51
|
Abstract
Cpf1, a CRISPR endonuclease discovered in Prevotella and Francisella 1 bacteria, offers an alternative platform for CRISPR-based genome editing beyond the commonly used CRISPR-Cas9 system originally discovered in Streptococcus pyogenes. This protocol enables the design of engineered CRISPR-Cpf1 components, both CRISPR RNAs (crRNAs) to guide the endonuclease and Cpf1 mRNAs to express the endonuclease protein, and provides experimental procedures for effective genome editing using this system. We also describe quantification of genome-editing activity and off-target effects of the engineered CRISPR-Cpf1 in human cell lines using both T7 endonuclease I (T7E1) assay and targeted deep sequencing. This protocol enables rapid construction and identification of engineered crRNAs and Cpf1 mRNAs to enhance genome-editing efficiency using the CRISPR-Cpf1 system, as well as assessment of target specificity within 2 months. This protocol may also be appropriate for fine-tuning other types of CRISPR systems.
Collapse
|
52
|
Zhang D, Zhou CY, Busby KN, Alexander SC, Devaraj NK. Light-Activated Control of Translation by Enzymatic Covalent mRNA Labeling. Angew Chem Int Ed Engl 2018; 57:2822-2826. [PMID: 29380476 PMCID: PMC6052764 DOI: 10.1002/anie.201710917] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 11/05/2022]
Abstract
Activation of cellular protein expression upon visible-light photocleavage of small-molecule caging groups covalently attached to the 5' untranslated region (5' UTR) of an mRNA was achieved. These photocleavable caging groups are conjugated to in vitro transcribed mRNA (IVT-mRNA) through RNA transglycosylation, an enzymatic process in which a bacterial tRNA guanine transglycosylase (TGT) exchanges a guanine nucleobase in a specific 17-nucleotide motif (Tag) for synthetic pre-queuosine1 (preQ1 ) derivatives. The caging groups severely reduce mRNA translation efficiency when strategically placed in the 5' UTR. Using this method, we demonstrate the successful spatiotemporal photoregulation of gene expression with single-cell precision. Our method can be applied to therapeutically relevant chemically modified mRNA (mod-mRNA) transcripts. This strategy provides a modular and efficient approach for developing synthetic gene regulatory circuits, biotechnological applications, and therapeutic discovery.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Cun Yu Zhou
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Kayla N. Busby
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Seth C. Alexander
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| |
Collapse
|
53
|
Ehret F, Zhou CY, Alexander SC, Zhang D, Devaraj NK. Site-Specific Covalent Conjugation of Modified mRNA by tRNA Guanine Transglycosylase. Mol Pharm 2018; 15:737-742. [PMID: 28749687 DOI: 10.1021/acs.molpharmaceut.7b00356] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.
Collapse
Affiliation(s)
- Fabian Ehret
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Cun Yu Zhou
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Seth C Alexander
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Dongyang Zhang
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
54
|
Zhang D, Zhou CY, Busby KN, Alexander SC, Devaraj NK. Light‐Activated Control of Translation by Enzymatic Covalent mRNA Labeling. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710917] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dongyang Zhang
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Cun Yu Zhou
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Kayla N. Busby
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Seth C. Alexander
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry University of California, San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| |
Collapse
|
55
|
Kwon H, Kim M, Seo Y, Moon YS, Lee HJ, Lee K, Lee H. Emergence of synthetic mRNA: In vitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials 2017; 156:172-193. [PMID: 29197748 DOI: 10.1016/j.biomaterials.2017.11.034] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/25/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
The field of gene therapy has evolved over the past two decades after the first introduction of nucleic acid drugs, such as plasmid DNA (pDNA). With the development of in vitro transcription (IVT) methods, synthetic mRNA has become an emerging class of gene therapy. IVT mRNA has several advantages over conventional pDNA for the expression of target proteins. mRNA does not require nuclear localization to mediate protein translation. The intracellular process for protein expression is much simpler and there is no potential risk of insertion mutagenesis. Having these advantages, the level of protein expression is far enhanced as comparable to that of viral expression systems. This makes IVT mRNA a powerful alternative gene expression system for various applications in regenerative medicine. In this review, we highlight the synthesis and preparation of IVT mRNA and its therapeutic applications. The article includes the design and preparation of IVT mRNA, chemical modification of IVT mRNA, and therapeutic applications of IVT mRNA in cellular reprogramming, stem cell engineering, and protein replacement therapy. Finally, future perspectives and challenges of IVT mRNA are discussed.
Collapse
Affiliation(s)
- Hyokyoung Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minjeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yunmi Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yae Seul Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
56
|
Patel S, Ashwanikumar N, Robinson E, DuRoss A, Sun C, Murphy-Benenato KE, Mihai C, Almarsson Ö, Sahay G. Boosting Intracellular Delivery of Lipid Nanoparticle-Encapsulated mRNA. NANO LETTERS 2017; 17:5711-5718. [PMID: 28836442 PMCID: PMC5623340 DOI: 10.1021/acs.nanolett.7b02664] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intracellular delivery of mRNA holds great potential for vaccine1-3 and therapeutic4 discovery and development. Despite increasing recognition of the utility of lipid-based nanoparticles (LNPs) for intracellular delivery of mRNA, particle engineering is hindered by insufficient understanding of endosomal escape, which is believed to be a main limiter of cytosolic availability and activity of the nucleic acid inside the cell. Using a series of CRISPR-based genetic perturbations of the lysosomal pathway, we have identified that late endosome/lysosome (LE/Ly) formation is essential for functional delivery of exogenously presented mRNA. Lysosomes provide a spatiotemporal hub to orchestrate mTOR signaling and are known to control cell proliferation, nutrient sensing, ribosomal biogenesis, and mRNA translation. Through modulation of the mTOR pathway we were able to enhance or inhibit LNP-mediated mRNA delivery. To further boost intracellular delivery of mRNA, we screened 212 bioactive lipid-like molecules that are either enriched in vesicular compartments or modulate cell signaling. Surprisingly, we have discovered that leukotriene-antagonists, clinically approved for treatment of asthma and other lung diseases, enhance intracellular mRNA delivery in vitro (over 3-fold, p < 0.005) and in vivo (over 2-fold, p < 0.005). Understanding LNP-mediated intracellular delivery will inspire the next generation of RNA therapeutics that have high potency and limited toxicity.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
| | - N Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
| | - Emily Robinson
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
| | - Allison DuRoss
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
- Department of Radiation Medicine, School of Medicine, 3181 S.W. Sam Jackson Park Road, Oregon Health Science University, Portland, OR, 97239
| | | | - Cosmin Mihai
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139
| | - Örn Almarsson
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon State University, Portland, OR, 97201
- Department of Biomedical Engineering, Collaborative Life Science Building, 2730 SW Moody Ave, Oregon Health Science University, Portland, OR, 97201
| |
Collapse
|
57
|
Zhao X, Li X, Zhao Y, Cheng Y, Yang Y, Fang Z, Xie Y, Liu Y, Chen Y, Ouyang Y, Yuan W. Immune Activities of Polycationic Vectors for Gene Delivery. Front Pharmacol 2017; 8:510. [PMID: 28824434 PMCID: PMC5543280 DOI: 10.3389/fphar.2017.00510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/20/2017] [Indexed: 12/23/2022] Open
Abstract
Polycationic vectors are used widely in the field of gene delivery, while currently their immune activities in vivo are poorly understood. In this comprehensive review, we aim to present an overview of existing mechanisms of adverse immune responses induced by the polycation/gene complexes, which includes the polycations themselves, the gene sequences and the ROS produced by them. These causes can induce pro-inflammatory cytokines, hypersensitivity as well as the activation of toll-like receptors, and finally the immunostimulation occur. In addition, we introduce some different opinions and research results on the immunogenicity of classical polycations such as polylysine (PLL), polyethyleneimine (PEI), polyamidoamine dendrimers (PAMAM), chitosan and gelatin, most of which have immunogenicity and can induce immunoreactions in vivo. The methods now used to adjust their immunogenicity are shown in the final part of this review. Nowadays, there is still no accurate conclusion on immunogenicity of polycations, which confuses researchers seriously in in vivo test. We conclude that further research is needed in order to skillfully utilize or inhibit the immunogenicity of these polycationic vectors.
Collapse
Affiliation(s)
- Xiaotian Zhao
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Xiaoming Li
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yi Zhao
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yuan Cheng
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yunqi Yang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Zhiwei Fang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer InstituteBoston, MA, United States
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China
| | - Yuanming Ouyang
- Shanghai Sixth People's Hospital East Campus, Shanghai University of Medicine and HealthShanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
58
|
Sergeeva OV, Koteliansky VE, Zatsepin TS. mRNA-Based Therapeutics - Advances and Perspectives. BIOCHEMISTRY (MOSCOW) 2017; 81:709-22. [PMID: 27449617 DOI: 10.1134/s0006297916070075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review we discuss features of mRNA synthesis and modifications used to minimize immune response and prolong efficiency of the translation process in vivo. Considerable attention is given to the use of liposomes and nanoparticles containing lipids and polymers for the mRNA delivery. Finally we briefly discuss mRNAs which are currently in the clinical trials for cancer immunotherapy, vaccination against infectious diseases, and replacement therapy.
Collapse
Affiliation(s)
- O V Sergeeva
- Lomonosov Moscow State University, Department of Chemistry, Moscow, 119991, Russia.
| | | | | |
Collapse
|
59
|
Hadas Y, Katz MG, Bridges CR, Zangi L. Modified mRNA as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 9. [PMID: 27911047 DOI: 10.1002/wsbm.1367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 01/14/2023]
Abstract
Ischemic heart disease (IHD) is a leading cause of morbidity and mortality in developed countries. Current pharmacological and interventional therapies provide significant improvement in the life quality of patient; however, they are mostly symptom-oriented and not curative. A high disease and economic burden of IHD requires the search for new therapeutic strategies to significantly improve patients' prognosis and quality of life. One of the main challenges during IHD is the massive loss of cardiomyocytes that possess minimal regenerative capacity. Recent understanding of the pathophysiological mechanisms underlying IHD, as well as new therapeutic approaches provide new hope for patients suffering from IHD. Synthetic modified mRNA (modRNA) is a new gene delivery vector that is increasingly used in in vivo applications. modRNA is a relatively stable, non-immunogenic, highly-expressed molecule that has been shown to mediate high and transient expression of proteins in different type of cells and tissues including cardiomyocytes. modRNA properties, together with its expression kinetics in the heart make it an attractive option for the treatment of IHD, especially after myocardial infarction. In this review we discuss the role of gene therapy in cardiac regeneration as an approach to treat IHD; traditional and innovative gene delivery methods; and focus specifically on modRNA structure, mode of delivery, and its use for the induction of endogenous regenerative capacity, mainly in the context of IHD. WIREs Syst Biol Med 2017, 9:e1367. doi: 10.1002/wsbm.1367 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yoav Hadas
- Cardiovascular Research Center, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael G Katz
- Cardiovascular Research Center, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles R Bridges
- Cardiovascular Research Center, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lior Zangi
- Cardiovascular Research Center, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
60
|
Steyer B, Carlson-Stevermer J, Angenent-Mari N, Khalil A, Harkness T, Saha K. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells. Acta Biomater 2016; 34:143-158. [PMID: 26747759 PMCID: PMC4961091 DOI: 10.1016/j.actbio.2015.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/25/2015] [Accepted: 12/29/2015] [Indexed: 01/08/2023]
Abstract
Non-viral gene-editing of human cells using the CRISPR-Cas9 system requires optimized delivery of multiple components. Both the Cas9 endonuclease and a single guide RNA, that defines the genomic target, need to be present and co-localized within the nucleus for efficient gene-editing to occur. This work describes a new high-throughput screening platform for the optimization of CRISPR-Cas9 delivery strategies. By exploiting high content image analysis and microcontact printed plates, multi-parametric gene-editing outcome data from hundreds to thousands of isolated cell populations can be screened simultaneously. Employing this platform, we systematically screened four commercially available cationic lipid transfection materials with a range of RNAs encoding the CRISPR-Cas9 system. Analysis of Cas9 expression and editing of a fluorescent mCherry reporter transgene within human embryonic kidney cells was monitored over several days after transfection. Design of experiments analysis enabled rigorous evaluation of delivery materials and RNA concentration conditions. The results of this analysis indicated that the concentration and identity of transfection material have significantly greater effect on gene-editing than ratio or total amount of RNA. Cell subpopulation analysis on microcontact printed plates, further revealed that low cell number and high Cas9 expression, 24h after CRISPR-Cas9 delivery, were strong predictors of gene-editing outcomes. These results suggest design principles for the development of materials and transfection strategies with lipid-based materials. This platform could be applied to rapidly optimize materials for gene-editing in a variety of cell/tissue types in order to advance genomic medicine, regenerative biology and drug discovery. STATEMENT OF SIGNIFICANCE CRISPR-Cas9 is a new gene-editing technology for "genome surgery" that is anticipated to treat genetic diseases. This technology uses multiple components of the Cas9 system to cut out disease-causing mutations in the human genome and precisely suture in therapeutic sequences. Biomaterials based delivery strategies could help transition these technologies to the clinic. The design space for materials based delivery strategies is vast and optimization is essential to ensuring the safety and efficacy of these treatments. Therefore, new methods are required to rapidly and systematically screen gene-editing efficacy in human cells. This work utilizes an innovative platform to generate and screen many formulations of synthetic biomaterials and components of the CRISPR-Cas9 system in parallel. On this platform, we watch genome surgery in action using high content image analysis. These capabilities enabled us to identify formulation parameters for Cas9-material complexes that can optimize gene-editing in a specific human cell type.
Collapse
Affiliation(s)
- Benjamin Steyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jared Carlson-Stevermer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicolas Angenent-Mari
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ty Harkness
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Medical History and Bioethics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
61
|
Li B, Luo X, Dong Y. Effects of Chemically Modified Messenger RNA on Protein Expression. Bioconjug Chem 2016; 27:849-53. [PMID: 26906521 DOI: 10.1021/acs.bioconjchem.6b00090] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemically modified nucleotides play significant roles in the effectiveness of mRNA translation. Here, we describe the synthesis of two sets of chemically modified mRNAs [encoding firefly Luciferase (FLuc) and enhanced green fluorescent protein (eGFP), respectively], evaluation of protein expression, and correlation analysis of expression level under various conditions. The results indicate that chemical modifications of mRNAs are able to significantly improve protein expression, which is dependent on cell types and coding sequences. Moreover, eGFP mRNAs with N1-methylpseudouridine (me(1)ψ), 5-methoxyuridine (5moU), and pseudouridine (ψ) modifications ranked top three in cell lines tested. Interestingly, 5moU-modified eGFP mRNA was more stable than other eGFP mRNAs. Consequently, me(1)ψ, 5moU, and ψ are promising nucleotides for chemical modification of mRNAs.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, ‡Department of Biomedical Engineering, §The Center for Clinical and Translational Science, and ∥The Comprehensive Cancer Center, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xiao Luo
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, ‡Department of Biomedical Engineering, §The Center for Clinical and Translational Science, and ∥The Comprehensive Cancer Center, The Ohio State University , Columbus, Ohio 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, ‡Department of Biomedical Engineering, §The Center for Clinical and Translational Science, and ∥The Comprehensive Cancer Center, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
62
|
|
63
|
Antony JS, Dewerth A, Haque A, Handgretinger R, Kormann MSD. Modified mRNA as a new therapeutic option for pediatric respiratory diseases and hemoglobinopathies. Mol Cell Pediatr 2015; 2:11. [PMID: 26589812 PMCID: PMC4654728 DOI: 10.1186/s40348-015-0022-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/16/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The immunogenicity and limited stability of conventional messenger RNA (mRNA) has traditionally restricted its potential therapeutic use. In 1992, the first clinical application of mRNA was reported as a potential protein-replacement therapy; however, subsequent investigations have not been made for almost two decades. Recent developments, including increased stability, controlling immunogenicity, as well as utilization of mRNA encoding zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas9, have implicated modified mRNA as a very promising option for cancer immunotherapy, vaccines, protein expression replacement, and genome editing. This review aims to offer a summary of our present understanding of and improvements in mRNA-based drug technologies, along with a focus on the role in therapeutic options for pediatric respiratory diseases and hemoglobinopathies. CONCLUSIONS This mini review summarizes the recent advances in modified mRNA-based therapy and its potential therapeutic effect in treating major pediatric diseases.
Collapse
Affiliation(s)
- Justin S Antony
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Alexander Dewerth
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Ashiqul Haque
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Michael S D Kormann
- Department of Pediatrics I-Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
64
|
Andries O, Mc Cafferty S, De Smedt SC, Weiss R, Sanders NN, Kitada T. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release 2015; 217:337-44. [PMID: 26342664 DOI: 10.1016/j.jconrel.2015.08.051] [Citation(s) in RCA: 398] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 12/26/2022]
Abstract
Messenger RNA as a therapeutic modality is becoming increasingly popular in the field of gene therapy. The realization that nucleobase modifications can greatly enhance the properties of mRNA by reducing the immunogenicity and increasing the stability of the RNA molecule (the Kariko paradigm) has been pivotal for this revolution. Here we find that mRNAs containing the N(1)-methylpseudouridine (m1Ψ) modification alone and/or in combination with 5-methylcytidine (m5C) outperformed the current state-of-the-art pseudouridine (Ψ) and/or m5C/Ψ-modified mRNA platform by providing up to ~44-fold (when comparing double modified mRNAs) or ~13-fold (when comparing single modified mRNAs) higher reporter gene expression upon transfection into cell lines or mice, respectively. We show that (m5C/)m1Ψ-modified mRNA resulted in reduced intracellular innate immunogenicity and improved cellular viability compared to (m5C/)Ψ-modified mRNA upon in vitro transfection. The enhanced capability of (m5C/)m1Ψ-modified mRNA to express proteins may at least partially be due to the increased ability of the mRNA to evade activation of endosomal Toll-like receptor 3 (TLR3) and downstream innate immune signaling. We believe that the (m5C/)m1Ψ-mRNA platform presented here may serve as a new standard in the field of modified mRNA-based therapeutics.
Collapse
Affiliation(s)
- Oliwia Andries
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | - Séan Mc Cafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Ron Weiss
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, USA
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium.
| | - Tasuku Kitada
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, MA, USA.
| |
Collapse
|