51
|
Li M, Yin S, Xu A, Kang L, Ma Z, Liu F, Yang T, Sun P, Tang Y. Synergistic Phototherapy-Molecular Targeted Therapy Combined with Tumor Exosome Nanoparticles for Oral Squamous Cell Carcinoma Treatment. Pharmaceutics 2023; 16:33. [PMID: 38258044 PMCID: PMC10821490 DOI: 10.3390/pharmaceutics16010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) contributes to more than 90% of all oral malignancies, yet the performance of traditional treatments is impeded by limited therapeutic effects and substantial side effects. In this work, we report a combinational treatment strategy based on tumor exosome-based nanoparticles co-formulating a photosensitizer (Indocyanine green) and a tyrosine kinase inhibitor (Gefitinib) (IG@EXOs) for boosting antitumor efficiency against OSCC through synergistic phototherapy-molecular targeted therapy. The IG@EXOs generate distinct photothermal/photodynamic effects through enhanced photothermal conversion efficiency and ROS generation, respectively. In vivo, the IG@EXOs efficiently accumulate in the tumor and penetrate deeply to the center of the tumor due to passive and homologous targeting. The phototherapy effects of IG@EXOs not only directly induce potent cancer cell damage but also promote the release and cytoplasmic translocation of Gefitinib for achieving significant inhibition of cell proliferation and tumor angiogenesis, eventually resulting in efficient tumor ablation and lymphatic metastasis inhibition through the synergistic phototherapy-molecular targeted therapy. We envision that the encouraging performances of IG@EXOs against cancer pave a new avenue for their future application in clinical OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Shiyao Yin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
- Department of Otolaryngology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Anan Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Liyuan Kang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Ziqian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| | - Peng Sun
- Department of Otolaryngology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China;
| | - Yongan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (M.L.); (A.X.); (L.K.); (Z.M.); (F.L.); (T.Y.)
| |
Collapse
|
52
|
Lee KS, Kim Y, Lee JH, Shon S, Kim A, Pham AVQ, Kim C, Kim DH, Kim YK, Cho EG. Human Probiotic Lactobacillus paracasei-Derived Extracellular Vesicles Improve Tumor Necrosis Factor-α-Induced Inflammatory Phenotypes in Human Skin. Cells 2023; 12:2789. [PMID: 38132109 PMCID: PMC10741892 DOI: 10.3390/cells12242789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Lactic acid bacteria (LAB), a probiotic, provide various health benefits. We recently isolated a new Lactobacillus paracasei strain with strong anti-inflammatory effects under lipopolysaccharide-induced conditions and proposed a new mode of action-augmenting the endoplasmic reticulum stress pathway for anti-inflammatory functions in host cells. The beneficial effects of the L. paracasei strains on the skin have been described; however, the effects of L. paracasei-derived extracellular vesicles (LpEVs) on the skin are poorly understood. Herein, we investigated whether LpEVs can improve inflammation-mediated skin phenotypes by determining their effects on primary human skin cells and a three-dimensional (3D) full-thickness human skin equivalent under tumor necrosis factor (TNF)-α-challenged inflammatory conditions. LpEVs were efficiently taken up by the human skin cells and were much less cytotoxic to host cells than bacterial lysates. Furthermore, low LpEV concentrations efficiently restored TNF-α-induced cellular phenotypes, resulting in increased cell proliferation and collagen synthesis, but decreased inflammatory factor levels (matrix metalloproteinase 1, interleukin 6, and interleukin 8) in the human dermal fibroblasts, which was comparable to that of retinoic acid, a representative antiaging compound. The beneficial effects of LpEVs were validated in a 3D full-thickness human skin equivalent model. LpEV treatment remarkably restored the TNF-α-induced epidermal malformation, abnormal proliferation of keratinocytes in the basal layer, and reduction in dermal collagen synthesis. Additionally, LpEVs penetrated and reached the deepest dermal layer within 24 h when overlaid on top of a 3D full-thickness human skin equivalent. Furthermore, they possessed superior antioxidant capacity compared with the human cell-derived EVs. Taken together, the anti-inflammatory probiotic LpEVs can be attractive antiaging and antioxidant substances for improving inflammation-induced skin phenotypes and disorders.
Collapse
Affiliation(s)
- Kwang-Soo Lee
- H&B Science Center, CHA Meditech Co., Ltd., Seongnam 13488, Republic of Korea
| | - Yunsik Kim
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam 13488, Republic of Korea
| | - Jin Hee Lee
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam 13488, Republic of Korea
| | - Suji Shon
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - Aram Kim
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | - An Vuong Quynh Pham
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Dong Hyun Kim
- Department of Dermatology, Bundang CHA Medical Center, School of Medicine, CHA University, Seongnam 13488, Republic of Korea
| | | | - Eun-Gyung Cho
- H&B Science Center, CHA Meditech Co., Ltd., Seongnam 13488, Republic of Korea
- Consumer Health 2 Center, CHA Advanced Research Institute, Bundang CHA Medical Center, Seongnam 13488, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Pocheon 11160, Republic of Korea
| |
Collapse
|
53
|
Huang L, Wu E, Liao J, Wei Z, Wang J, Chen Z. Research Advances of Engineered Exosomes as Drug Delivery Carrier. ACS OMEGA 2023; 8:43374-43387. [PMID: 38027310 PMCID: PMC10666244 DOI: 10.1021/acsomega.3c04479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Exosomes are nanoscale vesicles secreted by living cells that have similar membrane composition to parental cells and carry a variety of proteins, lipids, and nucleic acids. Therefore, exosomes have certain biological activities and play an important role in intercellular communication. On the basis of its potential as a carrier for drug delivery systems, exosomes have been engineered to compensate for the shortage of natural exosomes through various engineering strategies for improving drug delivery efficiency, enhancing targeting to tissues and organs, and extending the circulating half-life of exosomes. This review focuses on the engineered exosomes loading drugs through different strategies, discussions on exosome surface modification strategies, and summarizes the advantages and disadvantages of different strategies. In addition, this review provides an overview of the recent applications of engineered exosomes in a number of refractory and relapsable diseases. This review has the potential to provide a reference for further research and development of engineered exosomes.
Collapse
Affiliation(s)
- Lianghui Huang
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Enguang Wu
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jiawei Liao
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Zongyi Wei
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jin Wang
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| |
Collapse
|