51
|
Qin X, Kong L, Wu C, Zhang X, Xie M, Wu X. Pharmacokinetic/pharmacodynamic analysis of high-dose tigecycline, by Monte Carlo simulation, in plasma and sputum of patients with hospital-acquired pneumonia. J Clin Pharm Ther 2022; 47:2312-2319. [PMID: 36479719 DOI: 10.1111/jcpt.13823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE To Investigate the pharmacokinetic/pharmacodynamic (PK/PD) parameters of high-dose tigecycline in plasma and sputum of patients with hospital-acquired pneumonia (HAP), and provide a therapeutic regimen of multidrug-resistant bacteria (MDRB) infections. METHODS Blood/sputum samples were collected at intervals after tigecycline had reached a steady-state. Tigecycline concentrations in specimens were determined by high-performance liquid chromatography (HLPC), PK parameters were evaluated by WinNonlin software using a non-compartment model. The probability of target attainments (PTAs) at different minimal inhibitory concentrations (MICs) were calculated for achieving the PK/PD index with Crystal Ball software by 10,000-patient Monte Carlo Simulation. RESULTS In plasma, the maximum concentration (Cmax ) and area under the concentration-time curve from 0 to 12 h (AUC0-12h ) were 2.21 ± 0.17 mg/L and 15.29 ± 1.13 h mg/L, respectively. In sputum, they were 2.48 ± 0.21 mg/L and 19.46 ± 1.82 h mg/L, respectively. The mean lung penetration rate was 127.27%. At the MIC ≤4 mg/L, the PTAs in plasma and sputum were 100.00%. When the MIC increased to 8 mg/L, the PTAs in plasma and sputum mostly were < 90.00% according to two criteria. WHAT IS NEW AND CONCLUSION In this study, we explored PK/PD of high-dose tigecycline in plasma and sputum. From a PK/PD perspective, high-dose tigecycline had greater therapeutic outcomes in HAP treatment caused by MDRB. Antimicrobial-drug concentrations should be determined to optimize their clinical use.
Collapse
Affiliation(s)
- Xiaohong Qin
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Lingti Kong
- Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Chenchen Wu
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Xiaohua Zhang
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Meng Xie
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| | - Xiaofei Wu
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China.,Institute of Emergency and Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
52
|
AbuEid M, Keyes RF, McAllister D, Peterson F, Kadamberi IP, Sprague DJ, Chaluvally-Raghavan P, Smith BC, Dwinell MB. Fluorinated triphenylphosphonium analogs improve cell selectivity and in vivo detection of mito-metformin. iScience 2022; 25:105670. [PMID: 36567718 PMCID: PMC9768319 DOI: 10.1016/j.isci.2022.105670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Triphenylphosphonium (TPP+) conjugated compounds selectively target cancer cells by exploiting their hyperpolarized mitochondrial membrane potential. To date, studies have focused on modifying either the linker or the cargo of TPP+-conjugated compounds. Here, we investigated the biological effects of direct modification to TPP+ to improve the efficacy and detection of mito-metformin (MMe), a TPP+-conjugated probe we have shown to have promising preclinical efficacy against solid cancer cells. We designed, synthesized, and tested trifluoromethyl and methoxy MMe analogs (pCF3-MMe, mCF3-MMe, and pMeO-MMe) against multiple distinct human cancer cells. pCF3-MMe showed enhanced selectivity toward cancer cells compared to MMe, while retaining the same signaling mechanism. Importantly, pCF3-MMe allowed quantitative monitoring of cellular accumulation via 19F-NMR in vitro and in vivo. Furthermore, adding trifluoromethyl groups to TPP+ reduced toxicity in vivo while retaining anti-tumor efficacy, opening an avenue to de-risk these next-generation TPP+-conjugated compounds.
Collapse
Affiliation(s)
- Mahmoud AbuEid
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Center for Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Robert F. Keyes
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | - Francis Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA
| | | | - Daniel J. Sprague
- Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53122, USA
| | | | - Brian C. Smith
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Program in Chemical Biology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Corresponding author
| | - Michael B. Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Center for Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53122, USA,Corresponding author
| |
Collapse
|
53
|
Lu W, Pan M, Ke H, Liang J, Liang W, Yu P, Zhang P, Wang Q. An LC-MS/MS method for the simultaneous determination of 18 antibacterial drugs in human plasma and its application in therapeutic drug monitoring. Front Pharmacol 2022; 13:1044234. [PMID: 36425576 PMCID: PMC9679284 DOI: 10.3389/fphar.2022.1044234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Antimicrobial resistance (AMR) is a major threat to global health due to the wide use of antibacterial drugs. Multiple studies show that the pharmacokinetic/pharmacodynamic (PK/PD) studies of antibiotics are an approach to prevent/delay AMR. The pharmacokinetic parameters of antibiotics are the basis of PK/PD studies, and therapeutic drug monitoring (TDM) is the key method to obtain pharmacokinetic information. We developed an ultra-performance liquid chromatography–tandem mass spectrometry to determine 18 antibacterial drugs (piperacillin, cefazolin, cefuroxime, cefoperazone, ceftriaxone, cefepime, aztreonam, meropenem, imipenem, levofloxacin, moxifloxacin, azithromycin, clindamycin, tigecycline, linezolid, vancomycin, voriconazole and caspofungin) in human plasma for practical clinical usage. Samples were prepared using protein precipitation with methanol. Chromatographic separation was accomplished in 6 min on a BEH C18 column (2.1 × 100 mm, 1.7 µm) using a gradient elution of acetonitrile and 0.1% formic acid in water at a flow rate of 0.3 ml/min. The electrospray ionization source interface was operated in the positive and negative ionization modes. Inter- and intra-day precision, accuracy, recovery, matrix effect, and stability were validated according to the Food and Drug Administration guidance. The correlation coefficients of calibration curves were all greater than 0.99. The accuracies of the 18 antibacterial drugs ranged from 89.1% to 112.4%. The intra-day precision of the analytes ranged from 1.4% to 9.3% and the inter-day precision from 2.1% to 7.2%. The matrix effects ranged from 93.1% to 105.8% and the extraction recoveries ranged between 90.1% and 109.2%. The stabilities of the 18 antibacterial drugs in plasma were evaluated by analyzing three different concentrations following storage at three storage conditions. All samples displayed variations less than 15.0%. The validated method was successfully applied to routine clinical TDM for 231 samples.
Collapse
Affiliation(s)
- Wei Lu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Meng Pan
- Department of Cardiovascular Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hongqin Ke
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jun Liang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenbin Liang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Yu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Penghua Zhang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qibin Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- College of Pharmacy, Hubei University of Medicine, Shiyan, Hubei, China
- *Correspondence: Qibin Wang,
| |
Collapse
|
54
|
Lu Y, Yang L, Zhang W, Li J, Peng X, Qin Z, Zeng Z, Zeng D. Pharmacokinetics and pharmacodynamics of isopropoxy benzene guanidine against Clostridium perfringens in an intestinal infection model. Front Vet Sci 2022; 9:1004248. [PMID: 36246309 PMCID: PMC9557049 DOI: 10.3389/fvets.2022.1004248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate the antibacterial activity of isopropoxy benzene guanidine (IBG) against C. perfringens based on pharmacokinetics/pharmacodynamics (PK/PD) modeling in broilers. The PK parameters of IBG in the plasma and ileal content of C. perfringens-infected broilers following oral administration at 2, 30, and 60 mg/kg body weight were investigated. in vivo PD studies were conducted over oral administration ranging from 2 to 60 mg/kg and repeated every 12 h for 3 days. The inhibitory Imax model was used for PK/PD modeling. Results showed that the MIC of IBG against C. perfringens was 0.5–32 mg/L. After oral administration of IBG, the peak concentration (Cmax), maximum concentration time (Tmax), and area under the concentration-time curve (AUC) in ileal content of broilers were 10.97–1,036.64 mg/L, 2.39–4.27 h, and 38.31–4,266.77 mg·h/L, respectively. After integrating the PK and PD data, the AUC0 − 24h/MIC ratios needed for the bacteriostasis, bactericidal activity, and bacterial eradication were 4.00, 240.74, and 476.98 h, respectively. For dosage calculation, a dosage regimen of 12.98 mg/kg repeated every 12 h for 3 days was be therapeutically effective in broilers against C. perfringens with MIC ≤ 2 mg/L. In addition, IBG showed potent activity against C. perfringens, which may be responsible for cell membrane destruction. These results can facilitate the evaluation of the use of IBG in the treatment of intestinal diseases in broilers caused by C. perfringens.
Collapse
Affiliation(s)
- Yixing Lu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liuye Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wanying Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xianfeng Peng
- Guangzhou Insighter Biotechnology Co., Ltd., Guangzhou, China
| | - Zonghua Qin
- Guangzhou Insighter Biotechnology Co., Ltd., Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Zhenling Zeng
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Dongping Zeng
| |
Collapse
|
55
|
Palmer ME, Andrews LJ, Abbey TC, Dahlquist AE, Wenzler E. The importance of pharmacokinetics and pharmacodynamics in antimicrobial drug development and their influence on the success of agents developed to combat resistant gram negative pathogens: A review. Front Pharmacol 2022; 13:888079. [PMID: 35959440 PMCID: PMC9359604 DOI: 10.3389/fphar.2022.888079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
A deep understanding of an antimicrobial’s critical pharmacokinetic and pharmacodynamic properties is crucial towards optimizing its use in patients and bolstering the drug development program. With the growing threat of antimicrobial resistance and decline in antimicrobial development, the advancement of complex and rigorous pharmacokinetic and pharmacodynamic studies over a short time span has renewed confidence in the value of pharmacokinetic and pharmacodynamic studies and allowed it to become fundamental component of a robust drug development program with high chances of successful approval. In addition, recent guidance by various regulatory bodies have reinforced that a strong and dedicated focus on pharmacokinetics and pharmacodynamics throughout research and development lead to the use of an optimized dosing regimen in Phase 3 trials, improving the probability of drug approval. The objective of this review is to demonstrate the importance of pharmacokinetic and pharmacodynamic studies in the drug development decision-making process by highlighting the developments in pharmacokinetic and pharmacodynamic methods and discuss the role of pharmacokinetic and pharmacodynamic studies in antimicrobial successes and failures.
Collapse
|
56
|
Zhou BC, Tian YG, Sun YN, Liu YL, Zhao D. A validated LC-MS/MS method for the determination of hederasaponin C: Application to Pharmacokinetic-pharmacodynamic studies in the therapeutic area of acetic acid-induced ulcerative colitis in rats. Biomed Chromatogr 2022; 36:e5450. [PMID: 35831969 DOI: 10.1002/bmc.5450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Hederasaponin C (HSC), one of the main components of pulsatilla chinensis, is considered as a potential drug for the treatment of inflammatory bowel disease. In the present research, we developed a PK-PD model to describe the concentration-effect course of drug action following intraperitoneal injection of HSC in colitis rats. A sensitive UPLC-MS/MS method was firstly established for the the determination of HSC in rat plasma to explore the pharmacokinetics properties. The separation was performed on an Accucore C18 column (2.1mm×100mm, 2.6μm) with the flow phase consisted of acetonitrile and 0.1% formic acid water. The assay method was validated and demonstrated good adaptability for application in the pharmacokinetic study. Then the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in colon tissues were measured by ELISA assay. The levels of TNF-α, IL-1β and IL-6 was decreased after HSC administration, suggesting that HSC can significantly improve the level of inflammatory syndrome factor. The pharmacokinetics study showed that the Tmax of HSC was 1 h. The concentration-effect curves showed hysteresis loop. And there has a hysteresis between the peaked concentration and the maximum effect of HSC. The present study established in vivo PK/PD models and the result showed a great potential of HSC for treating ulcerative colitis.
Collapse
Affiliation(s)
- Bo Cheng Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Ge Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Na Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Li Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
57
|
Yow HY, Govindaraju K, Lim AH, Abdul Rahim N. Optimizing Antimicrobial Therapy by Integrating Multi-Omics With Pharmacokinetic/Pharmacodynamic Models and Precision Dosing. Front Pharmacol 2022; 13:915355. [PMID: 35814236 PMCID: PMC9260690 DOI: 10.3389/fphar.2022.915355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
In the era of “Bad Bugs, No Drugs,” optimizing antibiotic therapy against multi-drug resistant (MDR) pathogens is crucial. Mathematical modelling has been employed to further optimize dosing regimens. These models include mechanism-based PK/PD models, systems-based models, quantitative systems pharmacology (QSP) and population PK models. Quantitative systems pharmacology has significant potential in precision antimicrobial chemotherapy in the clinic. Population PK models have been employed in model-informed precision dosing (MIPD). Several antibiotics require close monitoring and dose adjustments in order to ensure optimal outcomes in patients with infectious diseases. Success or failure of antibiotic therapy is dependent on the patient, antibiotic and bacterium. For some drugs, treatment responses vary greatly between individuals due to genotype and disease characteristics. Thus, for these drugs, tailored dosing is required for successful therapy. With antibiotics, inappropriate dosing such as insufficient dosing may put patients at risk of therapeutic failure which could lead to mortality. Conversely, doses that are too high could lead to toxicities. Hence, precision dosing which customizes doses to individual patients is crucial for antibiotics especially those with a narrow therapeutic index. In this review, we discuss the various strategies in optimizing antimicrobial therapy to address the challenges in the management of infectious diseases and delivering personalized therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor’s University, Subang Jaya, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Kayatri Govindaraju
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Audrey Huili Lim
- Centre for Clinical Outcome Research (CCORE), Institute for Clinical Research, National Institutes of Health, Shah Alam, Malaysia
| | - Nusaibah Abdul Rahim
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Nusaibah Abdul Rahim,
| |
Collapse
|
58
|
Prediction of Pharmacokinetics of IDP-73152 in Humans Using Physiologically-Based Pharmacokinetics. Pharmaceutics 2022; 14:pharmaceutics14061157. [PMID: 35745730 PMCID: PMC9227536 DOI: 10.3390/pharmaceutics14061157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
IDP-73152, a novel peptide deformylase inhibitor with an antibacterial effect against Gram-positive bacteria, is in phase I development. The objective of this study was to develop a physiologically-based pharmacokinetic model (PBPK) for IDP-73152 in animals, and to extend the model to humans. Biopharmaceutical properties of IDP-73152 are determined using in vitro/in vivo experimentations for the PBPK model. A transit model consisting of gastrointestinal segments is applied for an estimation of the intestinal absorption kinetics. The PBPK model of IDP-73152 in rats is able to appropriately predict the plasma concentration–time profiles after the administration of IDP-73152 at different doses and by different routes (combined absolute average fold error (cAAFE), 1.77). The model is also found to be adequate in predicting the plasma concentration–time profiles of IDP-73152 in mice (cAAFE 1.59) and dogs (cAAFE 1.42). Assuming the oral administration of IDP-73152 to humans at doses of 640 and 1280 mg, the model is able to reproduce the concentration–time profiles obtained in humans (cAAFE 1.38); therefore, these observations indicate that the PBPK model used for IDP-73152 is applicable to animal species and humans. This model may be useful in predicting efficacious doses of IDP-73152 for the management of infectious disease in humans.
Collapse
|
59
|
Kumar N, Asija S, Deswal Y, Saroya S, Kumar A, Devi J. Organotin(IV) complexes derived from hydrazone ligands: Synthesis, spectral analysis, antimicrobial and molecular docking studies. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2048386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Naresh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sonika Asija
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Yogesh Deswal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Sonia Saroya
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|
60
|
Nussbaumer-Pröll A, Eberl S, Kurdina E, Schmidt L, Zeitlinger M. Challenging T > MIC Using Meropenem vs. Escherichia coli and Pseudomonas aeruginosa. Front Pharmacol 2022; 13:840692. [PMID: 35431957 PMCID: PMC9010652 DOI: 10.3389/fphar.2022.840692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: For meropenem 40%T > MIC is associated with optimal killing of P. aeruginosa and E. coli. However, it is unknown how the distribution of %T > MIC through a treatment day impacts the antimicrobial effect in vitro. Therefore, we investigated the in vitro antibiotic activity of meropenem, precisely if 40%T > MIC is achieved in one single long period (single dose), 2 × 20% periods (dosing-bid), or 3 × 13.3% (dosing t.i.d.) thereby keeping the overall period of T > MIC constant. Material/Methods: Time kill curves (TKC) with P. aeruginosa-ATCC-27853 and E. coli-ATCC-25922 and five clinical isolates each were implemented over 24 h in CAMHB with concentrations from 0.25×MIC-32×MIC. Periods over and under MIC were simulated by centrifugation steps (discarding supernatant and refilling with fresh CAMHB). Double and triple dosing involved further addition and removal of antibiotic. Complementary growth controls (GC) with and without centrifugation steps were done and the emergence of phenotypical resistance was evaluated (repeated MIC-testing after antibiotic administration). Results: No impact of centrifugation on bacterial growth was seen. TKC with P. aeruginosa showed the best killing in the triple dosage, followed by the double and single dose. In multiple regimens at least a concentration of 4×MIC was needed to achieve a recommended 2-3 log10 killing. Likewise, a reduction of E. coli was best within the three short periods. Contrary to the TKCs with P. aeruginosa we could observe that after the inoculum reached a certain CFU/mL (≥10^8), no further addition of antibiotic could achieve bacterial killing (identified as the inoculum effect). For P. aeruginosa isolates resistance appeared within all regimens, the most pronounced was found in the 40%T > MIC experiments indicating that a single long period might accelerate the emergence of resistance. Contrary, for E. coli no emergence of resistance was found. Conclusion/Outlook: We could show that not solely the %T > MIC is decisive for an efficient bacterial eradication in vitro, but also the distribution of the selected %T > MIC. Thus, dividing the 40%T > MIC in three short periods requested lowers antibiotic concentrations to achieve efficient bacterial killing and reduces the emergence of resistance in P. aeruginosa isolates. The distribution of the %T > MIC did impact the bacterial eradication of susceptible pathogens in vitro and might play an even bigger role in infections with intermediate or resistant pathogens.
Collapse
|
61
|
Zhang L, Xie H, Wang Y, Wang H, Hu J, Zhang G. Pharmacodynamic Parameters of Pharmacokinetic/Pharmacodynamic (PK/PD) Integration Models. Front Vet Sci 2022; 9:860472. [PMID: 35400105 PMCID: PMC8989418 DOI: 10.3389/fvets.2022.860472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Pharmacokinetic/pharmacodynamic (PK/PD) integration models are used to investigate the antimicrobial activity characteristics of drugs targeting pathogenic bacteria through comprehensive analysis of the interactions between PK and PD parameters. PK/PD models have been widely applied in the development of new drugs, optimization of the dosage regimen, and prevention and treatment of drug-resistant bacteria. In PK/PD analysis, minimal inhibitory concentration (MIC) is the most commonly applied PD parameter. However, accurately determining MIC is challenging and this can influence the therapeutic effect. Therefore, it is necessary to optimize PD indices to generate more rational results. Researchers have attempted to optimize PD parameters using mutant prevention concentration (MPC)-based PK/PD models, multiple PD parameter-based PK/PD models, kill rate-based PK/PD models, and others. In this review, we discuss progress on PD parameters for PK/PD models to provide a valuable reference for drug development, determining the dosage regimen, and preventing drug-resistant mutations.
Collapse
Affiliation(s)
- Longfei Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongbing Xie
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yongqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongjuan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Jianhe Hu ;
| | - Gaiping Zhang
- Postdoctoral Research Station, Henan Agriculture University, Zhengzhou, China
- Gaiping Zhang
| |
Collapse
|
62
|
Vercelli C, Gambino G, Amadori M, Re G. Implications of Veterinary Medicine in the comprehension and stewardship of antimicrobial resistance phenomenon. From the origin till nowadays. Vet Anim Sci 2022; 16:100249. [PMID: 35479515 PMCID: PMC9036142 DOI: 10.1016/j.vas.2022.100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance is a well-known phenomenon with several implications The contribution of Veterinary Medicine is underestimated. It was believed that only livestock was responsible for antibiotic resistance. Companion animals, wild animals and environment are more involved than estimated. Educational tools for public and more veterinary specialists are needed.
Antimicrobial resistance (AMR) is defined by the entire scientific community as the major threat for human health and it is responsible for an increase in morbidity and mortality rates. The reasons behind this phenomenon are complex and the solution is achievable only considering the One Health approach, that encompasses the integration and implementation of human health, veterinary medicine and environmental status. Authors aimed to write this review to summarize to readers the three milestones of One-Health, underlying the most important topics in which veterinary medicine is mostly involved. Therefore, a short introduction about the history of AMR in veterinary medicine is provided, then more detailed aspects about the impact of AMR related to pets, food producing animals, wild animals and environment are discussed. Finally, some critical aspects about current and future issues are considered.
Collapse
Affiliation(s)
- Cristina Vercelli
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
- Corresponding author.
| | - Graziana Gambino
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
| | | | - Giovanni Re
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
| |
Collapse
|
63
|
PK-PD Modeling and Optimal Dosing Regimen of Acetylkitasamycin against Streptococcus suis in Piglets. Antibiotics (Basel) 2022; 11:antibiotics11020283. [PMID: 35203885 PMCID: PMC8868236 DOI: 10.3390/antibiotics11020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Streptococcus suis (S. suis) causes severe respiratory diseases in pigs and is also an important pathogen causing hidden dangers to public health and safety. Acetylkitasamycin is a new macrolide agent that has shown good activity to Gram-positive cocci such as Streptococcus. The purpose of this study was to perform pharmacokinetic–pharmacodynamic (PK-PD) modeling to formulate a dosing regimen of acetylkitasamycin for treatment of S. suis and to decrease the emergence of acetylkitasamycin-resistant S. suis. The minimal inhibitory concentration (MIC) of 110 S. suis isolates was determined by broth micro dilution method. The MIC50 of the 55 sensitive S. suis isolates was 1.21 μg/mL. The strain HB1607 with MIC close to MIC50 and high pathogenicity was used for the PK-PD experiments. The MIC and MBC of HB1607 in both MH broth and pulmonary epithelial lining fluid (PELF) was 1 and 2 μg/mL, respectively. The liquid chromatography–tandem mass spectrometry (LC-MS/MS) method was used to determine the concentration change of acetylkitasamycin in piglet plasma and PELF after intragastric administration of a single dose of 50 mg/kg b.w. acetylkitasamycin. The PK parameters were calculated by WinNolin software. The PK data showed that the maximum concentration (Cmax), peak time (Tmax), and area under the concentration–time curve (AUC) were 9.84 ± 0.39 μg/mL, 4.27 ± 0.19 h and 248.58 ± 21.17 h·μg/mL, respectively. Integration of the in vivo PK data and ex vivo PD data, an inhibition sigmoid Emax equation was established. The dosing regimen of acetylkitasamycin for the treatment S. suis infection established as 33.12 mg/kg b.w. every 12 h for 3 days. This study provided a reasonable dosing regimen for a new drug used in clinical treatment, which can effectively be used to treat S. suis infection and slow down the generation of drug resistance.
Collapse
|
64
|
Evolution of Antibacterial Drug Screening Methods: Current Prospects for Mycobacteria. Microorganisms 2021; 9:microorganisms9122562. [PMID: 34946162 PMCID: PMC8708102 DOI: 10.3390/microorganisms9122562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
The increasing resistance of infectious agents to available drugs urges the continuous and rapid development of new and more efficient treatment options. This process, in turn, requires accurate and high-throughput techniques for antimicrobials’ testing. Conventional methods of drug susceptibility testing (DST) are reliable and standardized by competent entities and have been thoroughly applied to a wide range of microorganisms. However, they require much manual work and time, especially in the case of slow-growing organisms, such as mycobacteria. Aiming at a better prediction of the clinical efficacy of new drugs, in vitro infection models have evolved to closely mimic the environment that microorganisms experience inside the host. Automated methods allow in vitro DST on a big scale, and they can integrate models that recreate the interactions that the bacteria establish with host cells in vivo. Nonetheless, they are expensive and require a high level of expertise, which makes them still not applicable to routine laboratory work. In this review, we discuss conventional DST methods and how they should be used as a first screen to select active compounds. We also highlight their limitations and how they can be overcome by more complex and sophisticated in vitro models that reflect the dynamics present in the host during infection. Special attention is given to mycobacteria, which are simultaneously difficult to treat and especially challenging to study in the context of DST.
Collapse
|
65
|
Pseudomonas aeruginosa Susceptibility in Spain: Antimicrobial Activity and Resistance Suppression Evaluation by PK/PD Analysis. Pharmaceutics 2021; 13:pharmaceutics13111899. [PMID: 34834314 PMCID: PMC8620410 DOI: 10.3390/pharmaceutics13111899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa remains one of the major causes of healthcare-associated infection in Europe; in 2019, 12.5% of invasive isolates of P. aeruginosa in Spain presented combined resistance to ≥3 antimicrobial groups. The Spanish nationwide survey on P. aeruginosa antimicrobial resistance mechanisms and molecular epidemiology was published in 2019. Based on the information from this survey, the objective of this work was to analyze the overall antimicrobial activity of the antipseudomonal antibiotics considering pharmacokinetic/pharmacodynamic (PK/PD) analysis. The role of PK/PD to prevent or minimize resistance emergence was also evaluated. A 10,000-subject Monte Carlo simulation was executed to calculate the probability of target attainment (PTA) and the cumulative fraction of response (CFR) considering the minimum inhibitory concentration (MIC) distribution of bacteria isolated in ICU or medical wards, and distinguishing between sample types (respiratory and non-respiratory). Ceftazidime/avibactam followed by ceftolozane/tazobactam and colistin, categorized as the Reserve by the Access, Watch, Reserve (AWaRe) classification of the World Health Organization, were the most active antimicrobials, with differences depending on the admission service, sample type, and dose regimen. Discrepancies between EUCAST-susceptibility breakpoints for P. aeruginosa and those estimated by PK/PD analysis were detected. Only standard doses of ceftazidime/avibactam and ceftolozane/tazobactam provided drug concentrations associated with resistance suppression.
Collapse
|
66
|
Molecular Epidemiology, Antimicrobial Surveillance, and PK/PD Analysis to Guide the Treatment of Neisseria gonorrhoeae Infections. Pharmaceutics 2021; 13:pharmaceutics13101699. [PMID: 34683991 PMCID: PMC8541456 DOI: 10.3390/pharmaceutics13101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to apply molecular epidemiology, antimicrobial surveillance, and PK/PD analysis to guide the antimicrobial treatment of gonococci infections in a region of the north of Spain. Antibiotic susceptibility testing was performed on all isolates (2017 to 2019, n = 202). A subset of 35 isolates intermediate or resistant to at least two antimicrobials were selected to search for resistance genes and genotyping through WGS. By Monte Carlo simulation, we estimated the probability of target attainment (PTA) and the cumulative fraction of response (CFR) of the antimicrobials used to treat gonorrhea, both indicative of the probability of treatment success. In total, 2.0%, 6.4%, 5.4%, and 48.2% of the isolates were resistant to ceftriaxone, cefixime, azithromycin, and ciprofloxacin, respectively. Twenty sequence types were identified. Detected mutations were related to antibiotic resistance. PK/PD analysis showed high probability of treatment success of the cephalosporins. In conclusion, multiple populations of N. gonorrhoeae were identified. We can confirm that ceftriaxone (even at the lowest dose: 250 mg) and oral cefixime are good candidates to treat gonorrhea. For patients allergic to cephalosporins, ciprofloxacin should be only used if the MIC is known and ≤0.125 mg/L; this antimicrobial is not recommended for empirical treatment.
Collapse
|