategies of the chitosan scaffold fabrication process, and their advantages and disadvantages. Furthermore, this paper integrates the relevant contributions in giving a brief insight into the recent research development of chitosan-based scaffolds and their limitations in BTE. The last part of the review discusses the next-generation smart chitosan-based scaffold and current applications in regenerative dentistry and future directions in the field of mineralized tissue regeneration.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Research Unit on Oral Microbiology and Immunology, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Suwabun Chirachanchai
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand;
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
59
|
Cirri M, Maestrelli F, Nerli G, Mennini N, D’Ambrosio M, Luceri C, Mura PA. Development of a Cyclodextrin-Based Mucoadhesive-Thermosensitive In Situ Gel for Clonazepam Intranasal Delivery. Pharmaceutics 2021; 13:pharmaceutics13070969. [PMID: 34206967 PMCID: PMC8309035 DOI: 10.3390/pharmaceutics13070969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
A thermosensitive, mucoadhesive in-situ gel for clonazepam (CLZ) intranasal delivery was developed, which aimed to achieve prolonged in-situ residence and controlled drug release, overcoming problems associated with its oral or parenteral administration. Poloxamer was selected as a thermosensitive polymer and chitosan glutamate and sodium hyaluronate as mucoadhesive and permeation enhancer. Moreover, randomly methylated β-Cyclodextrin (RAMEB) was used to improve the low drug solubility. A screening DoE was applied for a systematic examination of the effect of varying the formulation components proportions on gelation temperature, gelation time and pH. Drug-loaded gels at different clonazepam-RAMEB concentrations were then prepared and characterized for gelation temperature, gelation time, gel strength, mucoadhesive strength, mucoadhesion time, and drug release properties. All formulations showed suitable gelation temperature (29-30.5 °C) and time (50-65 s), but the one with the highest drug-RAMEB concentration showed the best mucoadhesive strength, longest mucoadhesion time (6 h), and greatest release rate. Therefore, it was selected for cytotoxicity and permeation studies through Caco-2 cells, compared with an analogous formulation without RAMEB and a drug solution. Both gels were significantly more effective than the solution. However, RAMEB was essential not only to promote drug release, but also to reduce drug cytotoxicity and further improve its permeability.
Collapse
Affiliation(s)
- Marzia Cirri
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
- Correspondence: ; Tel.: +39-(0)5-5457-3711
| | - Giulia Nerli
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Natascia Mennini
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| | - Mario D’Ambrosio
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Children’s Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.D.); (C.L.)
| | - Cristina Luceri
- NEUROFARBA, Department of Neurosciences, Psychology, Drug Research and Children’s Health, Section of Pharmacology and Toxicology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (M.D.); (C.L.)
| | - Paola Angela Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.); (G.N.); (N.M.); (P.A.M.)
| |
Collapse
|