51
|
Ramalho MJ, Bravo M, Loureiro JA, Lima J, Pereira MC. Transferrin-modified nanoparticles for targeted delivery of Asiatic acid to glioblastoma cells. Life Sci 2022; 296:120435. [PMID: 35247437 DOI: 10.1016/j.lfs.2022.120435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 01/16/2023]
Abstract
AIMS Glioblastoma (GBM) is the most common and deadliest type of brain cancer, and the current therapeutic options are not curative, imposing the need for novel strategies. Asiatic acid (AA) is a natural compound and has been explored due to its anti-glioma activity and lower toxicity to healthy tissues compared with conventional chemotherapeutic agents. However, its poor water-solubility is an obstacle for clinical application. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were proposed in this work for Asiatic acid (AA) delivery. MAIN METHODS A central composite design was implemented to optimize the NPs, and their surface was further modified with transferrin (Tf), for targeted delivery to GBM cells. The anti-glioma activity of the NPs was studied in vitro using human GBM cells and immortalized human astrocytes. KEY FINDINGS The NPs exhibited a mean size smaller than 200 nm, with low polydispersity and negative zeta potential, indicating their suitability for brain tumor delivery. The NPs also exhibited high encapsulation efficiency and maintained a slow and controlled release of AA for 20 days. In vitro cell studies showed that NPs were able to maintain the anti-glioma activity of the natural compound and that the surface modification with Tf molecules was able to increase the cellular uptake in GBM cells, enhancing their selectivity and decreasing toxicity in healthy cells. SIGNIFICANCE Overall, this work provided guidance for designing brain-targeting delivery systems of natural compounds.
Collapse
Affiliation(s)
- Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria Bravo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Jorge Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-10 135 Porto, Portugal.
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
52
|
Glass Transition Temperature of PLGA Particles and the Influence on Drug Delivery Applications. Polymers (Basel) 2022; 14:polym14050993. [PMID: 35267816 PMCID: PMC8912735 DOI: 10.3390/polym14050993] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/31/2022] Open
Abstract
Over recent decades, poly(lactic-co-glycolic acid) (PLGA) based nano- and micro- drug delivery vehicles have been rapidly developed since PLGA was approved by the Food and Drug Administration (FDA). Common factors that influence PLGA particle properties have been extensively studied by researchers, such as particle size, polydispersity index (PDI), surface morphology, zeta potential, and drug loading efficiency. These properties have all been found to be key factors for determining the drug release kinetics of the drug delivery particles. For drug delivery applications the drug release behavior is a critical property, and PLGA drug delivery systems are still plagued with the issue of burst release when a large portion of the drug is suddenly released from the particle rather than the controlled release the particles are designed for. Other properties of the particles can play a role in the drug release behavior, such as the glass transition temperature (Tg). The Tg, however, is an underreported property of current PLGA based drug delivery systems. This review summarizes the basic knowledge of the glass transition temperature in PLGA particles, the factors that influence the Tg, the effect of Tg on drug release behavior, and presents the recent awareness of the influence of Tg on drug delivery applications.
Collapse
|
53
|
Targeting Cancer Cell Tight Junctions Enhances PLGA-Based Photothermal Sensitizers' Performance In Vitro and In Vivo. Pharmaceutics 2021; 14:pharmaceutics14010043. [PMID: 35056939 PMCID: PMC8778343 DOI: 10.3390/pharmaceutics14010043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 12/16/2022] Open
Abstract
The development of non-invasive photothermal therapy (PTT) methods utilizing nanoparticles as sensitizers is one of the most promising directions in modern oncology. Nanoparticles loaded with photothermal dyes are capable of delivering a sufficient amount of a therapeutic substance and releasing it with the desired kinetics in vivo. However, the effectiveness of oncotherapy methods, including PTT, is often limited due to poor penetration of sensitizers into the tumor, especially into solid tumors of epithelial origin characterized by tight cellular junctions. In this work, we synthesized 200 nm nanoparticles from the biocompatible copolymer of lactic and glycolic acid, PLGA, loaded with magnesium phthalocyanine, PLGA/Pht-Mg. The PLGA/Pht-Mg particles under the irradiation with NIR light (808 nm), heat the surrounding solution by 40 °C. The effectiveness of using such particles for cancer cells elimination was demonstrated in 2D culture in vitro and in our original 3D model with multicellular spheroids possessing tight cell contacts. It was shown that the mean inhibitory concentration of such nanoparticles upon light irradiation for 15 min worsens by more than an order of magnitude: IC50 increases from 3 µg/mL for 2D culture vs. 117 µg/mL for 3D culture. However, when using the JO-4 intercellular junction opener protein, which causes a short epithelial–mesenchymal transition and transiently opens intercellular junctions in epithelial cells, the efficiency of nanoparticles in 3D culture was comparable or even outperforming that for 2D (IC50 = 1.9 µg/mL with JO-4). Synergy in the co-administration of PTT nanosensitizers and JO-4 protein was found to retain in vivo using orthotopic tumors of BALB/c mice: we demonstrated that the efficiency in the delivery of such nanoparticles to the tumor is 2.5 times increased when PLGA/Pht-Mg nanoparticles are administered together with JO-4. Thus the targeting the tumor cell junctions can significantly increase the performance of PTT nanosensitizers.
Collapse
|
54
|
Park JS, Kim T, Kim D, Jeong YIL. The Effect of Oxidative Stress and Memantine-Incorporated Reactive Oxygen Species-Sensitive Nanoparticles on the Expression of N-Methyl-d-aspartate Receptor Subunit 1 in Brain Cancer Cells for Alzheimer's Disease Application. Int J Mol Sci 2021; 22:ijms222212309. [PMID: 34830191 PMCID: PMC8619842 DOI: 10.3390/ijms222212309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to fabricate reactive oxygen species (ROS)-sensitive nanoparticles composed of succinyl β-cyclodextrin (bCDsu), memantine and thioketal linkages for application in Alzheimer's disease, and to investigate the suppression of N-methyl-d-aspartate (NMDA) receptor 1 (NMDAR1) in cells. Thioketal diamine was attached to the carboxyl group of bCDsu to produce thioketal-decorated bCDsu conjugates (bCDsu-thioketal conjugates) and memantine was conjugated with thioketal dicarboxylic acid (memantine-thioketal carboxylic acid conjugates). Memantine-thioketal carboxylic acid conjugates were attached to bCDsu-thioketal conjugates to produce bCDsu-thioketal-memantine (bCDsuMema) conjugates. SH-SY5Y neuroblastoma cells and U87MG cells were used for NMDAR1 protein expression and cellular oxidative stress. Nanoparticles of bCDsuMema conjugates were prepared by means of a dialysis procedure. Nanoparticles of bCDsuMema conjugates had small particle sizes less than 100 nm and their morphology was found to be spherical in transmission electron microscopy observations (TEM). Nanoparticles of bCDsuMema conjugates responded to H2O2 and disintegrated or swelled in aqueous solution. Then, the nanoparticles rapidly released memantine according to the concentration of H2O2. In an in vivo animal imaging study, thioketal-decorated nanoparticles labelled with fluorescent dye such as chlorin e6 (Ce6) showed that the fluorescence intensity was stronger in the brain than in other organs, indicating that bCDsuMema nanoparticles can efficiently target the brain. When cells were exposed to H2O2, the viability of cells was time-dependently decreased. Memantine or bCDsuMema nanoparticles did not practically affect the viability of the cells. Furthermore, a western blot assay showed that the oxidative stress produced in cells using H2O2 increased the expression of NMDAR1 protein in both SH-SY5Y and U87MG cells. Memantine or bCDsuMema nanoparticles efficiently suppressed the NMDAR1 protein, which is deeply associated with Alzheimer's disease. Fluorescence microscopy also showed that H2O2 treatment induced green fluorescence intensity, which represents intracellular ROS levels. Furthermore, H2O2 treatment increased the red fluorescence intensity, which represents the NMDAR1 protein, i.e., oxidative stress increases the expression of NMDAR1 protein level in both SH-SY5Y and U87MG cells. When memantine or bCDsuMema nanoparticles were treated in cells, the oxidative stress-mediated expression of NMDAR1 protein in cells was significantly decreased, indicating that bCDsuMema nanoparticles have the capacity to suppress NMDAR1 expression in brain cells, which has relevance in terms of applications in Alzheimer's disease.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju 61469, Korea;
| | - Taeyeon Kim
- College of Art&Science, University of Pennsylvania, 249 S 36th St., Philadelphia, PA 19104, USA;
| | - Dohoon Kim
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Young-IL Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-10-9212-9859
| |
Collapse
|
55
|
Brouillard M, Barthélémy P, Dehay B, Crauste-Manciet S, Desvergnes V. Nucleolipid Acid-Based Nanocarriers Restore Neuronal Lysosomal Acidification Defects. Front Chem 2021; 9:736554. [PMID: 34490217 PMCID: PMC8417785 DOI: 10.3389/fchem.2021.736554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence suggests that lysosomal dysfunction has a pathogenic role in neurodegenerative diseases. In particular, an increase in lysosomal pH has been reported in different cellular models of Parkinson's disease. Thus, targeting lysosomes has emerged as a promising approach. More specifically, regulating its pH could play a central role against the neurodegeneration process. To date, only a few agents specifically targeting lysosomal pH are reported in the literature, partly due to the challenge of crossing the Blood-Brain-Barrier (BBB), preventing drug penetration into the central nervous system (CNS). To develop chronic treatments for neurodegenerative diseases, crossing the BBB is crucial. We report herein the conception and synthesis of an innovative DNA derivative-based nanocarrier. Nucleolipids, carrying a biocompatible organic acid as an active ingredient, were designed and synthesized as prodrugs. They were successfully incorporated into an oil-in-water nanoemulsion vehicle to cross biological membranes and then release effectively biocompatible acidic components to restore the functional lysosomal pH of neuronal cells. Biological assays on a genetic cell model of Parkinson's disease highlighted the non-toxicity of such nucleolipids after cellular uptake and their ability (at c = 40 µM) to fully restore lysosomal acidity.
Collapse
Affiliation(s)
| | | | - Benjamin Dehay
- University of Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France
| | - Sylvie Crauste-Manciet
- University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
- University Hospital, Bordeaux, France
| | | |
Collapse
|