51
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA, Alotaibi TM. From inflammation to metastasis: The central role of miR-155 in modulating NF-κB in cancer. Pathol Res Pract 2024; 253:154962. [PMID: 38006837 DOI: 10.1016/j.prp.2023.154962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Cancer is a multifaceted, complex disease characterized by unchecked cell growth, genetic mutations, and dysregulated signalling pathways. These factors eventually cause evasion of apoptosis, sustained angiogenesis, tissue invasion, and metastasis, which makes it difficult for targeted therapeutic interventions to be effective. MicroRNAs (miRNAs) are essential gene expression regulators linked to several biological processes, including cancer and inflammation. The NF-κB signalling pathway, a critical regulator of inflammatory reactions and oncogenesis, has identified miR-155 as a significant participant in its modulation. An intricate network of transcription factors known as the NF-κB pathway regulates the expression of genes related to inflammation, cell survival, and immunological responses. The NF-κB pathway's dysregulation contributes to many cancer types' development, progression, and therapeutic resistance. In numerous cancer models, the well-studied miRNA miR-155 has been identified as a crucial regulator of NF-κB signalling. The p65 subunit and regulatory molecules like IκB are among the primary targets that miR-155 directly targets to alter NF-κB activity. The molecular processes by which miR-155 affects the NF-κB pathway are discussed in this paper. It also emphasizes the miR-155's direct and indirect interactions with important NF-κB cascade elements to control the expression of NF-κB subunits. We also investigate how miR-155 affects NF-κB downstream effectors in cancer, including inflammatory cytokines and anti-apoptotic proteins.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al, Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | |
Collapse
|
52
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. The emerging role of noncoding RNAs in the EGFR signaling pathway in lung cancer. Pathol Res Pract 2024; 253:155016. [PMID: 38070221 DOI: 10.1016/j.prp.2023.155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Noncoding ribonucleic acids (ncRNAs) have surfaced as essential orchestrators within the intricate system of neoplastic biology. Specifically, the epidermal growth factor receptor (EGFR) signalling cascade shows a central role in the etiological underpinnings of pulmonary carcinoma. Pulmonary malignancy persists as a preeminent contributor to worldwide mortality attributable to malignant neoplasms, with non-small cell lung carcinoma (NSCLC) emerging as the most predominant histopathological subcategory. EGFR is a key driver of NSCLC, and its dysregulation is frequently associated with tumorigenesis, metastasis, and resistance to therapy. Over the past decade, researchers have unveiled a complex network of ncRNAs, encompassing microRNAs, long noncoding RNAs, and circular RNAs, which intricately regulate EGFR signalling. MicroRNAs, as versatile post-transcriptional regulators, have been shown to target various components of the EGFR pathway, influencing cancer cell proliferation, migration, and apoptosis. Additionally, ncRNAs have emerged as critical modulators of EGFR signalling, with their potential to act as scaffolds, decoys, or guides for EGFR-related proteins. Circular RNAs, a relatively recent addition to the ncRNA family, have also been implicated in EGFR signalling regulation. The clinical implications of ncRNAs in EGFR-driven lung cancer are substantial. These molecules exhibit diagnostic potential as robust biomarkers for early cancer detection and personalized treatment. Furthermore, their predictive value extends to predicting disease progression and therapeutic outcomes. Targeting ncRNAs in the EGFR pathway represents a novel therapeutic approach with promising results in preclinical and early clinical studies. This review explores the increasing evidence supporting the significant role of ncRNAs in modulating EGFR signalling in lung cancer, shedding light on their potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
53
|
Dubey G, Singh M, Singh H, Agarwal M, Chandel SS, Mishra A, Singh RP, Kukreti N. Emerging roles of SnoRNAs in the pathogenesis and treatment of autoimmune disorders. Pathol Res Pract 2024; 253:154952. [PMID: 38000202 DOI: 10.1016/j.prp.2023.154952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
SnoRNAs (small non-coding RNAs) have recently gained prominence in autoimmune diseases, revealing their crucial role in modulating the immune response and contributing to disease pathogenesis. Initially known for their involvement in ribosomal RNA processing and modification, molecular biology and genomics advancements have uncovered their broader impact on cellular function, especially in autoimmune disorders. Autoimmune diseases represent conditions characterized by the immune system's erroneous attacks on self-tissues, encompassing disorders like systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. The complex etiology of these conditions involves a delicate interplay of genetic and environmental factors. Emerging evidence suggests that snoRNAs initially recognized for their housekeeping roles, extend their influence on immune regulation through diverse mechanisms. SnoRNAs have been implicated in epigenetic modification, directly affecting the gene expression profiles of immune cells. Their ability to guide site-specific changes on ribosomal RNAs and other non-coding RNAs can significantly influence the translation of proteins involved in immune response pathways. Moreover, snoRNAs interact with key immune-related proteins, modulating their functions and subsequently impacting immune cell development, activation, and tolerance. Dysregulation of snoRNA expression has been observed in various autoimmune diseases, underscoring their potential as biomarkers for disease diagnosis, prognosis, and therapeutic targets. Manipulating snoRNA expression or activity is a promising therapeutic intervention avenue, offering the potential for personalized treatment strategies in autoimmune diseases. However, there remains a need for comprehensive research efforts to elucidate the precise molecular mechanisms underlying snoRNA-mediated immune modulation. Further investigations in this domain are essential to unravel the potential of snoRNAs in autoimmune disorders.
Collapse
Affiliation(s)
- Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India.
| | - Himmat Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | | | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
54
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
55
|
Thapa R, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Saleem S, Khan R, Altwaijry N, Dureja H, Singh SK, Dua K. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. Int J Biol Macromol 2023; 253:127375. [PMID: 37839597 DOI: 10.1016/j.ijbiomac.2023.127375] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/β-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
56
|
Almalki WH. Beyond the genome: lncRNAs as regulators of the PI3K/AKT pathway in lung cancer. Pathol Res Pract 2023; 251:154852. [PMID: 37837857 DOI: 10.1016/j.prp.2023.154852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Lung cancer is a prevalent and devastating disease, representing a significant global health burden. Despite advancements in therapeutic strategies, the molecular mechanisms underlying its pathogenesis remain incompletely understood. Lung cancer typically displays the deregulated activity of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, which is vital for cell proliferation, survival, and metastasis. Emerging evidence suggests that long non-coding RNA (lncRNAs) can modulate the PI3K/AKT pathway, offering new insights into lung cancer biology and potential therapeutic opportunities. These lncRNA act as either oncogenes, promoting pathway activation, or tumour suppressors, attenuating pathway signalling. The dysregulation of lncRNA is associated with various cellular processes, including apoptosis, cell cycle control, epithelial-mesenchymal transition (EMT), and angiogenesis, ultimately influencing lung cancer growth and metastasis. The development of novel therapeutic strategies, such as small interfering RNAs (siRNAs), antisense oligonucleotides, and CRISPR/Cas9-mediated gene editing, holds promise for restoring lncRNAs dysregulation and re-establishing the equilibrium of the PI3K/AKT pathway. The emerging role of lncRNAs as regulators of the PI3K/AKT pathway sheds new light on the complex molecular landscape of lung cancer. Understanding the interplay between lncRNA and the PI3K/AKT pathway could lead to the identification of novel biomarkers for prognosis and therapeutic targets for precision medicine. The potential of lncRNAs-based therapeutics may pave the way for more effective and personalized treatment approaches in lung cancer and potentially other malignancies with dysregulated PI3K/AKT signalling. This review aims to explore the emerging role of lncRNAs as key regulators of the PI3K/AKT pathway in lung cancer.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
57
|
Thapa R, Afzal O, Bhat AA, Goyal A, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Kazmi I, Singh SK, Dua K, Thangavelu L, Gupta G. New horizons in lung cancer management through ATR/CHK1 pathway modulation. Future Med Chem 2023; 15:1807-1818. [PMID: 37877252 DOI: 10.4155/fmc-2023-0164] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Molecular profiling has contributed to a new classification of lung cancer, driving advancements in research and therapy. The ataxia telangiectasia and rad3/checkpoint kinase 1 (ATR/CHK1) pathway plays a crucial role in maintaining genomic stability, and its activation has been linked to the development of lung cancer, drug resistance and poor prognosis. Clinical and preclinical studies have demonstrated promising results in targeting this pathway. ATR and CHK1 are proteins that collaborate to repair DNA damage caused by radiation or chemotherapy. ATR/CHK1 inhibitors are currently under investigation in preclinical and clinical trials. This article explores the ATR/CHK1 pathway and its potential for treating lung cancer.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, U.P., India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW, 2007, Australia
| | - Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University Dehradun, 248007, India
| |
Collapse
|
58
|
Almalki WH. LncRNAs and PTEN/PI3K signaling: A symphony of regulation in cancer biology. Pathol Res Pract 2023; 249:154764. [PMID: 37643526 DOI: 10.1016/j.prp.2023.154764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
The Emergence of Long Non-coding RNAs (lncRNAs) as Key Regulators in Diverse Biological Processes: A Paradigm Shift in Understanding Gene Expression and its Impact on Cancer. The PTEN/PI3K pathway, a pivotal signaling cascade involved in cancer progression, orchestrates critical cellular functions such as survival, proliferation, and growth. In light of these advances, our investigation delves into the intricate and multifaceted interplay between lncRNAs and the PTEN/PI3K signaling pathway, unearthing previously undisclosed mechanisms that underpin cancer growth and advancement. These elusive lncRNAs exert their influence through direct targeting of the PTEN/PI3K pathway or by skillfully regulating the expression and activity of specific lncRNAs. This comprehensive review underscores the paramount significance of the interaction between lncRNAs and the PTEN/PI3K signaling pathway in cancer biology, unveiling an auspicious avenue for novel diagnostic tools and targeted therapeutic interventions. In this review, we navigate through the functional roles of specific lncRNAs in modulating PTEN/PI3K expression and activity. Additionally, we scrutinize their consequential effects on downstream components of the PTEN/PI3K pathway, unraveling the intricacies of their mutual regulation. By advancing our understanding of this complex regulatory network, this study holds the potential to revolutionize the landscape of cancer research, paving the way for tailored and efficacious treatments to combat this devastating disease.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
59
|
Bhat AA, Thapa R, Afzal O, Agrawal N, Almalki WH, Kazmi I, Alzarea SI, Altamimi ASA, Prasher P, Singh SK, Dua K, Gupta G. The pyroptotic role of Caspase-3/GSDME signalling pathway among various cancer: A Review. Int J Biol Macromol 2023; 242:124832. [PMID: 37196719 DOI: 10.1016/j.ijbiomac.2023.124832] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Cytotoxic drugs have long been recognised to kill cancer cells through apoptosis. According to a current study, pyroptosis inhibits cell proliferation and shrinks tumors. Pyroptosis and apoptosis are caspase-dependent programmed cell death (PCD) processes. Inflammasomes activate caspase-1 and latent cytokines, including IL-1β and IL-18, to cleave gasdermin E (GSDME) and induce pyroptosis. Gasdermin proteins activate caspase-3 to induce pyroptosis, which is associated with tumour genesis, development, and therapy response. These proteins may serve as therapeutic biomarkers for cancer detection, and their antagonists may be a new target. Caspase-3, a crucial protein in both pyroptosis and apoptosis, governs tumour cytotoxicity when activated, and GSDME expression modulates this. Once active caspase-3 cleaves GSDME, its N-terminal domain punches holes in the cell membrane, causing it to expand, burst, and die. To understand the cellular and molecular mechanisms of PCD mediated by caspase-3 and GSDME, we focused on pyroptosis. Hence, caspase-3 and GSDME may be promising targets for cancer treatment.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
60
|
Rizwi FA, Abubakar M, Puppala ER, Goyal A, Bhadrawamy CV, Naidu VGM, Roshan S, Tazneem B, Almalki WH, Subramaniyan V, Rawat S, Gupta G. Janus Kinase-Signal Transducer and Activator of Transcription Inhibitors for the Treatment and Management of Cancer. J Environ Pathol Toxicol Oncol 2023; 42:15-29. [PMID: 37522565 DOI: 10.1615/jenvironpatholtoxicoloncol.2023045403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality worldwide, killing nearly 9.6 million people annually. Despite the advances in diagnosis and treatment during the last couple of decades, it remains a serious concern due to the limitations of currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. In addition, many etiological factors such as environmental and genetic factors initiate the activation of the Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) pathway. This aberrant activation of the JAK-STAT pathway has been reported in various disease states, including inflammatory conditions, hematologic malignancies, and cancer. For instance, many patients with myeloproliferative neoplasms carry the acquired gain-of-function JAK2 V617F somatic mutation. This knowledge has dramatically improved our understanding of pathogenesis and has facilitated the development of therapeutics capable of suppressing the constitutive activation of the JAK-STAT pathway. Our aim is not to be expansive but to highlight emerging ideas towards preventive therapy in a modern view of JAK-STAT inhibitors. A series of agents with different specificities against different members of the JAK family of proteins is currently undergoing evaluation in clinical trials. Here we give a summary of how JAK-STAT inhibitors function and a detailed review of current clinical drugs for managing cancer as a new therapeutic approach.
Collapse
Affiliation(s)
- Fahim Anwar Rizwi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Md Abubakar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Ch Veera Bhadrawamy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - S Roshan
- Deccan School of Pharmacy, Hyderabad, India
| | - B Tazneem
- Deccan School of Pharmacy, Hyderabad, India
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Sushama Rawat
- Nirma University, Institute of Pharmacy, Ahmedabad, Gujarat 382481, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|